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Abstract 

The neuropeptide, melanin concentrating hormone (MCH), and its G protein-coupled 

receptor, melanin concentrating hormone receptor 1 (Mchr1), are expressed centrally in 

adult rodents. MCH signaling has been implicated in diverse behaviors such as feeding, 

sleep, anxiety, as well as addiction and reward. While a model utilizing the Mchr1 

promoter to drive constitutive expression of Cre recombinase (Mchr1-Cre) exists, there 

is a need for an inducible Mchr1-Cre to determine the roles for this signaling pathway in 

neural development and adult neuronal function. Here, we generated a BAC transgenic 

mouse where the Mchr1 promotor drives expression of tamoxifen inducible CreER 

recombinase.  Many aspects of the Mchr1-Cre expression pattern are recapitulated by 

the Mchr1-CreER model, though there are also notable differences.  Most strikingly, 

compared to the constitutive model, the new Mchr1-CreER model shows strong 

expression in adult animals in hypothalamic brain regions involved in feeding behavior 

but diminished expression in regions involved in reward, such as the nucleus 

accumbens.  The inducible Mchr1-CreER allele will help reveal the potential for Mchr1 

signaling to impact neural development and subsequent behavioral phenotypes, as well 

as contribute to the understanding of the MCH signaling pathway in terminally 

differentiated adult neurons and the diverse behaviors that it influences. 
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Introduction 

Originally discovered in fish as a pituitary secreted peptide involved in skin pigmentation 

(Kawauchi, Kawazoe, Tsubokawa, Kishida, & Baker, 1983), melanin concentrating 

hormone (MCH) in mammals has been found to be involved in a wide range of 

physiological processes including feeding behavior, energy homeostasis, sleep, anxiety, 

addiction and reward (Monzon, Varas, & De Barioglio, 2001; Qu et al., 1996; Tyhon et 

al., 2006; Willie, Sinton, Maratos-Flier, & Yanagisawa, 2008).  The neuropeptide ligand, 

MCH, is produced solely by neurons in the lateral hypothalamus and zona incerta 

(Bittencourt et al., 1992), and in rodents acts on its only known G protein-coupled 

receptor, Mchr1, which is expressed in several regions throughout the brain (Saito, 

Cheng, Leslie, & Civelli, 2001).  

One well-established phenotype of altered MCH or Mchr1 signaling is modulation of 

feeding behavior and energy homeostasis. Generally, overactivation of the pathway 

either pharmacologically or through genetic overexpression of MCH leads to an 

increase in food intake (Gomori et al., 2003; Ludwig et al., 1998; Ludwig et al., 2001; Qu 

et al., 1996; Rossi et al., 1997). In contrast, inactivation of the pathway through loss of 

ligand (Alon & Friedman, 2006; Shimada, Tritos, Lowell, Flier, & Maratos-Flier, 1998), 

receptor (Chen et al., 2002; Marsh et al., 2002), or antagonism leads to decreases in 

food intake and weight loss in rodents (Gennemark et al., 2017; Ito et al., 2010; Ploj et 

al., 2016; Shearman et al., 2003). Mchr1 is also expressed in the nucleus accumbens 
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and has the ability to modulate the response to drugs of abuse like cocaine (Chung et 

al., 2009; Tyhon et al., 2006) and alcohol (Duncan et al., 2007; Karlsson et al., 2016). In 

addition, MCH pathway antagonism can decrease sleep (Ahnaou, Dautzenberg, 

Huysmans, Steckler, & Drinkenburg, 2011; Willie et al., 2008), while MCH pathway 

activation can facilitate memory (Monzon et al., 1999; Varas, Perez, Monzon, & de 

Barioglio, 2002) and has anxiolytic effects in animal models (Kela, Salmi, Rimondini-

Giorgini, Heilig, & Wahlestedt, 2003; Monzon et al., 2001). 

Here we generated an inducible mouse Mchr1-CreER allele in order to assess the 

potential roles for Mchr1 signaling in neural development, as well as to have a means to 

acutely manipulate Mchr1 expressing neurons in adult animals.   

