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Elliptic Curves

Sam Estep

November 26, 2017

1 Motivation

Elliptic curves have found widespread use in number theory and applications
thereof, such as cryptography. In this paper we will first examine the basic
theory of elliptic curves and then look specifically at how they can be used to
construct cryptographic systems more efficient than their counterparts, and
how they can be used to generate proofs for or against primality.

1.1 Cryptography

Cryptography is the most important current field of application for elliptic
curves. In the most general terms, cryptography is the art of making it easy
for parties to communicate with each other while simultaneously making it
difficult for attackers to compromise this communication.

For a given cryptographic system, we can usually increase or decrease the
key size to get more or less security, respectively. This change in key size
will affect the time, memory, and power requirements of the system. In other
words, these two requirements of ease for communicators and difficulty for
attackers are inversely related in the context of a given system. The question
then becomes, what is the ratio in this relation for different systems?

As it turns out, for a given level of security, elliptic curve cryptography
works with keys an order of magnitude smaller than those required by other
systems.? This reduced memory demand is accompanied by corresponding
reductions in power and time demands. As a result, elliptic curve cryptogra-
phy is slowly but surely becoming a staple in our everyday communication.
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1.2 Primality

Up until the 1970s, number theory in general and prime numbers in specific
were regarded as demonstrations of the part of mathematics that has no
practical import. Some number theorists, such as Hardy, found a certain
amount of satisfaction in the idea that their work would not be used for
military purposes.? The invention of RSA and the ever-increasing usage of
computers have brought a swift end to this notion.

In order to make use of the properties of prime numbers, we need to
actually be working with prime numbers. In other words, given n ∈ Z+, we
would like to have a method to determine whether or not n is prime. If n > 1
is composite then there exist some a, b ∈ Z+ with 1 < a ≤ b < n such that
ab = n. If a, b >

√
n then ab >

√
n ·
√
n = n which is a contradiction, so

since a ≤ b we know that a ≤
√
n. Thus the most näıve primality testing

algorithm is to check all m ∈ Z+ with 1 < m ≤
√
n; if m | n for any

such m then n is composite; otherwise n is prime. This algorithm has time
complexity O(

√
n), which is infeasibly slow when n has many digits.

An algorithm was discovered in 2002 that can determine primality of n in
time proportional to a polynomial in the number of digits of n.? The most
efficient version of this algorithm runs in O(log6 n) time, which is decent, but
even using the most efficient primality checking algorithms known, checking
the primality of a large number can still take an inconvenient amount of time.
If, say, we have a number that we know to be prime, we would like to be able
to communicate this knowledge to someone else in a way that they can verify
it efficiently without having to trust us; this is the concept of a primality
certificate. For p ∈ Z+ prime, elliptic curves give us the most efficient known
way to generate a certificate of size O(log2 p) that takes O(log4 p) time to
check, which is considerably faster than starting from scratch.?

2 Group Theory

2.1 General Form

Let F be a field. Given A,B ∈ F , an elliptic curve E over F is the graph of

y2 = x3 + Ax+B

for x, y ∈ F . For reasons discussed below, we also include a “point at infinity”
O /∈ F×F in the elliptic curve. This point O can be thought of as the point at
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which distinct vertical lines in the F ×F plane “meet”. It can be formalized
using projective space, but we will not explore that here.? To summarize,

E = {O} ∪ {(x, y) ∈ F × F | y2 = x3 + Ax+B}.

It can be helpful to consider F = R and think of elliptic curves geomet-
rically.? Trying different values of A and B demonstrates that we can cause
the curve to have either two components, such as for

(A,B) = (−1, 0) ⇒ y2 = x3 − x,

or just one component, such as for

(A,B) = (−1, 1) ⇒ y2 = x3 − x+ 1.

In general, we can show that the discriminant

∆ = −16(4a3 + 27b2)

is positive if the graph has two components and negative if the graph has
one component. We would like to avoid cusps, self-intersections, and isolated
points, so we will say that if ∆ = 0 then E is not an elliptic curve. Alge-
braically, this means that the roots of 0 = x3 + Ax + B are distinct, which
follows even in F 6= R where geometric intuition breaks down.

2.2 Group Law

We will work toward an appropriate definition of + : E×E → E that makes
E into an additive abelian group. A first guess might be the operation defined
by F ⊕F . However, as an example, if F = Q and (A,B) = (−1, 0) as in the
example above, our equation is y2 = x3 − x, so (1, 0) ∈ E, but

(0 + 0)2 = 0 6= 6 = (1 + 1)3 − (1 + 1) ⇒ (1 + 1, 0 + 0) /∈ E.

