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Abstract: Cancer cells have unique nanomechanical properties, i.e., they behave as if they were elastic.
This property of cancer cells is believed to be one of the main reasons for their facilitated ability to
spread and metastasize. Thus, the so-called nanomechanical phenotype of cancer cells is viewed as
an important indicator of the cells’ metastatic behavior. One of the most highly metastatic cancer cells
are melanoma cells, which have a very unusual property: they can synthesize the pigment melanin in
large amounts, becoming heavily pigmented. So far, the role of melanin in melanoma remains unclear,
particularly the impact of the pigment on metastatic behavior of melanoma cells. Importantly, until
recently the potential mechanical role of melanin in melanoma metastasis was completely ignored.
In this work, we examined melanoma cells isolated from hamster tumors containing endogenous
melanin pigment. Applying an array of advanced microscopy and spectroscopy techniques, we
determined that melanin is the dominating factor responsible for the mechanical properties of
melanoma cells. Our results indicate that the nanomechanical phenotype of melanoma cells may
be a reliable marker of the cells’ metastatic behavior and point to the important mechanical role of
melanin in the process of metastasis of melanoma.

Keywords: cancer cells; cell elasticity; nanomechanical phenotype; metastatic behavior; melanoma;
melanin pigment

1. Introduction

Primary tumors represent a set of heterogeneous cell subsets with distinct properties [1]. Although
most cancer cells originate from a single, transformed cell, spontaneous mutations during cancer
progression result in differences between individual cells [2]. As a result, only a small fraction of cells
acquires the necessary properties to undergo invasion [3]. For years, the search was undertaken to
identify cellular markers that would distinguish metastatic from non-metastatic cells. Such markers
would allow precise screening of the cells, which ultimately could lead to better diagnosis. Recently,
elasticity of cancer cells has shown considerable promise in this regard. This is justified by high
specificity of elasticity measurements and unique character of such a cellular marker. Thus, many
studies have demonstrated that cancer cells with lower values of the Young’s modulus—the measure
of elasticity—also exhibited higher invasive potential [4–6]. Based on such observations the so called
“nanomechanical phenotype” of cancer cells is viewed as an important indicator of the cells’ metastatic
behavior and has even been proposed as a potential diagnostic marker of cancer [7].

One of the most highly metastatic cancer cells are melanoma cells, which have a very unusual
property: they can synthesize the pigment melanin in large amounts, becoming heavily pigmented [8].
It should be emphasized that melanin synthesis is a heterogeneous process, which leads to different

Int. J. Mol. Sci. 2018, 19, 607; doi:10.3390/ijms19020607 www.mdpi.com/journal/ijms

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Jagiellonian Univeristy Repository

https://core.ac.uk/display/158968177?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mdpi.com/journal/ijms
http://www.mdpi.com
http://dx.doi.org/10.3390/ijms19020607
http://www.mdpi.com/journal/ijms


Int. J. Mol. Sci. 2018, 19, 607 2 of 14

levels of cell pigmentation in melanoma tumors [9]. For years, the role of melanin in melanoma,
particularly the impact of melanin pigment on melanoma cells’ metastatic behavior, was under
extensive scrutiny with the outcomes so far being unsatisfactory [10]. Moreover, until recently the
mechanical effect of melanin presence on the metastatic abilities of melanoma cells was not taken
into consideration at all. Importantly, melanin in pigmented cells, including melanoma cells, is in
the form of granule-like organelles called melanosomes [11]. These organelles were recently found
to have unusual mechanical properties, being very stiff and hard to deform [12,13]. Although the
mechanical effect of melanin presence on the elasticity of pigmented melanoma cells in vitro have
already been published (e.g., [14,15]), in these studies, melanin pigmentation had to be induced
by chemical stimuli. Importantly, no studies have yet reported the mechanical effect of melanin in
melanoma cells containing endogenous pigment.

In this work, we examined Bomirski hamster melanoma (BHM) cells isolated from hamster
tumors containing endogenous melanin pigment. Melanotic (BHM Ma) and amelanotic (BHM Ab)
cells were analyzed. Applying atomic force microscopy and spectroscopy techniques together with
advanced biophysical methods, we showed that the nanomechanical phenotype of melanoma cells
depends solely on the amount of endogenous pigment in the cells.