Results and Discussion  

The same BAC transgenic strategy (Lee et al., 2001) that was employed to generate the 

constitutive Mchr1-Cre allele (Chee, Pissios, & Maratos-Flier, 2013) was used to create 

the inducible Mchr1-CreER allele (Supplementary Figure 1). The transgene positive 

founder Mchr1-CreER mice were crossed with ROSALacZ Cre reporter mice 

(Supplementary Figure 1) to assess inducibility and expression patterns. Offspring 

from founders #2 and #3 displayed active Cre with similar expression patterns (Figure 1 

and Supplementary Figure 2). To assess adult neuronal populations expressing 

Mchr1-CreER activity, adult mice were induced with a five-day course of intraperitoneal 

injections of tamoxifen and then the reporter expression pattern in the brain was 

examined 3 days after the final injection. Table 1 summarizes the distribution and 

intensity of LacZ Cre reporter expression. Mchr1 expression was seen in several 

regions of the brain, most notably, the arcuate nucleus and the paraventricular nucleus 

Page 4 of 24

John Wiley & Sons, Inc.

genesis

This article is protected by copyright. All rights reserved.



5 

 

of the hypothalamus (Figure 1a and b). No staining in whole mount peripheral tissues 

was observed (data not shown). The expression pattern of adult induced Mchr1-CreER 

was directly compared with constitutively active Mchr1-Cre using the same LacZ 

reporter. Overall, a broader expression pattern was observed in Mchr1-Cre brains. 

However, the expression pattern in many nuclei, such as the zona incerta (Figure 1c), 

hippocampus (Figure 1d), pons (Figure 1e), and cerebellum (Figure 1f) remained 

similar in both lines. Interestingly, there was a greater amount of LacZ reporter 

expression in the arcuate nucleus (Figure 1a) and paraventricular nucleus (Figure 1b) 

of adult induced Mchr1-CreER mice compared to Mchr1-Cre mice. Furthermore, 

expression was nearly undetectable in the nucleus accumbens of Mchr1-CreER mice 

but present in Mchr1-Cre mice (Figure 1g).  No reporter activity was observed in the 

brain of uninduced Mchr1-CreER mice or Cre negative littermates of Mchr1-Cre mice 

(Figure 1h). 

To assess whether differences in expression pattern of the ROSALacZ reporter in Mchr1-

CreER versus Mchr1-Cre mice may be due to changes in Mchr1 expression in perinatal 

development, we induced CreER activity at an earlier timepoint. On their day of birth, or 

postnatal day zero (P0), Mchr1-CreER mice were induced with a single tamoxifen 

injection followed by expression pattern analysis after they reached adulthood. The 

pattern of LacZ reporter present appeared similar to adult induced Mchr1-CreER mice 

(Figure 1 and 2) with one notable difference found in the nucleus accumbens. While 

not to the extent of Mchr1-Cre mice, expression was observed in the nucleus 

accumbens following P0 induction of Mchr1-CreER mice (Figure 1g and 2g), 

suggesting that perhaps expression of this receptor plays a role in early postnatal 
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development of this brain region. Alternatively, expression levels may be lower in adult 

accumbens. Another difference found between the P0 and adult paradigm was staining 

observed in the median eminence (Figure 2a). These findings raise the possibility that 

there could be a critical developmental window in which Mchr1 is produced in certain 

brain regions transiently during development and defects in this process may lead to 

behavioral phenotypes in adult animals.  

To confirm the expression pattern analysis observed in the LacZ reporter line we utilized 

another Cre reporter by crossing Mchr1-CreER mice to a ROSAtdTomato reporter mouse 

line. Mchr1-CreER/ROSAtdTomato mice were induced as adults (Supplementary Figure 

1). TdTomato reporter expression was observed in similar regions as the LacZ reporter 

with one exception being strong tdTomato reporter expression in the nucleus 

accumbens (Figure 3). Variability in labeling between different Cre reporter lines has 

been observed in other studies (Padilla, Reef, & Zeltser, 2012).  The discrepancy we 

observe could be due to either poor Cre recombination efficiency or poor ROSA26 locus 

expression in the nucleus accumbens for the LacZ line. These types of observations 

have previously been observed in the brain (Casper, 2006) and this variability highlights 

the importance of understanding the expression pattern of new alleles.  

