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Abstract 

A synchrotron transmission X-ray microscopy tomography system with a spatial 

resolution of 58.2 nm at the Advanced Photon Source was employed to obtain three-

dimensional morphology data of all-solid Li ion battery electrodes. The three-phase 

electrode was fabricated from a 47:47:6 (wt%) mixture of Li(Ni1/3 Mn1/3 Co1/3)O2 as 

active material, Li1.3Ti1.7Al0.3(PO4)3 as Li-ion conductor, and Super P carbon as electron 

conductor. The geometric analysis show that particle-based all-solid Li ion battery has 

serious contact interface problem which significantly impact the Li ion transport and 

intercalation reaction in the electrode, leading to low capacity, poor rate capability and 

cycle life. 
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In recent years, research on all-solid Li ion batteries (LIBs) has increased considerably 

due to raised concerns relating to safety hazards such as the solvent leakage and 

flammability of liquid electrolytes used for commercial LIBs1-6. All-solid LIBs use high 

Li ion conducting solid electrolytes that do not carry the safety burdens of liquid 

electrolytes and are more effective. In addition, all-solid LIBs can increase the energy 

density of the entire battery pack by reducing the need for auxiliary systems such as 

safety monitoring systems7. However, even with the highly ionic conductive solid 

electrolytes, it has been a struggle for an all-solid LIB to obtain similar specific 

capacity, rate capability, and cycle life to those of a liquid electrolyte LIB. Studies 

conclude that these issues arise from the solid electrolyte’s inability to interface with 

the solid active materials, which is mainly due to the volume change of electrode 

materials during charge and discharge processes8-10. Some strategies have been 

proposed to address the interface problem, such as surface coating11-12, zero strain 

electrode materials 13-14, and hybrid electrolyte 9, 15. However, the interface problem has 

not been completely solved, especially in a three-dimensional (3D) particles-based 

electrode. Therefore, it is necessary to investigate the interface between active materials 

and solid electrolyte in a realistic microstructure of all-solid LIB electrode to 

understand the poor performance of all-solid LIBs. 

 

In the past several years, some virtualization technologies have been developed to 

obtain the real configuration of LIB electrode microstructures. For instance, focused 

ion beam scanning electron microscope (FIB-SEM)16-18 and nano-computed 
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tomography (CT)19-21 have been used to reconstruct the 3D microstructure of liquid 

electrolyte LIB electrodes. Most of the 3D microstructures obtained by these two 

technologies consist of two phases, active material and pore + carbon-binder matrix. 

Recently, some techniques have been developed to identify the pore phase and carbon-

binder matrix phase22-23. The all-solid LIB electrode consists of three phases, active 

material, solid electrolyte and pore. Both active material and solid electrolyte are solid 

particles in the electrode. To reconstruct the microstructure of all-solid LIB electrode, 

these two solid phases need to be identified. To this end, the 3D microstructure of all-

solid LIB electrode has not been investigated. The only similar work was done by Wang 

et al. at Brookhaven National Laboratory24-25. In their work, the 3D morphology of 

LiCoO2/Li(Ni1/3Mn1/3Co1/3)O2 (LCO/NMC) composite cathode electrode has been 

measured using FIB-SEM tomography and transmission X-ray microscopy (TXM) 

tomography. EDS mapping was used in FIB-SEM tomography to identify LCO and 

NMC particles and TXM measurements were taken at X-ray energies that can provide 

clear contrast between LCO and NMC particles.  

 

The objective of this paper is to investigate the realistic microstructure of all-solid LIB 

electrode to better understand the interface between active materials and solid 

electrolyte using synchrotron TXM tomography technique with high spatial resolution. 

Although FIB-SEM tomography enables the identification of solid particles with EDS 

mapping, it was not chosen in this study due to the time consumption and difficulty of 

operation18. In this work, NMC was selected as the active material, Li1.3Ti1.7Al0.3(PO4)3 
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(LTAP) was selected as the solid electrolyte and Super P carbon was used as the 

electron conductor. The electrodes were manufactured under two different pressures to 

adjust the porosity and particle contact. We reconstructed the porous microstructures of 

all-solid electrodes to examine geometric characteristics by employing synchrotron 

TXM at the Advanced Photon Source (APS) of the Argonne National Laboratory 

(ANL). Based on the tomographic data, the interface problem was discussed in this 

paper. 

