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ABSTRACT 

 

Background: Alcohol use disorders (AUDs) are influenced by complex interactions between the 

genetics of the individual and their environment. We have previously identified hundreds of 

polygenic genetic variants between the selectively bred high and low alcohol drinking (HAD and 

LAD) rat lines. Here we report allele specific expression (ASE) differences, between the HAD2 

and LAD2 rat lines.  

Methods: The HAD2 and LAD2 rats which have been sequenced were reciprocally crossed to 

generate 10 litters of F1 progeny. For 5 of these litters, the sire was HAD2; and, for the other 5 

litters, the sire was a LAD2. From these 10 litters, two males and two females were picked from 

each F1 litter (N = 40 total). The F1-pups were divided, with balancing for sex and direction of 

cross, into an alcohol (15%) vs a water control group. Alcohol-drinking started in the middle of 
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adolescence (~PND 35) and lasted 9 weeks. At the end of these treatments, rats were 

euthanized, the nucleus accumbens was dissected, and RNA was processed for 

RNA-sequencing and ASE analyses.  

Results: Analyses revealed that adolescent ethanol drinking, individual ethanol drinking levels, 

parentage, and sex-of-animal affected ASEs of about 300 genes. The identified genes included 

those associated with ethanol metabolism (e.g., Aldh2); neuromodulatory function [e.g., Cckbr, 

Slc6a7, and Slc1a1]; ion channel activity (e.g., Kcnc3); as well as other synaptic and epigenetic 

function.  

Conclusion:  

These data indicate that ethanol drinking differentially amplified paternal vs maternal allelic 

contribution to the transcriptome. We hypothesize that this was due, at least in part, to 

ethanol-induced changes in cis-regulation of polymorphisms previously identified between the 

HAD2 and LAD2 rat lines. This report highlights the complexity of gene-by-environment 

interactions mediating a genetic predisposition for, and/or the active development of, alcohol use 

disorders. 

 

KEYWORD: Gene-environment interaction, Genomics, Alcohol use disorder, Gender effect, 

Direction of cross, RNAseq, Epigenetics.  



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

INTRODUCTION  

 

The extensive search for genetic contributions to alcohol use disorders (AUDs) has not 

identified, as of yet, any single nucleotide polymorphism (SNP) that has greater than a small, 

albeit significant, association with AUDs. Moreover, there are still significant gaps in our 

knowledge of the association between a large number of genetic variants and 

ethanol-associated effects including AUDs. Deciphering the role of SNPs in their associated 

gene function remains problematic (i.e. identifying the minority of functional SNPs from the much 

larger number of insignificant ones is a difficult task). This is underscored by the fact that 

AUD-associated genetic variants in coding regions [e.g. ADH2 (Treutlein et al., 2009, van Beek 

et al., 2010), GABRB2 (Edenberg et al., 2004, Sander et al., 1999), Grm2 (Zhou et al., 2013)] are 

rare. Moreover, it appears that most complex disease-associated variants have been identified 

as noncoding SNPs mapping outside the coding regions of various genes (Lo et al., 2016, Zhang 

and Lupski, 2015, Ward and Kellis, 2012, Manolio et al., 2009).  

In the present study, we examined a deeper layer of SNP function targeting Allelic Specific 

Expression (ASE). ASE analysis allows us to examine cis-acting regulatory elements for 

variations associated with genetic differences in a predisposition to develop AUDs. Variability in 

the ASE of human phenotypes highlights the complex polymorphic gene regulation required for 

the underlying development of complex traits or diseases (Palacios et al., 2009, Huang et al., 

2017). It is now known that ASE differences are relatively common among non-imprinted 

autosomal genes, and these differences can be transmitted across generations (Yan et al., 2002, 

Cowles et al., 2002, Lo et al., 2003). Thus, ASE analysis provides a powerful tool to identify 

functional polymorphisms as well as gene-by-environment expression patterns associated with 

the development of AUDs (Moyerbrailean et al., 2016), which is the focus of the current study.  
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Recently, the genomic signature between the High Alcohol Drinking (HAD1) and the Low 