2. Results

2.1. Melanin Determination in Primary Melanoma Cells

To determine the amount of endogenous pigment in the cells, electron paramagnetic resonance
(EPR) spectroscopy [16] was employed. Figure 1 shows results obtained from EPR analysis.
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Figure 1. Electron paramagnetic resonance (EPR) spectra of cells examined in this work. Arrows
indicate the lower field component attributed to the pheomelanin pigment. Signal intensities are
extended to maximum to better show the contribution of pheomelanin component to the EPR melanin
spectra. Although the pheomelanin signal seems almost negligible it is worth noting that the detection
sensitivity of EPR for pheomelanin determination is nearly an order of magnitude lower than that
of eumelanin making the overall contribution of this pigment substantial. Insets show images of cell
pallets taken before the analysis.
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As evident from the data, magnetic parameters of the EPR signals obtained for BHM Ma cells
were typical for those of eumelanin pigment [17]. Moreover, in these spectra, a lower field component
attributed to the pheomelanin pigment [18] could also be observed. On the other hand, no EPR signal of
melanin free radicals was detected for BHM Ab cells, which confirms that these cells were amelanotic.
Noticeably, signal intensities for BHM Ma cells decreased with each passage. This indicates that the
cells, which did not synthesize melanin in vitro, became less pigmented as a result of consecutive
divisions. Numerical values of the amount of melanin per cell determined by EPR spectroscopy for
each cell sample are shown in Table 1.

Table 1. Numerical values of the obtained results for BHM cells.

Cell Sample Melanin Content (ng/Cell) Doubling Time (h) Young’s Modulus (kPa)

BHM Ma P1 0.24 ± 0.02 126.8 ± 20.3 2.27 ± 0.19
BHM Ma P2 0.13 ± 0.01 76.2 ± 15.2 1.46 ± 0.13 *
BHM Ma P3 0.081 ± 0.007 63.3 ± 11.8 0.89 ± 0.09 **
BHM Ma P4 0.038 ± 0.005 57.9 ± 7.1 0.63 ± 0.07 ***
BHM Ma P5 0.019 ± 0.003 43.9 ± 3.7 0.39 ± 0.05 ****
BHM Ab - 22.1 ± 1.2 0.28 ± 0.01 *****

* Statistically significant vs. BHM Ma P1; ** statistically significant vs. BHM Ma P2; *** statistically significant vs.
BHM Ma P3; **** statistically significant vs. BHM Ma P4; ***** statistically significant vs. BHM Ma P5. For all values
p < 0.0001.

2.2. Proliferation Abilities of BHM Cells

To determine the doubling time of the cells, proliferation assay was performed. Figure 2 shows
growth curves of the cells examined in this work.
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Figure 2. Growth curves of BHM cells presented in a logarithmic scale. Note that BHM Ma cells from
first passage have a very uneven distribution with high dispersion of the data, which over consecutive
passages becomes more linear and ordered. On the other hand, BHM Ab cells show a very stable
growth within the time frame of the experiment. Error bars represent s.d.

As evident from the growth curves, pigmented BHM Ma cells from first passage had a very
uneven distribution, which over subsequent passages stabilized and resembled that of non-pigmented
BHM Ab cells. Numerical values of the doubling times determined for the cells are shown in Table 1.
These results clearly indicate that BHM Ma cells had a much slower growth rate than BHM Ab
cells. To determine to what extent the observed effect was connected to melanin presence in the cells,
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relationship graph between melanin content and doubling time of the cells was made. Supplementary
Materials Figure S1 shows no direct correlation between melanin presence and proliferation abilities
of BHM Ma cells. This suggests that the observed effect was most likely due to the fact that freshly
isolated BHM Ma cells needed more time to adapt to in vitro conditions, which is a common effect for
primary cell cultures [19].

2.3. Organization of Cell Cytoskeleton in BHM Cells

To examine the organization of cell cytoskeleton, laser scanning confocal microscopy (LSCM)
analysis was performed. Figure 3 shows representative images of BHM cells obtained with LSCM.
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As evident from the images, BHM Ma cells from first passage had a more rounded morphology
than cells from later passages. Detailed confocal microscopy analysis revealed that cells from early
passages were much higher and less spread than cells from later passages (Supplementary Materials
Figure S2). Moreover, confocal microscopy images, taken at different focusing levels of the cells,
showed that the actin cytoskeleton of BHM Ma cells from early passages was less developed than
that of cells from later passages and of BHM Ab cells (Supplementary Materials Figure S3). In BHM
Ma cells, actin filaments were more prominent in the case of cells from later passages and resembled
those of BHM Ab cells. This indicates that BHM Ma cells from early passages were less attached to the
substrate, hence their actin cytoskeleton was less developed, and this is why they were less spread
than cells from later passages. On the other hand, microtubule organization was very similar between
the cells, i.e., microtubules extended uniformly throughout the cell body in all examined cells.