Finally, to verify that Mchr1-CreER was expressed in a pattern consistent with Mchr1 

expression, we compared reporter activity to Mchr1 mRNA using in situ hybridization 

with Mchr1 specific probes (Figure 4, left and middle panels). All regions showing 

tdTomato reporter expression were positive for Mchr1 mRNA, however the cerebellum 

and pons showed minimal labeling (Figure 4e and f), suggesting that these may be 

ectopic areas of expression in the Mchr1-CreER allele. Similar observations were also 

Page 6 of 24

John Wiley & Sons, Inc.

genesis

This article is protected by copyright. All rights reserved.



7 

 

reported and observed for the Mchr1-Cre allele (Chee et al., 2013).   A probe for a non-

mammalian gene (dihydrodipicolinate reductase, DapB) was used as a negative control 

(Figure 4 a-g, right panels).  A probe for a common housekeeping gene (Peptidylprolyl 

Isomerase B, PPIB) was used as a positive control probe and produced labeling 

throughout the brain, including the corpus callosum, a region not labeled by the Mchr1 

probe (Figure 4h) and where no reporter staining was noted in either Mchr1-CreER or 

Mchr1-Cre mice. 

In conclusion, the new Mchr1-CreER allele’s inducible recombinase activity can be 

observed in several brain regions consistent with behavioral phenotypes associated 

with the pathway and expression pattern data.  For the first time, we report novel brain 

regions showing Cre activity when induced on the day of birth, suggesting the potential 

for this pathway to be involved in neural development.  Furthermore, these results 

suggest that some behavioral phenotypes observed in constitutive knockout and 

transgenic alleles of MCH or Mchr1 may be due to developmental perturbations in 

signaling.  This model will be useful to determine both adult and developmental 

contributions to the diverse set of behavioral phenotypes associated with Mchr1 

signaling.  

Methods 

Transgene Construct and Mouse Allele Generation 

To produce the Mchr1-CreER transgene construct, the ~198 kb C57BL/6J mouse BAC 

clone (RP23-202N16) containing ~108 kb upstream of the Mchr1 open reading frame 

and ~86 kb after the stop codon was used.  The CreERT2 open reading frame was 
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inserted downstream of the Mchr1 promoter via homologous recombination/BAC 

recombineering as previously described (Lee et al., 2001), replacing nucleotides 4-41 

from exon 1 of the Mchr1 gene. The targeting construct was generated using the 

following primers: 

GCAGCCTGCGTGGGTGGACGGGCGCTCCACTCCAGGGAGCAGGCGACCTGCAC

CGGCTGCATGTCCAATTTACTGACCGT and GGACTCCAACTCGACTCACCCGCC 

AATGTGAAATTATCCTGGCCATCGGAGATGTTGCTGCCGCGTGTAGGCTGGAGCT

G.  An frt-flanked kanamycin selection cassette used during recombineering was 

removed by FLP expression. Proper recombination was confirmed by sequencing.  The 

BAC was purified for subsequent male pronuclear injection.  Mice were genotyped for 

Mchr1-CreER using 5ʹ-GCAAACGGACAGAAGCATTT and 5ʹ-

GCGGTAGAGGAAGACCCTTT primers in the following PCR program:  95°C for 2 

minutes; 35 cycles of 95°C for 15 seconds, 57°C for 30 seconds, and 72°C for 1 minute; 

72°C for 1 minute. The resulting founder lines were maintained as hemizygotes for the 

Mchr1-CreER BAC transgene. As such it is unknown if there are any phenotypes 

associated with mice homozygous for the Mchr1-CreER BAC transgene. The new 

Mchr1-CreER mouse will be available upon request.  

Mice 

All procedures were approved by the Institutional Animal Care and Use Committee at 

Indiana University Purdue University Indianapolis. Mice were housed on a standard 12-

hour light dark cycle and given food and water ad libitum. Mice were weaned and 

housed with same-sex littermates after postnatal day 21. Ear punches were taken for 

genotype analysis by polymerase chain reaction.  
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Mchr1-CreER founders were compared to Mchr1-Cre mice (C57BL/6J-Tg(Mchr1-

cre)1Emf/J, stock number 021582). Both Mchr1-CreER and Mchr1-Cre mice were 

crossed to Cre reporter lines, ROSALacZ (Gt(ROSA)26Sortm1Sor/J, stock number 

003309 | R26R) or tdTomato (Gt(ROSA)26Sortm9(CAG-tdTomato)Hze/J, stock number 

007909) (Jackson Labs; Bar Harbor, ME). Both ROSALacZ and ROSAtdTomato only 

express the reporter upon Cre mediated recombination. Two founders showed robust 

reporter expression and were further characterized. Experiments utilized both male and 

female mice and no differences between sexes were noted.  