Thus E − {O} may not be a subgroup of F ⊕ F , so we need something else.
We will develop the group law from a geometric standpoint motivated by

the F = R case, but we will show each step algebraically for an arbitrary F ,
assuming the characteristic of F is not 2. It is possible to generalize to fields
of characteristic 2, but we will ignore that case here.?

Given P1, P2 ∈ E, draw a line through P1 and P2. We will see that this
line also intersects E at a point P ′3. Then reflect P ′3 across the x-axis to obtain
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P3. We want to turn the somewhat vague geometric decree that P1 +P2 = P3

into an algebraic formulation of our group law.
If O,P1, P2 are all distinct then we can destructure them as P1 = (x1, y1)

and P2 = (x2, y2). If x1 6= x2 then the nonvertical line through P1 and P2 is

y = m(x− x1) + y1 where m = (y2 − y1)(x2 − x1)−1.

Substituting this y into the elliptic curve equation yields

0 = x3 + Ax+B − (m(x− x1) + y1)2 = x3 −m2x2 + αx+ β.

where α = A+ 2m2x1 − 2my1 and β = B −m2x2
1 + 2mx1y1 − y2

1. We know
that x1 is a solution to this equation and thus a factor of the polynomial, so
the division algorithm yields

0 = x3 −m2x2 + αx+ β = (x− x1)(x2 + (x1 −m2)x+ γ)

where γ = x1(x1−m2) +α. We also know that x2 is a solution and x2 6= x1,
so applying the division algorithm a second time yields

0 = (x− x1)(x2 + (x1 −m2)x+ γ) = (x− x1)(x− x2)(x− (m2 − x1 − x2)).

Thus if we let x3 = m2− x1− x2 and y′3 = m(x3− x1) + y1 then we know P1,
P2, and (x3, y

′
3) are all the points of intersection of the line and the curve.

We reflect across the x-axis to obtain y3 = m(x1−x3)− y1, let P3 = (x3, y3),
and say P1 + P2 = P3.

If x1 = x2 then the line through P1 and P2 is vertical, so it intersects E
at O. If you take the point at which vertical lines meet and reflect it across
the x-axis, you still have the point at which vertical lines meet, so we say
P1 + P2 = O.

If O 6= P1 = P2 then we can’t take the secant line as above because
x2 − x1 = 0 is not invertible. However, differentiating the elliptic curve
equation gives us

2y dy = 3x2 dx+ Adx ⇒ dy

dx
=

3x2 + A

2y
,

suggesting that we can use this slope instead to obtain another point. We
interpret y1 = 0 as a vertical tangent line and say P1 + P2 = O as above,
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so consider the case y1 6= 0 where we can define the nonvertical tangent line
through P1 = P2 as

y = m(x− x1) + y1 where m = (3x2
1 + A)(2y1)−1;

again, we assume that F is not characteristic 2. The same substitution as
above, along with the knowledge that x1 is a solution, yields

0 = x3 + Ax+B − (m(x− x1) + y1)2

= x3 −m2x2 + αx+ β

= (x− x1)(x2 + (x1 −m2)x+ γ)

with α, β, γ defined the same way with respect to m. Since

x2
1 + (x1 −m2)x1 + γ = x2

1 + (x1 −m2)x1 + x1(x1 −m2) + α

= x2
1 + 2x1(x1 −m2) + A+ 2m2x1 − 2my1

= 3x2
1 + A− (3x2

1 + A)

= 0,

we see that x1 is also a solution to the quadratic, and thus a double root of
the cubic, so we can factor it out again, yielding

x3 = m2 − x1 − x2 and y3 = m(x1 − x3)− y1

so we let P3 = (x3, y3) and say P1 + P2 = P3.
If P2 = O then the line through P1 and O must be vertical, so it intersects

E at the reflection of P1 across the x-axis. Reflecting across the x-axis again
yields P1 +O = P1. Similarly O + P2 = P2, and we extend to O +O = O.

The symmetry in our geometric motivation and in these equations them-
selves makes it clear that this + is commutative, that O serves as an identity
element, and that the reflection of a point across the x-axis serves as its ad-
ditive inverse. We omit the proof here, but it can also be shown that this +
is associative, so (E,+) is an abelian group.?
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3 Discrete Logarithms

3.1 The Problem

Let G be a multiplicative group. For x ∈ G and n ∈ Z, we use

xn =


1G if n = 0

xn−1x if n > 0

(x−1)−n if n < 0

as our recursive definition of the nth power of g. Observing for n > 0 that

xn =

{
(x2)(n−1)/2x if n is odd

(x2)n/2 if n is even

leads us to an efficient algorithm for computing xn.
If n < 0 then by definition xn = (x−1)−n, so let x = x−1 and n = −n.