2.4. Nanomechanical Properties of BHM Cells

Finally, to examine the effect of endogenous pigment on the nanomechanical properties of the
cells, atomic force spectroscopy (AFS) was employed. Figure 4 shows histograms of the Young’s
modulus values obtained with AFS, whereas average values of the Young’s modulus determined for
each cell sample are given in Table 1.
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Figure 4. Histograms of the Young’s modulus values for the examined cells. Solid lines represent
function fit to the data. In the case of BHM Ma cells, log-normal function was fitted, whereas for BHM
Ab cells the Gaussian function was fitted. Note that the Young’s modulus data for BHM Ma cells
becomes narrower and shifts towards lower values after each consecutive passage.

As evident from the data, pigmented BHM Ma cells from first passage had the highest average
value of the Young’s modulus, which was nearly ten times greater than that of non-pigmented BHM
Ab cells, which had the lowest average value of the Young’s modulus. Noticeably, the average values
of the Young’s modulus for BHM Ma cells became lower after each consecutive passage. This is
indicated by shifting of the Young’s modulus values near the lower end of the histogram. Moreover,
the distribution of the obtained Young’s modulus values for BHM Ma cells became more normal after
each consecutive passage. In the case of cells from first passage, one could argue that these cells should
have the lowest value of the Young’s modulus, since they were less attached and spread, and had a
less developed actin cytoskeleton. However, these cells contained the largest amount of stiff melanin
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granules, which significantly increased the values of the Young’s modulus of these cells. Dependence
graph between the Young’s modulus values and melanin content (Supplementary Materials Figure S1)
indicates a clear correlation between pigmentation and elasticity of BHM cells.

2.5. Force Mapping

In addition to traditional force spectroscopy measurements, force mapping was performed
employing atomic force microscopy (AFM). Representative elasticity map of a BHM Ma cell (Figure 5
upper right) clearly shows that high values of the Young’s modulus reported for pigmented melanoma
cells were caused by stiff melanin granules in the cells.
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Figure 5. Force maps reconstructed from force curves obtained during PeakForce imaging. Bright field
optical microscopy image (upper left) of a pigmented BHM cell taken during atomic force microscopy
(AFM) analysis. The black frame in the image indicates scan area of 40 × 40 µm2 covered by AFM. Dark
spots in the image are melanin granules. The scale bar for this image represents 20 µm. Elasticity map
of the Young’s modulus values (upper right) of the cell with three different positions (marked with
arrows) from which representative force curves were pulled and are shown in Figure 6. These positions
refer to: melanin granule (1), actin bundle (2) and the nucleus (3). The color bar in elasticity map
represents values of the Young’s modulus ranging from 0 to 10 kPa (dark-to-bright). Force error maps
obtained for two different levels of force: minimum force (lower left) and maximum force (lower right).
Minimum force corresponds to the value of force at the point of contact of the AFM probe with the cell,
whereas maximum force corresponds to the maximum force obtained by the probe during indentation
(graphically illustrated in Figure 6). Color bars in force error maps represent values of forces ranging
from −110 to 50 pN for min force and from 0.4 to 0.6 nN for max force. Note that in the minimum force
image, thin filaments are seen in the cortex of a cell, whereas in the maximum force image, thick actin
bundles are visible, which are located deeper in the cell.
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Example force curves pulled from elasticity map for three different locations on the cell (Figure 6)
also showed that the pointwise modulus data differed significantly between the positions. For a
location on top of a melanin granule, the values of the Young’s modulus were highest and increased
with indentation depth. This indicates that during indentation, the AFM probe could not deform stiff
melanin granule inside the cell and as a result the melanosome was pushed into deeper parts of the cell.
On the other hand, pointwise modulus taken from a position on top of an actin bundle showed that
the Young’s modulus values increased to a certain point and then decreased. This was most likely due
to the fact that the actin bundle could resist the growing pressure caused by the indenting AFM probe
to only a certain extent after which individual filaments started to disengage from the bundle. Finally,
pointwise modulus taken from above the nucleus showed that the values of the Young’s modulus
were lowest for this position and did not change over the entire indentation depth.
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Figure 6. Representative force curves pulled from elasticity map for three different locations on the
cell. Force error–displacement curves (upper row), followed by force–indentation curves (middle row)
and Young’s modulus–indention curves (bottom row). Red dots in force error–displacement curves
represent the point of contact of the AFM tip with the cell. Arrows point to the values of force on the y
axis, which correspond to both minimum force (contact point) and maximum force (last point on the
curve). Red lines in force–indentation curves represent fit of the theoretical model to the data points.
Solid lines in pointwise modulus data represent the average values of the Young’s modulus calculated
for each position. Note that the indentation depth differs significantly between the positions. It is
lowest for a melanin granule and highest for the nucleus.