 

In this work, NMC powders were from Umicore, Brussels, Belgium; super-P carbon 

black (C65, TIMCAL Ltd.) was from MTI, Richmond, CA; LTAP was synthesized in 

our lab based on a modified method shown in literature26. Briefly, lithium carbonate 

(Li2CO3), aluminum oxide (Al2O3), titanium dioxide (TiO2), and ammonium 

dihydrogen phosphate (NH4)2H2PO4 purchased from Sigma Aldrich were ground and 

heated in a platinum crucible at 1652 ˚F for 2 h. The resulting material was ball milled 

for 6 h and re-heated at 1652 ˚F for 2 h. The powder was subjected to ball milling for 

12 h to obtain the final LTAP powder. The final powder was dried at 120 ˚C for 24 h 

to remove any attached water molecules. The all-solid electrode was made from a 

47:47:6 (wt %) mixture of NMC as active material, LTAP as Li-ion conductor, and 

Super P carbon as electron conductor. The electrode was pressed under two conditions: 

700 psi and 1300 psi. We also made a LTAP only solid electrolyte pressed under 1300 

psi, which can be used as the separator for all-solid LIBs. The detailed fabrication 

method is shown in our previous publication9. 
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A synchrotron TXM at beamline 32-ID-C at the APS of ANL was employed to obtain 

morphological data of the electrodes. A sharp razor was used to break the electrode 

samples to small pieces. One piece with a sharp wedge was selected and mounted to 

the rotation stage of the TXM system. High energy level X-ray (8 keV) from the 

beamline was able to capture the projected X-ray images with 2 s exposure time at each 

0.25° rotation increments over 180°. Normalized transmission of NMC and LTAP at 8 

keV is shown in Figure 1a. The result shows that 8 keV X-ray can provide a good 

contrast between NMC and LTAP, which allows accurate segmentation by simple 

threshold. Image processing method was inherited and improved based on our previous 

studies on graphite, LCO and NMC electrodes27-29. ImageJ was used to remove system 

errors of the projection images based on flat field images. TomoPy was used to 

transform the projection image dataset into 3D reconstruction data with 58.2 × 58.2 × 

58.2 nm3 voxel size.  
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Figure 1. (a) Calculated X-ray transmission of LTAP and NMC based on tabulated 

values. 2D CT image (b) and SEM image (c) of a LTAP separator. (d) Grayscale 

histogram of a 2D CT image shown in (e). (e) 2D CT image of a 700 psi all-solid 

electrode. (f) 3D reconstruction of a 700 psi all-solid electrode. All the scale bars are 4 

µm. 

 

Figure 1b shows a reconstructed 2D slice image of the LTAP separator pressed under 

1300 psi, where the gray phase is LTAP and the black phase is pore. A SEM image of 

the LTAP separator is shown in Figure 1c. Figure 1e shows a representative 

reconstructed 2D slice image of 700 psi all-solid electrode. Compared to our previous 

X-ray CT images of liquid electrolyte electrodes, such as LCO and NMC27-28, the all-

solid electrode has three phases to be distinguished. As shown in Figure 1e, the white 

phase is NMC, the gray phase is LTAP and the black phase includes both pore and 
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super-P carbon. The grayscale histogram (Figure 1d) of the image slice (Figure 1e) 

shows three separated peaks, allowing automatic segmentation of the three phases. 

Figure 1f shows the 3D reconstruction of the 700 psi LTAP-NMC electrode generated 

by Avizo®, where white and gray colors represent NMC phase and LTAP phase 

respectively.  

 

 

Figure 2. (a) A sample 2D CT image with NMC, LTAP and pore phases. (b) Grayscale 

value variation on the red line in the CT image shown in (a). (c) Three-phase 

segmentation using two thresholds. (d) Remove gradient by dilating NMC particles in 

order to find contact interface between NMC and LTAP.  
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However, if there are more than two phases to be distinguished, the automatic 

segmentation by simple threshold generates a thin film coating on the interface between 

the white phase material and the black phase material. As shown in Figures 2a and b, 

the arrow points a grayscale gradient at the interface between the white phase (NMC, 

highest grayscale value) and the black phase (pore + carbon, lowest grayscale value) 

on the red line in a 2D CT image. On the right side of the red line, there is an interface 

between the white phase (NMC) and the gray phase (LTAP, grayscale value is in 

between white phase and black phase). As shown in Figure 2b, the grayscale value of 

the gray phase is always within the grayscale gradient at the interface between the white 

phase and the black phase. The automatic segmentation by two thresholds generates a 

ternary slice image as shown in Figure 2c, where the yellow color is NMC, green color 

is LTAP and blue color is pore + carbon. The NMC particle is coated by a thin film of 

LTAP due to the grayscale gradient at the interface between NMC and pore + carbon. 

As a result, the contact between NMC and LTAP is always 100%, which is not real. 

One way to address this problem is to do the segmentation manually, which could be 

very time-consuming when hundreds of images need to be processed. In addition, 

manual segmentation will generate random artifacts. In this work, a dilation algorithm 

in Avizo® was used to remove the thin LTAP film coated on NMC particles. As shown 

in Figure 2d, the NMC phase in the 2D ternary image was extended 3 pixels at the 

boundary. After dilation, the thin LTAP film coated on NMC was replaced by the 

extension of NMC phase. It should be noted that dilation will increase the size of NMC 
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particles and introduce a systematic error. The smaller the NMC particle is, the larger 

the artifact is. As shown in Figure 2, the size of most of the NMC particles are in several 

hundred pixels. Adding 3 pixels on the boundary will not affect accuracy significantly.  