If n = 0 then by definition xn = 1G, so return 1G. Otherwise, let y = 1G.
Clearly at this point xn = xny, so if we keep xny constant while changing
our values of x, n, and y then if we reduce n to 1, we will have xy equal
to what we originally wanted to compute, so we can just return xy. Thus
we will loop while n > 1. If n is even then xn = (x2)n/2, so let x = x2 and
n = n/2 and loop again. If n is odd then xny = (x2)(n−1)/2xy, so let y = xy
and x = x2 and n = (n − 1)/2 and loop again. After the loop, we have
xn = x1 = x0x = x, so return xy.

Using a binary representation of n, we can compute n/2 and (n − 1)/2
very efficiently using simple bit operations. Each time we do this, we reduce
the size of n by at least one bit, so the number of steps in our loop will be
less than or equal to the number of bits in n. At each step, we compute x2

and possibly xy. If we can compute these operations in constant time then
the algorithm has the very reasonable time complexity O(log n).

For a, b ∈ G and k ∈ Z, we say that k is a discrete logarithm of a to the
base b if bk = a; we write k = logb a. While it is easy to compute a given
b and k using the algorithm described above, in general there is no efficient
method known to compute k given a and b. Many cryptographic applications
are based on the difficulty of this problem. The elliptic curves used in cryp-
tography are used because they are not believed to be susceptible to some
less general but more efficient methods for computing discrete logarithms.
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3.2 Index Calculus

The index calculus algorithm can be used to find discrete logarithms in Z∗q
for q prime, in subexponential time as opposed to other algorithms which
work in more general groups but take exponential time.? It makes use of the
notion of prime numbers, of which there is no analog in elliptic curve groups.

Let g ∈ Z∗q be our base. We will assume that g is a primitive root modulo
q, which just means that 〈g〉 = Z∗q. For x ∈ Z∗q and m,n ∈ Z with m = logg a
and n = logg a, we have gm = gn = a, so m ≡ n (mod |Z∗q|). We know
|Z∗q| = q − 1, so logg a can be thought of as a unique element of Zq−1.

For x, y ∈ Z∗q, if m = logg x and n = logg y then

bm = x, bn = y ⇒ bm+n = xy ⇒ m+ n = logg xy;

in other words, logg x + logg y = logg xy. Thus if we can factor x ∈ Z∗q into
a product of things of which we know the discrete logarithms to the base g,
then we can sum those to obtain the discrete logarithm of x.

We start by choosing a factor base B ⊆ Z∗q of elements whose discrete
logarithms we will compute first. A typical choice is

B = {−1, 2, 3, 5, 7, 11, . . . , pr︸ ︷︷ ︸
the first r primes

} ⇒ |B| = r + 1.

We know that each element in B has a unique discrete logarithm in Zq−1.
Let k ∈ Z+. If we can factor

gk mod q = (−1)e0 · 2e1 · 3e2 · · · perr

then we obtain a linear relation

k = e0 logg(−1) + e1 logg 2 + e2 logg 3 + · · ·+ er logg pr

which we can write as a row matrix[
e0 e1 e2 · · · er k̄

]
∈ Zq−1

1×(r+2) where k̄ = k mod (q − 1).

Thus we keep a list of the rows we’ve decided to keep so far, and try many
k. If we can’t factor gk mod q then we move on; otherwise we obtain a new
row. We use Gaussian elimination with the rows we have so far to remove
as many leading columns in the new row as we can. If the leading coefficient
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ei in this reduced row is a unit in Zq−1 then we multiply by the row by e−1
i ,

add it to our list of rows, and continue; otherwise we discard it and move on.
We continue until we have an (r + 1)× (r + 2) matrix in row echelon form,
which we can then easily convert to reduced row echelon form to obtain the
discrete logarithms for all of B.

Now we compute logg h for h ∈ Z∗q. Let s ∈ Z+. If we can factor

gsh mod q = (−1)f0 · 2f1 · 3f2 · · · pfrr

then

logg h = f0 logg(−1) + f1 logg 2 + f2 logg 3 + · · ·+ fr logg pr − s,

so once again we try many s in parallel until we find something we can factor,
and then we’re done.

The index calculus tends to be much faster than other methods when it
can be applied. However, it depends heavily on the structure of Z∗q and there
is no known adaptation of it that works for arbitrary elliptic curves, which
makes the latter attractive for cryptography.

4 Applications

4.1 Cryptography

Cryptographic systems are traditionally explained in terms of actors Alice,
Bob, and Eve with specific roles. Alice wants to send a message to Bob.
Bob wants to know that the message is truly from Alice. Eve wants to read
or spoof the message Alice is sending to Bob. The goal of the system is to
facilitate Alice’s goal and Bob’s goal while hindering Eve’s goal.

