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Abstract

Rationale and Objectives—Previous studies have demonstrated a qualitative relationship 

between stone fragility and internal stone morphology. The goal of this study was to quantify 

morphological features from dual-energy CT images and assess their relationship to stone fragility.

Materials and Methods—Thirty-three calcified urinary stones were scanned with micro CT. 

Next, they were placed within torso-shaped water phantoms and scanned with the dual-energy CT 

stone composition protocol in routine use at our institution. Mixed low-and high-energy images 

were used to measure volume, surface roughness, and 12 metrics describing internal morphology 

for each stone. The ratios of low- to high-energy CT numbers were also measured. Subsequent to 

imaging, stone fragility was measured by disintegrating each stone in a controlled ex vivo 
experiment using an ultrasonic lithotripter and recording the time to comminution. A multivariable 

linear regression model was developed to predict time to comminution.

Results—The average stone volume was 300 mm3 (range 134–674 mm3). The average 

comminution time measured ex vivo was 32 s (range 7–115 s). Stone volume, dual-energy CT 

number ratio and surface roughness were found to have the best combined predictive ability to 

estimate comminution time (adjusted R2= 0.58). The predictive ability of mixed dual-energy CT 

images, without use of the dual-energy CT number ratio, to estimate comminution time was 

slightly inferior, with an adjusted R2 of 0.54.

Conclusion—Dual-energy CT number ratios, volume, and morphological metrics may provide a 

method for predicting stone fragility, as measured by time to comminution from ultrasonic 

lithotripsy.
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Introduction

Symptomatic urinary stone disease affects approximately 900,000 persons in the United 

States each year, resulting in an estimated annual medical expenditure of over $1 billion in 

2007 among Medicare beneficiaries alone (1, 2). The prevalence of kidney stones in the 

United States rose by 37% between 1976–1980 and 1988–1994 in both genders (3). Due to 

the effects of global warming, it has been predicted that there could be an increase of 1.6–

2.2 million lifetime cases of urinary stones by 2050 in the United States alone, as kidney 

stones tend to form more frequently in states where dehydration is common (4).

Several surgical options are available for the 10–20% of symptomatic stone formers who fail 

to pass their stones spontaneously (5). Larger, harder kidney stones and those located in the 

lower pole of the kidney tend to be more easily fragmented and removed by percutaneous 

nephrolithotripsy (PCNL), a minimally invasive procedure whereby the stone is accessed 

through a small flank incision which allows direct visualization and intracorporeal ultrasonic 

lithotripsy for stone disruption and removal of fragments (6). Stone fragility, which we 

define as the time to comminution by a given surgical procedure, is affected by the extent of 

the stone burden (i.e., the size and number of stones) as well as its mineral composition (7).

Computed tomography (CT) is the recommended method for non-invasively imaging stones 

in the urinary tract as it can provide accurate sub-millimeter details of the size and location 

of stones anywhere along the urinary system (8, 9). However, differences in x-ray 

attenuation (i.e. CT numbers) from a single peak potential do not accurately discriminate 

between different stone types (10). Dual-energy CT, whereby attenuation properties of tissue 

are measured at two different peak x-ray energies to provide a measure of effective atomic 

number, has proven to be extremely effective at discriminating uric acid (UA) stones from 

non-uric acid (NUA) stones (11, 12) without increasing the radiation dose compared to 

single energy exams (10, 13); it is now the routine outpatient examination for symptomatic 

kidney stone patients at our institution. Limited success in further separating NUA stones 

(calcium oxalate, hydroxyapatite, cysteine and struvite) has also been reported (14, 15).

Among others, Williams et al. reported wide variability in stone fragility (i.e. ease of 

breakage) within groups of stones having the same mineral composition, suggesting that 

variation in stone structure could also play an important role (7). His group also investigated 

possible correlation between CT-visible structures and time to comminution by shock-wave 

lithotripsy (SWL) for a variety of stone types, including brushite (16), cystine (17) and 

calcium oxalate monohydrate (COM) (18). However, the majority of these investigations 

utilized qualitative metrics for assessing the stone morphology on CT; these metrics were 

found to be highly subjective and variable, and were not found to be strong predictors of 

stone fragility.
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In this ex vivo investigation, we propose to add objective measures of internal morphology 

to knowledge of stone volume, composition, and surface morphology to predict stone 

fragility, using metrics derived from routine dose dual-energy CT. Our study aims to do the 

following: a) identify CT-based metrics describing the internal morphology of kidney stones 

that correlate with time to comminution, defined as the time required to completely break 

and remove the stone; and b) assess the predictive ability of using measures obtained from 

routine dose dual-energy CT protocols to estimate stone fragility.