Alcohol Drinking (LAD1) rat lines, which meet most of the criteria put forth for a valid animal 

model of alcoholism (Li and Lumeng, 1984, McBride and Li, 1998, McBride et al., 2014), has 

been identified. Furthermore, a genomic comparison of a duplicate selectively bred, from the 

same ancestors, line-pair (HAD2 vs LAD2) has also been performed to determine potential 

complications associated with genetic drift (c.f. (Lo et al., 2016). Once this random drift was 

corrected for, we identified signatures for 780 coding SNPs, associated with 262 genes, and 

21,083 non-coding SNPs, associated with ~900 genes that were common between these two 

replicate line-pairs. We continue to interrogate this database to determine what transcripts 

resulted from inherited SNPs and whether they contribute significantly to cis-regulation of 

AUD-associated genes.  

In the present study, we performed an ASE analysis by sequencing the RNA (RNA-seq) of 

the F1 progeny from a reciprocal cross of the HAD2 and LAD2 rat lines, with and without access 

to ethanol starting during adolescence. We prioritized this research by focusing on the nucleus 

accumbens (NAc), a key structure in the mesocorticolimbic reward circuit (Olsen, 2011, Di 

Chiara and Imperato, 1988). To test the effect of alcohol drinking on ASE, both Alcohol Drinking 

(AD: Alcohol Drinking vs Water only groups) and Alcohol Drinking Level (ADL) served as two 

factors for these analyses. To assess the role of paternal and maternal effects reciprocal crosses 

(HAD2 male x LAD2 female and LAD2 male x HAD2 female) were used; and, to assess the role 

of sex differences, tissue from both male and female F1 progeny were analyzed.  

 

Therefore, the current study evaluated how alcohol drinking, parental genetic contribution, 

and sex-of-the-subject influenced cis-acting regulation of genes identified as being in allelic 

imbalance. The data revealed a significant [False Discovery Rate (FDR) set at 0.05] number, of 
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allelic imbalances, as indicated by ASE differences occurred for hundreds of genes as a result of 

Alcohol Drinking (AD) as well as Alcohol Drinking Level (ADL). Allelic imbalances were also 

associated with sex differences in alcohol drinking levels. From the present study’s reciprocal 

cross, the data revealed a differential influence of parental genotype [i.e. (male HAD x female 

LAD) vs (female HAD x male LAD)] on patterns of ASE. Overall, the present study not only 

detected differences in a significant number of genes previously highlighted in genetic studies on 

AUDs, but also identified new genes with ASE differences associated with alcohol drinking 

behavior. Note for the present discussion, ASE is indicative of cis-acting regulatory processes 

affected by alcohol exposure/drinking. 

 

METHODS 

Breeding and Selection of Paired-lines  

The HAD2 and LAD2 lines were developed from the N/NIH heterogeneous stock (HS) rat 

line [an inter-cross of 8 different inbred rat strains with varying levels of ethanol intake (Manolio et 

al., 2009)] through bi-directional selective breeding. This selective breeding used within family 

selection and rotational (across families) breeding procedures at Indiana University (Hansen and 

Spuhler, 1984, Bell et al., 2017, Bell et al., 2012, McBride et al., 2014, Murphy et al., 2002). 

During selection, the rats were given free-choice (i.e., concurrent) access to food, water and a 

10% (v/v) ethanol solution. The selection criteria for the HAD lines were consumption of at least 

5.0 g of ethanol/kg body weight/day, and an ethanol to water volume ratio of at least 2:1; while 

LAD rats were required to drink less than 1.5 g/kg/day with an ethanol to water volume ratio of 

less than 0.5:1. Bi-directional selection for ADL was repeated for 30 consecutive generations, 

followed by 30+ generations of selection that were interspersed with relaxed selection when the 

parents were not tested for ADL. At the 60th generation, the HAD2 and LAD 2 were crossed in 
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both directions, HAD2 (sire) x LAD2 (dam) (n = 5 of each) and LAD2 (sire) x HAD2 (dam) (n = 5 

of each), to generate 10 litters from the 61st generation. These ten litters were designated as F1 

progeny for the current ASE study.  