CreER Induction 

To induce CreER recombinase, cohorts were given intraperitoneal injections of 20 

mg/ml tamoxifen (Sigma Aldrich, St. Louis, MO) dissolved in corn oil (Sigma Aldrich, St. 

Louis, MO). For adult induction, six-week old cohorts were given injections on 5 

consecutive days at a dose of 150 mg/kg. For induction at P0, mice were given a single 

50 µL injection. 

Fixation and Tissue Processing for LacZ Staining 

Samples were harvested when mice were 7 weeks old, 24-72 hours after the final 

tamoxifen injection for adult induced cohorts or 7 weeks after tamoxifen injection for P0 

induced cohorts. Mice were anesthetized with 0.1 ml/ 10 g of body weight dose of 2.0% 

tribromoethanol (Sigma Aldrich, St. Louis, MO) and transcardially perfused with PBS 

followed by 4% paraformaldehyde (Affymetrix Inc., Cleveland, OH). Brains were 

postfixed in 4% paraformaldehyde for 4 hours at 4°C and then cryoprotected by 

submersion in 30% sucrose in PBS for 16–24 hours. Cryoprotected brains were 
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embedded in Optimal Cutting Temperature compound (Fisher Healthcare, Houston, TX) 

and sectioned in a freezing cryostat at a thickness of 50 µm. 

LacZ staining was carried out as previously described (Berbari et al., 2011). Sections 

were washed twice in PBS prior to three 10-minute washes in LacZ wash buffer (2 mM 

MgCl2, 0.01% sodium deoxycholate, 0.02% nonidet-P40 in 100 mM sodium phosphate 

buffer, pH 7.3). Following washes, sections were incubated overnight at 37° in LacZ 

stain (2 mM MgCl2, 5 mM K-ferrocyanide, 5 mM K-ferricyanide, 2.45 mM x-Gal in PBS) 

Sections were then washed twice with PBS and mounted onto Superfrost Plus 

Microscope Slides (Fisher Scientific) prior to nuclear counterstaining. 

Nuclear counterstaining was performed with Nuclear Fast Red. Slides were rinsed in 

MilliQ deionized water and then stained in 0.1% Nuclear fast red-aluminum sulfate 

solution (Merck, Darmstadt, Germany) for four to five minutes. Next, slides were 

washed with MilliQ deionized water and dehydrated through a series of ethanol and 

xylene washes (70% EtOH, 96% EtOH, 100% EtOH and xylene, 5 minutes each). 

Finally, the sections were coverslipped using Permount Mounting Media (Fisher 

Chemical, Pittsburg, PA). 

Fixation and Tissue Processing for tdTomato 

Brains were harvested when mice were 7 weeks old, 24-72 hours after the final 

tamoxifen injection. Mice were anesthetized by a 0.1 ml/10 g of body weight by i.p. 

injection of 2.0% tribromoethanol (Sigma Aldrich, St. Louis, MO) and transcardially 

perfused with PBS followed by a 1:1 mixture of 4% paraformaldehyde (Affymetrix Inc., 

Cleveland, OH) and Histochoice (Sigma Aldrich, St. Louis, MO). Brains were postfixed 
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in paraformaldehyde/histochoice overnight at 4°C and then cryoprotected by 

submersion in 30% sucrose in PBS for 16–24 hours. Cryoprotected brains were 

embedded in Optimal Cutting Temperature compound (Fisher Healthcare, Houston, TX) 

and sectioned in a freezing cryostat at a thickness of 50 µm. Sections were stained with 

Hoechst nuclear stain (1:1000 in PBS) for 5 minutes at room temperature, washed with 

PBS, mounted onto slides, and coverslipped with Fluoro-Gel (Electron Microscopy 

Sciences, Harfield, PA).  

In situ hybridization 

Brains from C57BL/6J mice were harvested and fixed as described for LacZ staining. 

Sections were cut at a thickness of 15 µm and mounted directly on slides then post-

fixed with 4% paraformaldehyde for 16 hours at 4°C.  