Materials and Methods

Micro-CT imaging

Stones were scanned with a micro-CT system (SkyScan 1172, Bruker, Belgium) to 

determine their composition (19). Briefly, each stone was scanned (dry) using 60 kVp with 

0.4° rotation steps, averaging 4 images for each step. Final isotropic voxels were 20 µm on a 

side. Stone compositions were judged using attenuation values and established composition-

specific characteristics (20). Stone composition was confirmed by infrared spectroscopy. 

IRB protocol approval was not required for this non-patient study. However, biospecimen 

approval was obtained from the institutional biospecimen committee.

Whole-body CT imaging

Subsequent to micro-CT imaging, stones were hydrated for 24 hours in distilled water and 

embedded in gelatin in a 60-well ice-cube tray. The tray was covered with plastic wrap and 

inserted into a 35-cm water phantom and scanned with a clinical, state-of-the art, dual-

source, dual-energy CT scanner (Somatom Force, Siemens Healthcare, Germany) using the 

routine stone composition clinical protocol in use at our institution (90/Sn150 kV, 350/219 

quality reference mAs, ~8 mGy CTDIvol, 0.5 s rotation time, 192 × 0.6 mm collimation). 

The data were reconstructed with the same parameters used by our clinical protocol (300 

mm field of view (FOV), 1 mm slices, 0.8 mm increment, Br44 reconstruction kernel). The 

resulting low- and high-energy images were linearly combined to create a set of mixed 

images. A separate, small FOV (120 mm) reconstruction with smaller pixel size (~0.23 mm) 

was performed to provide a higher spatial resolution image. A side-by-side comparison of 

micro-CT and clinical CT images is shown in Figure 1 for a representative stone.

Texture analysis of stone morphology

Each stone in the mixed images was segmented by our in-house stone analysis software (21) 

using a semi-automated approach to identify the stones and an adaptive threshold method to 

segment it from the surrounding water. Texture analysis requires the computation of the 

distribution of co-occurring values at a given offset in the image. Such distribution is often 

referred to as the co-occurrence matrix and for a 3D image I of size (n,m,o) it is 

mathematically defined as follows:
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The offset (Δx,Δy,Δz) depends on the direction used and the distance d at which the matrix is 

computed. The CT numbers for each stone were discretized in 16 grey levels and 52 

different co-occurrence matrices - 13 directions in the 3 dimensions at 4 different pixel 

distances - were generated from the mixed image for each segmented stone. To calculate the 

Haralick textural features (22) describing internal morphology, the equations in Table 1 were 

applied to each co-occurrence matrix and the average computed for each textural feature. 

Surface roughness (23) and the dual energy CT number ratio (the ratio of the CT number in 

the low-energy image to that at the same voxel in the high-energy image) (12) were 

computed as previously described.

Ex-vivo analysis of stone fragility

To measure the fragility of each stone, we attempted to reproduce ex vivo the environment 

of a percutaneous nephrolithotripsy. Each stone was placed in a vial with water and 

disintegrated using the same ultrasonic lithotripter (Olympus LUS, Melville, NY) used by 

our surgical urologists. The experimental set-up for the ex-vivo analysis of stone fragility is 

shown in Figure 2. The same setting of the lithotripter was used for all stones, regardless of 

their size, as is done in our clinical practice. We recorded the time required to break and 

completely remove each stone from its vial and used this time to comminution as the figure 

of merit to quantify stone fragility.

Statistical analysis

Associations between stone morphology characteristics and comminution time were 

assessed using both simple and multivariable linear regression. Comminution time was 

evaluated using a natural log transformation for all analyses to account for its skewed 

distribution. When performing multivariable analyses, models were first adjusted for volume 

(i.e. two variable models), as this variable was considered a priori to be a critical predictor of 

stone comminution time. Best subset selection methods were used for the remaining 

predictors, based on the statistical significance of all predictors in the model (p<0.05 for all), 

the variance inflation factors (VIF) of the coefficients to detect the presence of multi-

collinearity (VIF<3 for all) and the adjusted R2 cutoff (24). In order to extend the 

applicability of the model to single energy CT, we used an identical modeling process to 

investigate the subset of multivariable models that did not require dual energy. Model size 

was restricted to three variables due to limited sample size. The best model was then used to 

predict the comminution time for each stone. All statistical analysis was performed using the 

R statistical software (25).