At weaning (post-natal day 21), tissue from the parents (generation 60) were harvested for 

DNA-sequencing and genetic variant analyses, which produced a high resolution genomic profile 

of the genetic architecture associated with alcohol preference (Lo et al., 2016). Two males and 

two females from each F1 litter (N = 40 total) were divided, with balancing for sex and direction of 

cross, into an alcohol drinking (AD) group, with concurrent access to a bottle of 15% alcohol and 

a bottle of water, vs a water control group, with concurrent access to two water bottles. Drinking 

treatment (alcohol vs water) started mid-adolescence [~post-natal day (PND) 35]. The drinking 

lasted for 9 weeks and the drinking scores were recorded 5 days/week before brain tissue was 

harvested from these F1 progeny. The second bottle (either alcohol for the AD group or water for 

the water control group) was removed four hours before the brains were harvested. The nucleus 

accumbens (NAc), a central structure of the mesocorticolimbic reward circuit, was 

microdissected using Paxinos and Watson’s atlas (2006) with a 2 mm section generated from a 

coronal cut at Bregma +1.70 and a coronal cut at Bregma -0.26 using the lateral ventricle and the 

anterior commissure as landmarks. The RNA was then harvested for RNA-sequencing and ASE 

analyses. The ventral tegmental area (VTA) was also dissected for future studies. All rats, 

mentioned above, were euthanized by CO2 inhalation which was quickly followed by decapitation 

and the brains extracted. This animal research was approved by the Indiana University School of 

Medicine IACUC, under protocol # 11085 MD/R. 
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RNA Isolation and Improvement 

The entire nucleus accumbens (NAc) and in additional a trial region ventral tegmental area 

(VTA) of the control and alcohol groups were microdissected under a Leitz inverted microscope, 

homogenized in 1ml TRIzol reagent, and stored at -80°C. Initially, the VTA was isolated from the 

samples and 200ul chloroform added was followed by centrifuging for phase separation. The 

aqueous layer was removed and the sample transferred to a new tube and mixed with 600 ul of 

70% EtOH. The mixture was loaded onto RNeasy spin columns supplied in the Qiagen RNeasy 

Micro kit (Qiagen, Germantown, MD) followed by an RNA buffer 1 (RW1) wash with the remaining 

steps following the manufacturer’s protocol. Using this method, the sample variation was large 

and had unsatisfactory RNA yield and purity. Based on Nanodrop measurement, the total amount 

of RNA from the VTA ranged from 0 to 1.1 ug, and most of the samples had a shifted peak at 

270nm with low 260/230 ratio, suggesting the presence of phenol contamination. Overall, these 

measures suggested that the concentration reading from Nanodrop did not represent the true 

amount of RNA. After further optimization, to avoid phenol contamination, NAc RNA was isolated 

using the Macherey-Nagel NucleoSpin RNA XS kit (Macherey-Nagel, Bethlehem, PA) following 

the manufacturer’s instructions. The Trizol lysates were first thawed at 37°C for 2-3 minutes to 

ensure salts were completely dissolved. RA3 wash buffer (600ul) and repeated wash steps were 

used to prevent TRIzol carryover. For samples that had TRIZol carryover, re-purification with a 

new spin column successfully eliminated TRIZol contamination. With these improvements, we 

were able to increase the yield of total RNA from NAc samples ranging from 963 ng to 5.2 μg. 