Detection of transcripts in brain sections was performed using the RNAscope 2.5 HD 

Assay – BROWN kit (ACD). Tissue pretreatment was performed according to user 

manual no. 320534 and probe hybridization, counterstaining, and mounting of slides 

was performed according to user manual no. 322310-USM. Slides were assayed using 

probes to either positive control (Ppib), negative control (dapb) or MCHR1 transcripts 

(ACD). Sections were counterstained with Hematoxylin, dehydrated, and mounted using 

Cytoseal (Thermo Scientific).  

Imaging 

All samples were imaged using a Nikon Eclipse 90i microscope with Nikon Elements 

Advanced Research software v4.13.  
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 Figure Legends 

Figure 1: LacZ reporter activity in the brains of adult Mchr1-CreER and Mchr1-Cre mice. 

Representative images of Mchr1-CreER/ROSALacZ brain sections (a-g, left column) 

compared to constitutive Mchr1-Cre/ROSALacZ brain sections (a-g, right column). For 

Mchr1-CreER animals, adult induced activation of CreER was achieved via 5 days of 

tamoxifen injections starting when mice were 6 weeks old and brains were harvested 

when mice were 7 weeks old, 24-72 hours after the last tamoxifen injection. For Mchr1-

Cre animals, brains were also harvested at 7 weeks old. 50 µm brain sections were cut 

and stained for LacZ. Negative controls include a section from an uninduced Cre 

positive Mchr1-CreER mouse (h, left panel) and Cre negative Mchr1-Cre littermate (h, 

right panel).   

Neuroanatomical regions annotated include the third ventricle (V3), Cornu Ammonis 3 

subfield of hippocampus (CA3), fourth ventricle (V4), granule layer (GL), anterior 
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commissure (ACO), and lateral ventricle (LV). LacZ staining is in blue and nuclei were 

counter stained with nuclear fast red. Scale bar indicates 100 µm. (induced Mchr1-

CreER Cre positive n=8; induced Mchr1-CreER Cre negative (not shown) n=8; 

uninduced Mchr1-CreER Cre positive n=2; Mchr1-Cre Cre positive n=6; Mchr1-Cre Cre 

negative n=2) 

 

Figure 2: Analysis of LacZ reporter activity in the brains of adult Mchr1-CreER mice 

after perinatal induction. 

Representative images of Mchr1-CreER/ROSALacZ brain sections following Cre 

induction via a single tamoxifen injection at P0. Brains were harvested when mice were 

7 weeks old and 50 µm brain sections were cut and stained for LacZ. Inset in (a) shows 

magnification of region inside box. Negative control represents a Cre negative Mchr1-

CreER littermate (h).   

Neuroanatomical regions annotated include the third ventricle (V3), Cornu Ammonis 3 

subfield of hippocampus (CA3), fourth ventricle (V4), granule layer (GL), anterior 

commissure (ACO), lateral ventricle (LV), and median eminence (ME). LacZ staining is 

in blue and nuclei were counter stained with nuclear fast red. Scale bar indicates 100 

µm, scale bar of inset indicates 10 µm. (induced Mchr1CreER Cre positive n=2, injected 

Mchr-CreER Cre negative n=2) 

 

Figure 3: Analysis of tdTomato reporter expression in adult Mchr1-CreER mice. 
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Representative images of Mchr1-CreER/ROSAtdTomato brain sections following adult 

induced activation of CreER via 5 days of tamoxifen injections starting when mice were 

6 weeks old. Brains were harvested when mice were 7 weeks old, 24-72 hours after the 

last tamoxifen injection. 50 µm brain sections were cut and analyzed for tdTomato 

expression.  Inset is a magnified image of the annotated box. Negative control 

represents a Cre negative Mchr1-CreER littermate (h).   

Neuroanatomical regions annotated include the third ventricle (V3), Cornu Ammonis 3 

subfield of hippocampus (CA3), fourth ventricle (V4), granule layer (GL), anterior 

commissure (ACO), and lateral ventricle (LV). TdTomato expression is in red. Scale 

bars indicate 100 µm. (induced Mchr1-CreER Cre positive n=5; induced Mchr1-CreER 

Cre negative n=1) 

Figure 4: In Situ Hybridization for Mchr1 in adult mouse brain 

Representative images of brain sections from adult wild-type mice following in situ 

hybridization using a Mchr1 specific probe (a-h, left and middle columns; middle panel 

represents a magnified image of the annotated box, insets in the middle column are 

from individual cells in that panel). A dapB probe was used as a negative control (a-g, 

right column) and a Ppib probe was used as a positive control probe (h, right).  