If Alice and Bob do not already have a physically secure channel which
they can use to communicate with each other, then they must use a public
channel and thus must encrypt their communication if they wish it to be
private. If they both knew a shared secret key then they could use it in
a symmetric encryption scheme such as AES. Diffie-Hellman key exchange
allows Alice and Bob to agree on a secret key solely using communication
over a public channel, without anyone else knowing what that secret key is.?

First Alice and Bob agree on an elliptic curve E over a finite field F such
that the discrete logarithm is difficult in E. They also agree on some P ∈ E

8
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such that |〈P 〉| is large. There are methods to determine the orders of E and
P , but we do not discuss them here.?

Alice and Bob separately generate random integers a and b, respectively.
Alice computes aP and sends it to Bob, and Bob computes bP and sends it
to Alice. These are just the ath and bth powers of P expressed in additive
notation, which is conventional for elliptic curve groups. Then Alice can
compute a(bP ) and Bob can compute b(aP ), which are equal by properties
of exponents, so they can use this shared point abP ∈ E as their secret key.

Note that Eve observes E and P and aP and bP . If Eve can solve the
discrete logarithm problem in E then she can compute a or b and thus abP ,
but the discrete logarithm problem is believed to be difficult over elliptic
curves. It is not known if there is a way for an eavesdropper to compute abP
without solving the discrete logarithm problem.?

This algorithm is actually specifically the elliptic curve Diffie-Hellman key
exchange algorithm. The original Diffie-Hellman key exchange algorithm uses
Z∗p for some prime p instead of using an elliptic curve group, making it sus-
ceptible to attacks such as the index calculus. Indeed, in 2015 a vulnerability
called Logjam was discovered, and the primary recommended defense against
this vulnerability is to switch to elliptic-curve Diffie-Hellman.?

4.2 Primality

Let n ∈ Z+. If n is prime then Zn is a field, allowing us to pick A,B ∈ Zn

and define an elliptic curve E by y2 = x3 + Ax + B. If n is composite then
we can still choose A,B ∈ Zn and define

E = {O} ∪ {(x, y) ∈ Zn × Zn | y2 = x3 + Ax+B},

but the group law we defined above could fail because there may exist some
P1 = (x1, y1) ∈ E and P2 = (x2, y2) ∈ E with x1 6= x2 but x2−x1 /∈ Z∗n. How-
ever, if our goal is to generate a proof of the primality or compositeness of n,
then we can simply insert an extra step into our procedure for adding points
on E. We use the extended Euclidean algorithm to find modular inverses,
so if any calculation turns up some k ∈ Zn with k 6= 0 and gcd(n, k) 6= 1,
then the computed gcd(n, k) is a nontrivial factor of n, so we can return it
immediately as a proof of compositeness.

We will make use of a proposition. Let m ∈ Z. If there is a prime q with
q | m and q > ( 4

√
n + 1)2, and there is a point P ∈ E such that mP = O,

9
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and (m/q)P is well-defined and not equal to O, then n is prime. We omit
the proof of this proposition; it uses a theorem about |E| assuming E is a
group, and some details regarding computation in E.?

The Goldwasser-Kilian algorithm works as follows.? First choose a ran-
dom P = (x, y) ∈ Zn×Zn. We can generate a curve that contains this point
by choosing a random A ∈ Zn and letting B = y2−x3−Ax. This defines an
elliptic curve E as discussed above. Assuming n is prime, E is a group, so
we can apply an algorithm such as Schoof’s algorithm to find |E|.? Again,
if this point-counting algorithm fails, it will produce a nontrivial factor of n.
If it returns a value m ∈ N then we proceed.

We try to factor m = kq where k ≥ 2 is a small integer and q is a
number that we believe to be prime. For instance, if we have applied some
fast probabilistic primality test to q which hasn’t found it to be composite,
then we will guess that it is prime and proceed. If we fail to find such a
factorization, we start over with a different random point and curve. Now at
this point, we have m and q with q large enough to satisfy the proposition.

Then we calculate mP and (m/q)P = kP . Assuming we don’t find a
nontrivial factor of n in the process, we use these results to determine the
primality of n. If mP 6= O then E is not a group, because if it were then we
would have m = |E| by Schoof’s algorithm and thus mP = O by Lagrange;
thus n is composite. If kP = O then we start over. Otherwise, we have
satisfied the conditions of the proposition, so we can return (A,B,m, q, P )
as a certificate that anyone can easily use to verify that n is prime. The only
thing remaining is the assumption that q is prime. To determine this, we
run the same algorithm recursively using q as the parameter, and include the
returned certificate in our certificate. The recursion stops when we reach a
prime small enough to verify by other means.
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