 

RNAseq Library Preparation and Sequencing 

Approximately 100-300ng of total RNA was used for RNA-Seq library preparation following 

the Illumina TruSeq stranded mRNA sample preparation guide (illumina, San Diego, CA), by 
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purifying the poly-A containing mRNA molecules using poly-T oligo-attached magnetic beads. 

Following purification, the mRNA was fragmented using divalent cations under elevated 

temperature. For 100bp paired-end sequencing, the target fragment size was 200-300bp of 

RNA and the average for the library was about 350-450bp after library preparation. Reverse 

transcription of the mRNA was performed using reverse transcriptase and random primers, 

followed by second strand cDNA synthesis using DNA Polymerase I and RNase H. In the 

stranded RNA-seq procedure, strand specificity was achieved by replacing dTTP with dUTP in 

the Second-Strand Marking Mix (SMM). The incorporation of dUTP in the second strand 

synthesis effectively quenches the second strand during amplification, since the polymerase used 

in the assay cannot incorporate further nucleotides beyond dUTP. Further specificity was 

achieved by the addition of Actinomycin D to the First Strand Master Mix Act D (FSA). 

Actinomycin prevents spurious DNA dependent synthesis during first strand synthesis, while 

allowing RNA-dependent synthesis. These cDNA fragments then went through an end-repair 

process, with the addition of a single ‘A’ base followed by ligation of the adapters. The products 

were then purified and enriched with PCR to create the final RNA-Seq library. The libraries were 

then subjected to quantification, pooled for cBot amplification, and subsequent sequencing on an 

Illumina HiSeq 2000 platform (illumina, San Diego, CA). The pooling scheme was an average of 

2 samples per lane. After the sequencing run, demultiplexing with CASAVA was employed to 

generate the fastq file for each sample and removal of the adapter sequences. On average, the 

coverage was 17.6 GB for all samples or approximately 100 million paired-end reads.  

 

Sequence Read Mapping and Genotype Calling 

Sequence reads were mapped using the RNA-Seq analysis tool CLC Genomics Workbench 

V9.5.2. The tool maps reads to transcripts of Rattus Norvegicus using version 6.0.83.gtf 
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annotation files (Ensembl 2016). Mapping errors were minimized by setting the cost of insertions 

and deletions to the maximum value allowed and requiring 90% of the read (including both ends 

of the pair) to map uniquely to the transcript with 90% similarity. Reads that mapped to more than 

one transcript were ignored. The raw sequencing data is available at NCBI SRA database (SRA 

accession: SRP126749).    

All differences from the reference genome, including putative SNPs, insertions, and 

deletions were then called using the basic variant detection tool of CLC. For calling SNPs, a 

minimum allele frequency of 5% was required. The presence of SNPs, as opposed to 

sequencing or mapping errors, was confirmed by across sample verification, i.e. the same SNP 

called in at least 3 independent samples. Random errors rarely repeat themselves. Individual 

genotypes were called as follows. If the individual sample coverage was less than 3, a missing 

value was assigned. If the coverage was greater than 2 and the base was the same as the 

reference, it was classified as a reference homozygote (genotype=0); if the base was the same 

as the mutant, it was classified as the mutant homozygote (genotype=2), otherwise if both alleles 

were present, it was called a heterozygote (genotype=1). For ASE testing, only those classified 

as heterozygotes (genotype=1) were analyzed further. 

 

Statistical Analysis 

The experimental design employed was a 2x2x2 factorial of Alcohol Drinking (AD) (water 

control vs. ethanol drinking initiated during adolescence), sex (male vs. female), and direction of 

the cross (i.e. parental origin) (HAD sire x LAD dam vs. LAD sire x HAD dam). The sample size 

of each condition was 5 rats, for a total of 40 rats from the ten F1 litters. The results were 

analyzed as categorical data in two ways. In the first analysis, the main effect of treatment 

(coded as dummy variable 1 and -1 for each level of the factor) and their interactions (found as 
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the product of main effect dummy variables) on ASE was examined. For each of the treatment 

comparisons, a 2x2 chi-square test of independence was employed. For this test, the cells were 

the number of counts of each SNP for that locus, the rows were the respective treatments, or 

interactions of these treatments, and columns were alternative SNPs. The test was adjusted for 

over-dispersion by estimating a scale parameter associated with the degree of variance inflation, 

as shown by (McCullagh and Nelder, 1989). Significance was determined by computing the false 

discovery rate (FDR), which was calculated according to Benjamini and Hoshberg (1995) 

(Benjamini and Hochberg, 1995).  