These results indicate that the nuclear region of a pigmented BHM cell was mechanically very
homogenous, whereas the remaining parts of the cell, in particular those containing melanin granules
were very heterogeneous in mechanical means. Importantly, it is believed that the nuclear region is
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the most critical area of a cancer cell during transmigration through different barriers, since it has to
undergo largest deformation proportionally to the cell body [20]. On the other hand, the level of actin
cytoskeleton organization is viewed as the main contributor to the overall cell stiffness [21]. This is why
cancer cells are in general softer than cells they originate from, hence during cancer transformation
they undergo significant reorganization of their cytoskeleton, in particular actin cytoskeleton [22].
Force error images obtained for two different levels of force showed different cytoskeleton features
formed by actin near the surface of the cell when compared to those inside the cell. Minimum force
error image, corresponding to the cell surface (Figure 5 (lower left)) indicated thin filaments in the
cortex of the cell, whereas maximum force error image, corresponding to the deeper parts of the cell
(Figure 5 (lower right)) showed thick actin bundles in the cell. These images suggest that thick actin
bundles deep in the cell should have the largest impact on the elasticity of BHM cells. Time lapse
visualization of the pointwise modulus data (Supplementary Materials Movie S1) indicates that the
contribution of actin cytoskeleton to the mechanical properties of a pigmented BHM cell is negligible.
Only at low indentations actin filaments have a noticeable impact on cell elasticity, whereas at higher
indentations, melanin granules dominate any influence of the cytoskeleton on the nanomechanical
properties of a BHM cell.

3. Discussion

In this work, we have demonstrated that the nanomechanical phenotype of melanoma cells
depends solely on the amount of endogenous pigment in the cells. Our findings indicate that melanin
pigmentation should be carefully monitored when examining elasticity of melanoma cells in both
in vitro and ex vivo studies. Importantly, nanomechanical properties of different cancer cells, including
melanoma cells, have been extensively studied over the last years for the postulated role of cell elasticity
in the process of metastasis [23]. It was even postulated that cell elasticity could be used as a diagnostic
marker in the case of cancers in which traditional examination gives poor results [24]. Indeed, if
applicable, this would be particularly helpful in the case of melanoma for which early diagnosis is of
critical importance [25]. However, recent studies on melanoma nanomechanics yielded contradictory
results, putting into question applicability of elasticity measurements in melanoma diagnosis. In one
study, authors reported that two closely related human melanoma cell lines with different metastatic
potential (WM115 and WM266-4) differed in their stiffness with the more aggressive, designated as
WM266-4, being slightly softer. The authors attributed these differences to the highly flexible ridges
found on the surface of metastatic melanoma cells [26]. In another study, researchers showed that
metastatic melanoma WM239A cells were actually stiffer than non-metastatic WM115 cells [27]. In
the analysis, cells were maintained on substrates with varying adhesion to reflect the morphological
changes during different growth phases of melanoma. Interestingly, the biggest difference between
metastatic and non-metastatic melanoma cells was observed for cells cultured on fibronectin, which
promoted the cells adhesion and therefore their spread. On the other hand, when cultured on
non-adherent substrates or small adhesive spots that limited cell spreading, the cells appeared to
be much softer and the stiffness difference between metastatic and non-metastatic melanoma cells
diminished. Although these studies delivered valuable data on cancer cell nanomechanics, they are
of limited relevance to melanoma research. In both citied works, researchers did not analyze cells
containing melanin pigment—a key feature of melanoma [28]. As demonstrated in our previous studies,
induction of melanin pigmentation in melanoma cells in vitro dramatically modified nanomechanical
properties of the cells [14,15]. Moreover, in the present work based on the analysis of melanoma
cells ex vivo, we showed that the magnitude of the mechanical effect of endogenous pigment on the
overall elasticity of the cells dominated any influence of actin cytoskeleton organization and level of
cell spread.

There is no doubt that cell cytoskeleton is the main contributor to cellular mechanics of normal
and cancer cells [29]. However, as demonstrated by us, in the case of melanoma cells, melanin presence
is the dominating factor responsible for the overall mechanical properties of the cells. It is important
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to stress that melanin synthesis is a heterogeneous process, which leads to different levels of cell
pigmentation in both in vitro and in vivo [30,31]. For years the role of melanin in melanoma was under
extensive scrutiny with the results so far being inconclusive. It was shown that melanin pigmentation
can affect the outcomes of photodynamic therapy and radiotherapy of melanoma [32–34]. However, it
remains unclear whether melanin presence has any impact on the invasive abilities of melanoma cells
during metastasis. Intriguingly, most recent clinical studies point to possible relationship between
pigmentation of melanoma cells and their aggressiveness [35,36]. In these studies, researchers found
that amelanotic melanoma was associated with poorer patient survival than pigmented melanoma.
However, possible mechanism that would be responsible for such a behavior of melanoma cells
remains unknown.