Results

Our study cohort consisted of 33 stones: primarily pure calcium oxalate monohydrate 

(COM) stones (N=7), mixed COM and apatite (APA) stones (N=2), and mixed calcium 

oxalate (CaOx, which contained both COM and calcium oxalate dihydrate) and APA stones 

(N=24). The average volume of the stones was 300 mm3 (range 134–674 mm3). The average 

comminution time measured ex vivo was 32 s (range 7–115 s). The correlation matrix for 

the investigated variables is shown in Supplemental Figure 1.
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Univariate and volume-adjusted models of stone fragility

We report three kinds of models: univariate (1 variable), volume-adjusted (volume + 1 

variable), and best multi-variable model to fit our stone samples (volume + 2 variables). The 

univariate regression models using a single predictor are shown in Table 2. Despite 

limitations in spatial resolution associated with clinical CT data, several internal and surface 

morphological features were found to be significantly associated with time to comminution. 

In particular, homogeneity, surface roughness and CT number at the higher tube potential 

selection (HU high) yielded a higher adjusted R2 than volume.

Table 2 also reports all volume-adjusted models. Three volume-adjusted models met our 

requirements for statistical significance and acceptable VIF; these models are bolded in 

Table 2 and are referred to as the best subset. The best volume-adjusted model incorporated 

CT number ratio because it demonstrated the highest adjusted R-squared (R2
adj = 0.52). The 

next best volume-adjusted model in best subset of models adjusted for volume incorporated 

max probability (R2
adj = 0.42). We note that this model does not include variables that 

require a dual-energy scan, such as the CT number ratio. Assuming the equivalence of mixed 

dual-energy CT images to single-energy CT images, this model could be considered 

representative of single-energy CT scans. It was also noted that the volume-adjusted model 

using surface roughness had a high R-squared and statistically significant p-value for surface 

roughness (p = 0.05), but the insignificance of volume (p = 0.53) and high VIF of 7.3 

disqualified this model from our best subset.

Best multivariable “single-energy” CT models of stone fragility

Using the mixed dual-energy images as surrogates for single-energy images, volume, max 

probability, and sum mean were the best predictors in the multivariable, “single-energy” 

model (i.e. models without the use of CT number ratio, R2
adj = 0.54) (Table 3). The two 

bolded models (using volume, max probability and surface roughness and volume, max 

probability and variance) were also included in our best subset. While three other variables 

(cluster shade, homogeneity, and surface roughness), were statistically significant when 

individually combined to volume and max probability, the p-value for volume was greater 

than 0.05 for these models. Additionally, these models had 2 or more VIFs greater than 3.

Best multivariable dual-energy CT models of stone fragility

The best dual-energy CT model included the metrics volume, CT number ratio and peak 

curvature (R2
adj = 0.58), while the best subset additionally included the models using 

metrics HU Low and HU High, as shown in Table 4.

Discussion

The best multivariable model for a mixed images, which did not take into account energy-

specific information, included the metrics stone volume, max probability and sum mean, and 

accounted for 54% of the variability in stone comminution time (Table 3). The best 

multivariable model using dual energy metrics included the variables volume, dual-energy 

CT number ratio and surface roughness, and explained 58% of the variability in 

comminution time (Table 4). The limited additional contribution of dual-energy metrics is 
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likely due to the similar mineral composition of the stones in our population, which was 

intentional in our study design as the vast majority of stones that are removed through PCNL 

consist of CaOx with different degrees of apatite. Acknowledging the potential importance 

of stone composition, we used a combination of infrared spectroscopy and microCT to have 

the best confidence on the minerals contained in our stone specimens (26).

From the scatter plot of the predicted comminution time shown in Figure 3, we see that the 

distribution of the errors is not even, with 2 of the specimens in particular appearing to be 

outlying values. This could be due to the fact that important predictor variables have a non-

linear relationship with comminution time or have been omitted from the model; however, 

due to the limited sample size for this study, we are unable to reliably fit more complex 

models to our data at present.