In the second analysis, the effect of amount of alcohol consumed (Alcohol Drinking Level: 

ADL) on ASE was examined. For that analysis only data from rats that had access to ethanol 

were used in a chi-square test for trend as shown by (Armitage et al., 2001). In this test, allelic 

proportions were regressed across ADL, and corrected for over-dispersion. Allelic proportion was 

calculated as the number of SNP reads of the non-reference allele over the total number of reads 

at that position. This analysis is equivalent to a linear regression of allelic proportions regressed 

on ADL weighted by the observed total number of reads at that position. In addition, interactions 

of ADL with sex and/or parental genotype were found by coding the independent variable for the 

regression as the product of the ADL multiplied by the dummy variable for sex or parental origin. 

 

Manhattan Plots   

To give a global perspective of the genome-wide magnitude and spatial distribution of ASEs, we 

created a Manhattan plot based on the ' LL ' values on Chrs 1-20 and the X chromosome. “LL” is 

the negative of the log likelihood of the significance level (p) and was calculated using the formula 

given in Armitage et al., 2001(Armitage et al., 2001). The plot was generated using MATLAB 8.3 

(The MathWorks, Inc., Natick, MA, USA). 
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RESULT 

The analyses revealed a significant number of differentially expressed ASE SNPs (Table 1) 

as a function of AD, and as a function of ADL. These are summarized in Table 1.  

 

Alcohol-Drinking (AD) Related ASE  

    Two statistical factors, effect of AD and effect of ADL, were used for the initial analysis of the 

ASEs in F1 HAD2/LAD2 progeny. Analysis of the first factor AD (Alcohol Drinking vs Water only) 

revealed 41,096 SNPs with differential allelic proportions at a FDR of <0.05 (see Table 1), 369 

SNPs showed ASE (cis-acting regulatory factors) in 310 genes (FDR<0.05) induced by AD. A 

number of these ASE genes were associated with proteins mediating biological functions 

including (1) alcohol metabolism (aldehyde dehydrogenase 2, Aldh2), (2) hormone receptor 

[nuclear receptor subfamily 3, group C, member 1, (Nr3c1), glucocorticoid receptor (GR)], (3) 

neurotransmitter receptor (cholecystokinin B receptor, Cckbr), (4) neurotransmitter transporter 

(e.g. glutamate transporter, Slc1a1), (5) synaptic function, (6) epigenetics, as well as (7) immune 

and (8) stress activity (see Table 2, Column A). 

 

Alcohol-Drinking Level (ADL) Related ASE  

Analysis of the second factor, ADL, see Method section, revealed a total of 41,099 ASE 

SNPs that were significantly (FDR<0.05) affected by ADL (see Table 1), including 391 ASE 

SNPs with cis-regulation in 293 genes. Two examples of the ADL associated changes of allelic 

proportion are demonstrated in Fig. 1. 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

ASE genes influenced by ADL also included functional categories of Hormone 

receptor-related, Neurotransmitter receptor, Neurotransmitter transporter, Ion channel, Synaptic 

function, Epigenetics, Inflammation and Stress activity, as well as ATP-related and other 

biological functions (see Table 2 Column B). It is noteworthy that some of the genes overlapped 

between these two categories (Detailed below). 