In our recent study, we demonstrated that melanoma cells containing melanin pigment were less
capable to penetrate a mechanical barrier in vitro than cells without melanin [37]. Detailed analysis
revealed that melanin presence reduced deformation capabilities of the cells critical when passing
through a narrow opening similar to that of an invaded basement membrane or an endothelial barrier.
Importantly, melanin presence had no effect on key functions of melanoma cells making the effect
exclusively mechanical in nature. Based on these observations, we postulated that melanin presence
should limit the metastatic abilities of melanoma cells in vivo. Of course, other key cell parameters,
such as the effect of cancer cells on their microenvironment [38], connexin-formed gap junctions [39]
and cell migration [40] are important in the process of metastasis. However, takin into consideration the
magnitude of the mechanical effect of melanin presence on the elasticity of melanoma cells, we strongly
believe that cell elasticity may be the most critical parameter responsible for melanoma invasiveness.

A recent paper published by Pinner and others may support our view that melanin presence
reduces the metastatic capabilities of melanoma cells. Using intravital imaging, researchers found that
pigmented melanoma cells were less likely to spread in mice than cells without melanin [41]. Moreover,
the authors showed that melanoma cells could switch between pigmented and non-pigmented states,
which consequently affected their metastatic behavior. The observed effect was attributed to the
level of cell differentiation, hence in melanocytes—cells from which melanoma originates—melanin
pigmentation may indicate the differentiation state of a cell. Therefore, according to the authors’
interpretation, a melanoma cell either migrates (when less differentiated) or synthesizes melanin
(when more differentiated). Noticeably, the mechanical effect of melanin presence on the metastatic
behavior of the cells was not taken into consideration at all. It should be emphasized, that unlike in
melanocytes, in which melanin synthesis is regulated by different factors [42], and plays a specific
biological role [43], melanin pigmentation in melanoma cells is highly deregulated [44]. Moreover,
until now no study has demonstrated any important function of melanin in melanoma, whatsoever.

4. Materials and Methods

4.1. Cell Isolation and Culture

Bomirski hamster melanoma (BHM) cells were derived by Bomirski from a spontaneous
melanoma in Syrian hamster. Both cell types used in the analysis (BHM Ma and BHM Ab) originated
from the same tumor and were described in detail by Bomirski and others in the following work [45].
Unlike BHM Ma cells, which become heavily pigmented after in vivo transplantation, BHM Ab cells
are amelanotic. In the experiments presented here, small tumor scraps containing BHM Ma cells
were transplanted in vivo by a subcutaneous injection as described previously [46]. After reaching a
specific diameter [47] tumors were surgically excised and dissected into small (1–2 mm) fragments.
10–15 pieces were placed in tissue culture flasks and maintained in RPMI-1640 culture medium,
supplemented with 10% FBS, containing antibiotics and incubated in a 5% CO2 humidified atmosphere
at 37 ◦C. After 3–5 days tumor scraps were removed, melanoma cells were passaged and used in the
analysis. Cells from each subsequent passage, which was performed every 3 days, were analyzed.
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Cells were maintain in culture until they did not contain any visible pigment. Non-pigmented BHM
Ab cells were cultivated under similar conditions.

4.2. Electron Paramagnetic Resonance

The enhanced specificity of melanin determination with EPR was obtained employing the so
called ‘zinc effect’ [48]. For the analysis, cells were detached from culture dishes, pelleted, counted,
incubated in high concentration of zinc acetate, frozen, and stored at 77 K. The number of cells
for each sample was approximately 106 cells and the final concentration of zinc ions was 50 mM.
EPR examination was performed in liquid nitrogen, using a finger-type quartz dewar and EMX-AA
spectrometer (Bruker BioSpin GmbH, Rheinstetten, Germany) operating at X-band with 100 kHz
magnetic modulation. As a standard for melanin quantification, synthetic cysteine-dopa melanin at a
concentration of 2.05 mg/mL was used. Detailed description of EPR analysis used in this work can be
found elsewhere [49].

4.3. Proliferation Assay

For proliferation analysis cells from each passage were seeded into 24 well plates (one plate per
passage and four wells per one time interval) and maintained in culture for six days. Every 24 h cells
were trypsinized and counted. The assay was repeated three times for statistical analysis.