 

Figure 3. Volume fractions of the electrode components calculated from the 

reconstructed porous microstructures. 

 

To analyze the electrode geometrically, tetrahedral meshed microstructures of the 

electrodes were generated from the ternary volumetric data with iso2mesh MATLAB 

algorithm30. The reconstructed volumes used for geometrical analysis are around 25 × 

25 × 25 μm3. Figure 3 shows the volume fractions of the electrode components 

calculated from the reconstructed porous microstructure of the all-solid electrodes and 

the LTAP separator. As the pressing pressure increased from 700 psi to 1300 psi, the 

volume fraction of pore + carbon is reduced from 27% to 18%. In the LTAP separator, 

the volume fraction of pore is 23%. Compared with liquid electrolyte electrode, pore 

phase does not contribute to Li ion conduction in all-solid LIB electrodes. Reducing the 

volume fraction of pore phase can increase the ionic conductivity and the volumetric 
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energy density of all-solid LIBs. The possible approaches could be reducing the particle 

size of LTAP solid electrolyte and increasing pressing pressure. 

 

Table 1. LTAP and NMC contact and tortuosity of the all-solid electrodes under 

different pressure and LTAP separator. 

 Contact 
area/NMC 
surface 
area 

Contact 
area/total 
NMC volume 
(1/𝑢𝑢𝑢𝑢) 

Tortuosity 
calculated from 
CT data  

Tortuosity 
calculated from 
Bruggeman relation 

LTAP    2.3 1.1 
700 psi 55% 0.530 6.7 1.5 
1300 psi 59% 0.622 4.6 1.4 

 

The 3D reconstructed microstructures of 700 psi electrode, 1300 psi electrode and the 

LTAP separator were quantitatively analyzed to characterize their geometric properties, 

such as tortuosity and interfacial contact area between NMC and LTAP. The interfacial 

contact area between NMC and LTAP is directly related to the intercalation reaction 

during charge and discharge processes because the reaction occurs at the interface 

between active material and solid electrolyte. The tortuosity is directly related to Li ion 

transport in the electrode. As shown in Table 1, the LTAP phase only covers about 55% 

of the NMC particles for the 700 psi sample. As the pressing pressure is increased to 

1300 psi, the contact area is increased to 59%. The improvement is not significant and 

it means that much higher pressure or smaller LTAP particles are required to achieve 

larger contact area, thereby facilitating the intercalation reaction. Ion transport property 

in a porous electrode could be quantified by tortuosity (τ). Tortuosity has been 
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considered as a function of porosity (𝜖𝜖) by Bruggeman relation 𝜏𝜏 = 𝜖𝜖−0.5. Evidence 

has indicated that Bruggeman relation underestimates tortuosity in LIB electrodes 21, 27-

28. Tortuosity in all-solid electrode cannot be calculated by Bruggeman relation because 

there are three phases in the electrode and Li ion transports through the solid LTAP 

phase. Instead, we can replace the porosity by the volume fraction of LTAP in the 

Bruggeman relation. In this study, tortuosity was also calculated from the CT 

microstructure using the method proposed by Kehrwald et al.21. The results in Table 1 

show that Bruggeman relation significantly underestimates the tortuosity. The 

tortuosity calculated from the CT data is 2 – 4 times of the values calculated from 

Bruggeman relation. Compared with our previous publication on liquid electrolyte 

LIBs, the tortuosity is also much higher. It means that it is difficult for Li ion to transport 

through the network of LTAP particles in all-solid electrode. It should be noted that the 

CT reconstruction cannot reveal the detailed features under the spatial resolution of 

58.2 nm. It is very likely that the contact between particles is not seamless contact. 

Points-like contact could be very possible and the tortuosity and Li transport will 

deteriorate further. In addition, if the active material particles have volume changes 

during cycling, the stability of the contact could be affected, leading to poor cycle life.   

 

In summary, the 3D morphology of all-solid LIB electrodes was obtained and analyzed 

by using Synchrotron TXM tomography with voxel size of 58.2 × 58.2 × 58.2 nm3 at 

beamline 32-ID-C at the APS of ANL. A dilation method was used to solve the 

grayscale gradient-induced problem in distinguishing three phases during 
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segmentation. The geometric analysis show that the contact between solid particles is 

limited even at 1300 psi pressing pressure, which significantly affect the Li ion 

transport in the electrode and the Li ion intercalation at the NMC/LTAP interface. In 

order to make the particle-based all-solid LIB feasible, the interface problem needs to 

be addressed. 
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