Comparison of the AD-ASE and the ADL-ASE findings revealed that there were 65 common 

genes (Fig. 2A). Of these 65 genes, 50 genes had the exact same ASE loci identified by the two 

analyzes (Fig. 2B). These genes included cholecystokinin B receptor (Cckbr); neuronal cell 

adhesion molecule (Nrcam); a critical transporter for glutamate/aspartate (Slc25a12), cation ion 

transporter (Slc24a2), as well as a monocarboxylic acid transporter (Slc16a14); thyroid hormone 

receptor interactor 12 (Trip12); and DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 (Ddx11); 

among others. The differential distribution of the ASE genes, induced by AD and ADL, across 

chromosomes are shown in the Manhattan plots of Figs. 3a and 3b. 

 

Sex Effect on ASE  

In the F1 progeny, 8,480 ASE SNPs in 3,845 genes (FDR < 0.05), or 3,664 ASE SNPs in 

2,075 genes (FDR < 0.001) were significantly different between the sexes. Among them, a 

number of gender-differential ASEs also were a function of AD. First, we found 316 ASE SNPs in 

262 genes (FDR < 0.05) were differentially affected by AD between the sexes (S2 Table A).  Of 

these ASEs, 18 had regulatory significant SNPs (SS) including in promoter regions of the 

parental genome (e.g. St5, Snrk, Abhd16a, and Kcnf1). The second analysis revealed that 205 

ASEs in 140 genes (FDR < 0.05) were differentially affected by ADL between the sexes (S2 

Table B).  

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Parental -Origin Effect on ASE 

Regarding parental origin effects, 1890 SNPs in 1346 genes (FDR < 0.05) or 534 SNPs in 

405 genes (FDR < 0.001) showed allelic imbalance due to parental origin (HAD sire x LAD dam 

vs LAD sire x HAD dam). AD had a significant effect on parental-origin ASEs, such that 459 ASE 

SNPs in 349 genes (FDR < 0.05) were identified (S3 Table A). Of the AD by parental-origin ASE 

SNPs, 20 were located in regulatory regions of the parent genes (e.g. Acaa1, Tango2, Pmepa1, 

Pmepa1, and Dock1). ADL also had a significant effect on parental-origin ASEs, such that 279 

differential ASEs in 201 genes (FDR < 0.05) were identified (S3 Table B).  

 

DISCUSSION 

 Classic Mendelian inheritance assumes that genes from each parental chromosome 

contribute equally to the phenotype. Nevertheless, X-chromosome and autosomal imprinting 

inactivation are the two better known exceptions to this assumption. ASE has been increasingly 

identified in human genetic studies. Analysis of human SNP chips of the liver, kidney, and 

fetuses have indicated that ~600 out of ~1500 analyzed SNPs showed at least a twofold 

difference in ASE (Lo et al., 2003). And many research questions warrant this type of 

investigation. This would allow one to determine the impact of ASEs and their transcriptional 

magnitude in delineating the role of genetics in AUDs. For instance, a compelling question is how 

do polymorphisms in regulatory regions, with differential ASEs, interact with environmental 

factors to promote or interfere with a susceptibility to develop AUDs. Importantly, the present 

study revealed that 9 weeks of alcohol drinking, an example of an environmental effect, altered 

ASE in a diverse array of genes. Moreover, some of these effects, of alcohol drinking, on ASE 

were sex-specific (S2 Table). Interestingly, reciprocal cross-breeding revealed that parental 

genotype also played a significant role in differential ASE (S3 Table).  
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ASE Gene Profiles  

Regarding the AD-ASE and ADL-ASE sets of identified genes, one out of every six ASE 

genes (65 of ~300 genes) was common between these two analyses. Of these common genes, 

~75% shared the same ASE location. These common genes included ones previously implicated 

in alcohol drinking behavior. These previously identified genes included cholecystokinin B 

receptor (Cckbr ~ Cck2r), known to modulate dopamine activity in the striatum as well as 

gamma-aminobutyric acid (GABA) activity in the nucleus accumbens (NAc), with both of these 

functions critically important in reinforcement and reward behavior (Altar and Boyar, 1989, Lanza 

and Makovec, 2000). For instance, a Val125 variant has been associated with alcohol 

dependence in a Finnish population (Vanakoski et al., 2001) as well as cocaine sensitivity 