4.4. Atomic Force Microscopy

AFM analysis of the cells was conducted using a Bruker BioScope Catalyst (Bruker Nano Surfaces,
Santa Barbara, CA, USA) coupled with an inverted optical microscope (Axio Observer Z1 from Zeiss,
Oberkochen, Germany). Measurements were performed on cells maintained in culture medium at
37 ◦C. Mechanical analysis of the cells was made in force spectroscopy mode. Before each cell was
analyzed, the AFM probe was aligned at the cell center using bright field optical microscopy image at
×400 magnification. Once aligned, force curves from a grid of 5 × 5 points were collected at a rate
of 1 Hz. 20 cells for each cell sample were analyzed. Force maps of the cells were obtained using
the PeakForce Tapping mode with the PeakForce Capture turned on. This resulted in acquisition of
a force curve in each pixel of an AFM image. For mechanical measurements soft cantilevers were
used with a nominal tip radius of 20 nm and spring constant of 0.01 N/m, whereas for PeakForce
imaging a relatively soft cantilevers with a nominal tip radius of 20 nm and spring constant of
0.68 N/m were chosen. For precise mechanical characterization spring constants of the used cantilevers
were routinely determined based on the thermal tune procedure [50]. Analysis of force curves and
reconstruction of force maps from the curves was made using AtomicJ software [51]. In brief, the
collected force–displacement curves were first converted into force–indentation curves and fitted
with the Sneddon model. In addition, each force curve was analyzed using the pointwise modulus
approach, which is based on calculating the value of the Young’s modulus for each point of a force
curve independently [52]. To avoid any substrate-induced effects, the correction for thin samples
was made [53]. Detailed description of the mechanical analysis used in this work can be found
elsewhere [54].

4.5. Confocal Microscopy

Analysis of the cytoskeleton was made on cells fixed with 3.7% formaldehyde, permeabilised
with 0.1% Triton X-100 and blocked with 1% bovine serum albumin at room temperature. Cells were
immunostained with mouse monoclonal anti-human α-tubulin IgG (Sigma-Aldrich, St. Louis, MO,
USA) and Alexa Fluor 488-conjugated goat anti-mouse IgG (A110011, Life Technologies, Hong Kong,
China), and counterstained with Alexa Fluor 568-phalloidin (Life Technologies, Hong Kong, China)
and Hoechst 33342 dye for DNA stain (Sigma-Aldrich, St. Louis, MO, USA). Images were obtain using
scanning laser confocal microscope (LSM 880 from Zeiss).
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4.6. Statistical Analysis

Statistical significance of differences between mean values was assessed using the two-sample
independent Student’s t-test at 95% confidence level. Statistical analysis was made using Mathematica
8.0 software (Wolfram, Oxfordshire, UK).

5. Conclusions

Results obtained in this work demonstrate that neither organization of actin cytoskeleton nor
the level of cell spread has a significant impact on the overall mechanical properties of melanoma
cells containing endogenous pigment. Presence of stiff and hardly deformable melanin granules
in melanoma cells dominates any influence of both cytoskeleton and level of cell spread. These
findings together with the existing knowledge on cancer metastasis and cell nanomechanics may
indicate an important role of melanin pigmentation in the process of metastasis of melanoma. Taking
into consideration the magnitude of the mechanical effect of endogenous pigment on melanoma cell
elasticity, we strongly believe that the nanomechanical phenotype of melanoma cells may be a reliable
indicator of the cells’ metastatic behavior.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/19/2/
607/s1.
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6. Ryszawy, D.; Sarna, M.; Rak, M.; Szpak, K.; Kędracka-Krok, S.; Michalik, M.; Siedlar, M.; Zuba-Surma, E.;
Burda, K.; Korohoda, W.; et al. Functional links between Snail-1 and Cx43 account for the recruitment of
Cx43-positive cells into the invasive front of prostate cancer. Carcinogenesis 2014, 35, 1920–1930. [CrossRef]
[PubMed]

7. Park, S. Nano-mechanical phenotype as a promising biomarker to evaluate cancer development, progression,
and anti-cancer drug efficacy. J. Cancer Prev. 2016, 21, 73–80. [CrossRef] [PubMed]

8. Lazova, R.; Pawelek, J.M. Why do melanomas get so dark? Exp. Dermatol. 2009, 180, 934–938. [CrossRef]
[PubMed]

9. Plonka, P.M.; Slominski, A.T.; Pajak, S.; Urbanska, K. Transplantable melanomas in gerbils (Meriones unguiculatus).
II: Melanogenesis. Exp. Dermatol. 2003, 12, 356–364. [CrossRef] [PubMed]

10. Slominski, R.M.; Zmijewski, M.A.; Slominski, A.T. The role of melanin pigment in melanoma. Exp. Dermatol.
2015, 24, 258–259. [CrossRef] [PubMed]

11. D’Ischia, M.; Wakamatsu, K.; Napolitano, A.; Briganti, S.; Garcia-Borron, J.C.; Kovacs, D.; Meredith, P.;
Pezzella, A.; Picardo, M.; Sarna, T.; et al. Melanins and melanogenesis: Methods, standards, protocols.
Pigment Cell Melanoma Res. 2013, 26, 616–633. [CrossRef] [PubMed]