To our knowledge, our study is the first attempt at introducing quantitative metrics 

describing stone morphology to predict stone fragility. If validated in vivo, the predictive 

models for stone fragility developed in this study would provide valuable information for 

both the urologic surgeon and the patient to better evaluate treatment options. For example, 

larger, more fragile stones may be amenable to ureteroscopic stone removal or SWL, which 

are both less invasive procedures; however, smaller, denser stones may be more efficiently 

and completely cleared with PCNL, justifying this more invasive procedure. This additional 

information would be available to the urologist without additional radiation dose to the 

patient, and could be made readily available, as the computational burden to generate the 

texture features is minimal, taking only a few seconds on a regular computer. There are 

additional clinical implications of a quantitative fragility model. Larger stone size - which is 

accounted for in all of our models – increases the rate of complications during PCNL (27). 

Furthermore, the duration of surgical removal of kidney stones has been shown to be a 

significant risk factor for the development of postoperative fever (28).

This study has several limitations. The cohort of stones was fairly small and consisted 

mostly of calcium oxalate stones mixed with different degrees of apatite. As mentioned 

earlier, this selection of stone types was intentional in this proof of feasibility study, since we 

did not want differences in stone composition creating additional noise in the data. Several 

studies in the literature have showed how calcium oxalate is the most prevalent mineral in 

kidney stones treated clinically by PCNL, with 60–70% of all stones treated consisting 

predominantly of CaOx (29, 30). Since dual-energy metrics mainly reflect differences in 

mineral composition, it is not surprising that they provided little additional predictive ability 

in the fragility models developed from our relatively homogeneous stone population. In 

future studies, our cohort will be expanded to include stones of different minerals 

compositions and the fragility models derived from dual energy data are expected to more 

significantly outperform the ones derived from single energy CT. Moreover, the ex vivo 
analysis of stone fragility precluded inclusion of factors such as the location of the stone in 

the patient, which can have a major effect on both comminution time and overall surgery 

outcome. Finally, several of the stones that were analyzed were extracted from the same 

patients. However, since our fragility models did not make use of any patient-specific 

characteristics (e.g. urine analysis), we believe that the origin of the stone does not 

appreciably affect the results.
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Conclusions

These preliminary results provide evidence that the routine single and dual energy scan renal 

stone protocols used in our clinical practice can also provide morphology metrics that can 

help serve as predictors of stone comminution time. A combination of volumetric, 

morphological and dual energy characteristics was shown to predict the comminution time 

with reasonable accuracy (adjusted R2 = 58%). Without the dual energy metrics, the best 

model accounted for 54% of the variability in stone comminution time. Currently, a larger 

study with different stone minerals is ongoing, with the goal of developing a comprehensive 

model of stone fragility that uses in vivo information of stone size composition and 

morphology to accurately predict its fragility during clinical PCNL.
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Figure 1. 
Qualitative comparison of CT images of a representative stone. Left, reference micro-CT 

scan used to determine stone composition (CaOx with apatite). Middle: Small field-of-view 

reconstruction from the routine stone composition protocol at our institution. Right: full 

field-of-view, clinical CT reconstruction from the same acquired data.
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Figure 2. 
our ex-vivo experiment to measure time to comminution for each stone
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Figure 3. 
Plot comparing observed vs predicted comminution time based on the multivariable model 

with predictors volume, CT ratio and shape index. The size of each point is proportional to 

that stone’s volume (mm3)
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Table 1

Haralick features describing stone internal morphology (1–12) and features describing stone surface (13–15) 

cooc = co-occurrence matrix 22,23,30.

Variable Formula Interpretation

1. Energy Uniformity of the
Image

2. Entropy Randomness of the
image

3. Correlation
Local gray level
linear dependency
of the image

4. Contrast
Measure of local
variations in the
image

5. Homogeneity Local homogeneity
of the image

6. Variance Gray-level variability
of the pixel pairs

7. Sum Mean N.A.

8. Inertia N.A.

9. Cluster Shade Skewness of the
image.

10. Cluster
Tendency

Another measure of
asymmetry of the
image

11. Max probability max(cooc) N.A.

12. Inverse variance Local homogeneity
of the image

13. Shape Index FWHM of histogram of vertex curvatures
Overall surface
morphology of a
stone
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