Neuroanatomical regions annotated include the third ventricle (V3), Cornu Ammonis 3 

subfield of hippocampus (CA3), fourth ventricle (V4), granule layer (GL), anterior 

commissure (ACO), and lateral ventricle (LV). Probe staining in brown with 

haematoxylin counter stain. Scale bar in left column indicates 100 µm, scale bars in 

middle and right column indicate 10 µm. (n=3) 
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Supplementary Figure 1: Allele schematic 

Schematic of Cre and Cre reporter alleles used throughout the paper including (a) 

inducible BAC transgenic Mchr1-CreER, (b) constitutive BAC transgenic Mchr1-Cre, (c) 

LacZ Cre reporter ROSALacZ, and (d) fluorescent tdTomato Cre reporter ROSAdTomato. 

Supplementary Figure 2: Adult LacZ reporter activity of a second Mchr1-CreER founder 

line.  

Representative images illustrating that offspring of Founder 2 have a similar expression 

pattern as Founder 3 used in other figures. Mchr1-CreER/ROSALacZ brain sections 

following adult induced activation of CreER via 5 days of tamoxifen injections starting 

when mice were 6 weeks old. Brains were harvested when mice were 7 weeks old, 24-

72 hours after the last tamoxifen injection. 50 µm brain sections were stained for LacZ 

reporter. Negative control is from a Cre negative Mchr1-CreER littermate (h). 

Neuroanatomical regions annotated include the third ventricle (V3), Cornu Ammonis 3 

subfield of hippocampus (CA3), fourth ventricle (V4), granule layer (GL), anterior 

commissure (ACO), and lateral ventricle (LV). LacZ staining is in blue with nuclear fast 

red counter stain. Scale bar indicates 100 µm. 
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Table 1: Distribution of LacZ Reporter Expression 

Brain Region Relative abundance of LacZ reporter 

Mchr1-creER Mchr1-cre 

adult induced P0 induced constitutive 
Cerebral cortex 

Isocortex + + ++ 
Olfactory areas + + ++ 

Hippocampus 
CA1 pyramidal cell layer ++ + ++ 
CA2 pyramidal cell layer +++ ++ +++ 
CA3 pyramidal cell layer +++ ++ +++ 
Dentate gyrus granule cell layer ++ + ++ 

Striatum 
Caudoputamen +/- + +++ 
Globus pallidus +/- +/- + 
Nucleus accumbens +/- + ++ 

Thalamus +/- +/- ++ 
Hypothalamus 

Arucate nucleus +++ +++ + 
Paraventricular nucleus +++ +++ + 
Median eminence - + - 
Zona incerta + + + 
Ventromedial nucleus +/- +/- ++ 
Dorsomedial nucleus ++ ++ ++ 
Lateral hypothalamic area + + + 
Periventricular hypothalamic nucleus ++ + + 

Mammilary nucleus 
Supramammillary nucleus + + +/- 
Medial mammillary nucleus - +/- ++ 
Lateral mammillary nucleus +/- +/- ++ 

Midbrain 
Ventral tegmental area + + ++ 
Substantia nigra - + ++ 
Periaqueductal gray +/- + ++ 
Interpeduncular nucleus +/- + +/- 

Pons and Medulla 
Dorsal tegmental nucleus ++ ++ ++ 
Laterodorsal tegmental nucleus + + ++ 
Locus ceruleus ++ ++ ++ 
Motor nucleus ++ ++ ++ 
Facial motor nucleus ++ ++ ++ 

Cerebellum 
Granule layer ++ ++ ++ 

  Molecular layer   -   -   - 
 
The relative amount of LacZ reporter in each brain region designated by: 

-, no LacZ reporter expression 
+/-, sparse LacZ reporter expression 
+, low density of LacZ reporter expression 
++, moderate density of LacZ reporter expression 
+++, high density of LacZ reporter expression 
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