12. Guo, S.; Hong, L.; Akhremitchev, B.B.; Simon, J.D. Surface elastic properties of human retinal pigment
epithelium melanosomes. Photochem. Photobiol. 2008, 84, 671–678. [CrossRef] [PubMed]

13. Sarna, M.; Olchawa, M.; Zadlo, A.; Wnuk, D.; Sarna, T. The nanomechanical role of melanin granules in the
retinal pigment epithelium. Nanomedicine 2017, 13, 801–807. [CrossRef] [PubMed]

14. Sarna, M.; Zadlo, A.; Koczurkiewicz, P.; Burda, K.; Sarna, T. Melanin modifies nanomechanical properties of
melanoma cells. In The Melanocyte and Its Environment; Medimond: Bologna, Italy, 2012; pp. 23–28.

15. Sarna, M.; Zadlo, A.; Pilat, A.; Olchawa, M.; Gkogkolou, P.; Burda, K.; Böhm, M.; Sarna, T. Nanomechanical
analysis of pigmented human melanoma cells. Pigment Cell Melanoma Res. 2013, 26, 727–730. [CrossRef]
[PubMed]

16. Sarna, T.; Swartz, H.N. The physical properties of melanin. In The Pigmentary System, Physiology and
Pathophysiology, 2nd ed.; Nordlund, J.J., Boissy, R.E., Hearing, V.J., King, R.A., Oetting, W.S., Ortonne, J.P.,
Eds.; Blackwell Publishing Ltd.: Oxford, UK, 2007; pp. 311–341.

17. Sealy, R.C.; Hyde, J.S.; Felix, C.C.; Menon, I.A.; Prota, G. Eumelanins and pheomelanins: Characterization by
electron spin resonance spectroscopy. Science 1982, 217, 545–547. [CrossRef] [PubMed]

18. Sealy, R.C.; Hyde, J.S.; Felix, C.C.; Menon, I.A.; Prota, G.; Swartz, H.M.; Persad, S.; Haberman, H.F. Novel
free radicals in synthetic and natural pheomelanins: Distinction between dopa melanins and cysteinyldopa
melanins by ESR spectroscopy. Proc. Natl. Acad. Sci. USA 1982, 9, 2885–2889. [CrossRef]

19. Delyon, J.; Varga, M.; Feugeas, J.P.; Sadoux, A.; Yahiaoui, S.; Podgorniak, M.P.; Leclert, G.; Dorval, S.M.;
Dumaz, N.; Janin, A.; et al. Validation of a preclinical model for assessment of drug efficacy in melanoma.
Oncotarget 2016, 7, 13069–13081. [CrossRef] [PubMed]

20. Fu, Y.; Chin, L.K.; Bourouina, T.; Liu, A.Q.; VanDongen, A.M. Nuclear deformation during breast cancer cell
transmigration. Lab Chip 2012, 12, 3774–3778. [CrossRef] [PubMed]

21. Stricker, J.; Falzone, T.; Gardel, M.L. Mechanics of the F-actin cytoskeleton. J. Biomech. 2010, 43, 9–14.
[CrossRef] [PubMed]

22. Ketene, A.N.; Schmelz, E.M.; Roberts, P.C.; Agah, M. The effect of cancer progression on the viscoelasticity of
ovarian cell cytoskeleton structures. Nanomedicine 2012, 8, 93–102. [CrossRef] [PubMed]

23. Suresh, S. Biomechanics and biophysics of cancer cells. Acta Biomater. 2007, 3, 413–438. [CrossRef] [PubMed]
24. Cross, S.E.; Jin, Y.; Rao, J.; Gimzewski, J.K. Nanomechanical analysis of cells from cancer patients.

Nat. Nanotechnol. 2007, 2, 780–783. [CrossRef] [PubMed]
25. Jemal, A.; Siegel, R.; Ward, E.; Murray, T.; Xu, J.; Smigal, C.; Thun, M.J. Cancer statistics, 2006. CA Cancer

J. Clin. 2006, 56, 106–130. [CrossRef] [PubMed]
26. Gostek, J.; Prauzner-Bechcicki, S.; Nimmervoll, B.; Mayr, K.; Pabijan, J.; Hinterdorfer, P.; Chtcheglova, L.A.;

Lekka, M. Nano-characterization of two closely related melanoma cell lines with different metastatic potential.
Eur. Biophys. J. 2015, 44, 49–55. [CrossRef] [PubMed]

27. Weder, G.; Hendriks-Balk, M.C.; Smajda, R.; Rimoldi, D.; Liley, M.; Heinzelmann, H.; Meister, A.; Mariotti, A.
Increased plasticity of the stiffness of melanoma cells correlates with their acquisition of metastatic properties.
Nanomedicine 2014, 10, 141–148. [CrossRef] [PubMed]

http://dx.doi.org/10.1093/carcin/bgu033
http://www.ncbi.nlm.nih.gov/pubmed/24503443
http://dx.doi.org/10.15430/JCP.2016.21.2.73
http://www.ncbi.nlm.nih.gov/pubmed/27390735
http://dx.doi.org/10.1111/j.1600-0625.2009.00933.x
http://www.ncbi.nlm.nih.gov/pubmed/19645853
http://dx.doi.org/10.1034/j.1600-0625.2002.120401.x
http://www.ncbi.nlm.nih.gov/pubmed/12930290
http://dx.doi.org/10.1111/exd.12618
http://www.ncbi.nlm.nih.gov/pubmed/25496715
http://dx.doi.org/10.1111/pcmr.12121
http://www.ncbi.nlm.nih.gov/pubmed/23710556
http://dx.doi.org/10.1111/j.1751-1097.2008.00331.x
http://www.ncbi.nlm.nih.gov/pubmed/18399921
http://dx.doi.org/10.1016/j.nano.2016.11.020
http://www.ncbi.nlm.nih.gov/pubmed/27979745
http://dx.doi.org/10.1111/pcmr.12113
http://www.ncbi.nlm.nih.gov/pubmed/23647844
http://dx.doi.org/10.1126/science.6283638
http://www.ncbi.nlm.nih.gov/pubmed/6283638
http://dx.doi.org/10.1073/pnas.79.9.2885
http://dx.doi.org/10.18632/oncotarget.7541
http://www.ncbi.nlm.nih.gov/pubmed/26909610
http://dx.doi.org/10.1039/c2lc40477j
http://www.ncbi.nlm.nih.gov/pubmed/22864314
http://dx.doi.org/10.1016/j.jbiomech.2009.09.003
http://www.ncbi.nlm.nih.gov/pubmed/19913792
http://dx.doi.org/10.1016/j.nano.2011.05.012
http://www.ncbi.nlm.nih.gov/pubmed/21704191
http://dx.doi.org/10.1016/j.actbio.2007.04.002
http://www.ncbi.nlm.nih.gov/pubmed/17540628
http://dx.doi.org/10.1038/nnano.2007.388
http://www.ncbi.nlm.nih.gov/pubmed/18654431
http://dx.doi.org/10.3322/canjclin.56.2.106
http://www.ncbi.nlm.nih.gov/pubmed/16514137
http://dx.doi.org/10.1007/s00249-014-1000-y
http://www.ncbi.nlm.nih.gov/pubmed/25471938
http://dx.doi.org/10.1016/j.nano.2013.07.007
http://www.ncbi.nlm.nih.gov/pubmed/23891982


Int. J. Mol. Sci. 2018, 19, 607 13 of 14

28. Hsiao, J.J.; Fisher, D.E. The roles of microphthalmia-associated transcription factor and pigmentation in
melanoma. Arch. Biochem. Biophys. 2014, 563, 28–34. [CrossRef] [PubMed]

29. Gefen, A.; Weihs, D. Mechanical cytoprotection: A review of cytoskeleton-protection approaches for cells.
J. Biomech. 2016, 49, 1321–1329. [CrossRef] [PubMed]

30. Cieszka, K.A.; Hill, H.Z.; Hill, G.J.; Plonka, P.M. Growth and pigmentation in genetically related Cloudman
S91 melanoma cell lines treated with 3-isobutyl-1-methyl-xanthine and β-melanocyte-stimulating hormone.
Exp. Dermatol. 1995, 4, 192–198. [CrossRef] [PubMed]

31. Pajak, S.; Cieszka, K.; Plonka, P.; Lukiewicz, S.; Mihm, M.; Slominski, A. Transplantable melanomas in
gerbils (Meriones unguiculatus). I. Origin, morphology and growth rate. Anticancer Res. 1996, 16, 1203–1208.
[PubMed]

32. Lukiewicz, S.; Pilas, B.; Nowicka, J.; Cieszka, K.; Gurbiel, R. Molecular and cellular basis of different
radiosensitivity in pigmented and nonpigmented Hamster Melanoma cells. In Phenotypic Expression in
Pigmented Cells: Proceedings of the XIth International Pigment Cell Conference, Sendai, Japan, 1980; Seiji, H., Ed.;
University of Tokyo Press: Tokyo, Japan, 1981; pp. 647–653.

33. Sparsa, A.; Bellaton, S.; Naves, T.; Jauberteau, M.O.; Bonnetblanc, J.M.; Sol, V.; Verdier, M.; Ratinaud, M.H.
Photodynamic treatment induces cell death by apoptosis or autophagy depending on the melanin content in
two B16 melanoma cell lines. Oncol. Rep. 2013, 29, 1196–1200. [CrossRef] [PubMed]
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