(Crespi, 1998). Similarly, another cholecystokinin A receptor subunit gene polymorphism, –81G 

allele, has been associated with alcohol dependence in a Japanese population (Miyasaka et al., 

2004). In addition, the Cck gene contains a significant SNP with differential expression between 

HAD and LAD rats (Lo et al., 2016). Glutamate (Glu) and GABA are key neurotransmitters 

mediating ethanol drinking behavior. Therefore, it is noteworthy that the Glu transporter gene, 

Slc25a12, is common in both the AD-ASE and ADL-ASE sets of identified genes. Similarly, 

another glutamate transporter gene, Slc1a1, was significantly altered by AD, and the GABA 

transporter gene, Slc6a7, was significantly altered by ADL (Table 2). 

Of equal importance was the observation of homologous genes with similar function in 

these gene sets, even though these genes may not have had the same name per se. This is 

exemplified by findings of significant ASE differences in ion channel genes including (a) 

potassium channels (Kcng4 was changed by AD, and Kcnc3, Kcnab2, Kcnf1 were altered by 

ADL), (b) sodium channels (Scn8a was changed by AD; while ADL mediated Scn2a, Scn9a 

changes), and (c) calcium channels (Cacna1a and Cacna1g was changed by AD; while Cacnb1 

was changed by ADL, see Table 2). These ion channels serve important functions in neuronal 
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function and transmission. Similarly, homologous genes were found in ATP-related genes (e.g., 

Atp2a2 and Atp2b2 were changed by AD; while Atp1a2, Atp2a2, Atp2b2, Atp2b3, Atp8a1 were 

change by ADL) as well. Regarding the ATPases, changes in Atp8a1 expression levels in the 

hippocampus have been associated with altered synaptic strength, electrical activity, and 

autistic-like behavior (Kerr et al., 2016). Therefore, it is noteworthy that the current findings 

indicate that cis-acting factors contributing to ASE (whether influenced by alcohol access or by 

alcohol drinking level) are not necessarily limited to a single transcriptome, but may also affect 

homologous transcriptomes in a respective functional category. These homologous 

transcriptomes may reflect gene families with alternative combinations of subunits, or isoforms in 

the proximal loci vicinity. We propose that this is an example of functional genetics, which is an 

area of study warranting further work.  

The AD- and ADL-induced effects on ASE of epigenetic-associated genes was another 

novel finding from this study (see Table 2). These epigenetic-related genes included histone 

methyltransferase activity (SetD2, SET domain containing 2 for histone 3; and Kmt2e, 

lysine-specific methyltransferase 2E, which were altered by AD); histone deacetylation (Sirt2, 

sirtuin 2 was altered by ADL); and acetyl binding protein (Brd4, bromodomain 4 which was 

altered by AD). Importantly, these epigenetic-related genes further regulate transcription, for 

example cap methyltransferase 1 (Cmtr1) increases levels of mRNA translation, a histone 

variant, H2afy, represses transcription, and DEAD/H box helicase 11 (Ddx11) regulates 

translation initiation, splicing, as well as ribosome and spliceosome assembly. These data not 

only indicate that alcohol affects the transcriptome of epigenetic-related genes, but also suggest 

that these epigenetic genes may subsequently affect the transcription of other genes.  Other 

functional categories in the AD- and ADL-affected ASE gene sets included synaptic 

neuroplasticity and adaptation, as well as genes associated with inflammation and stress activity 

with possible roles in alcohol-associated negative reinforcement (see Table 2).  
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Potential Mechanism of Alcohol on ASE 

An ASE gene is identified when one allele is differentially expressed over the other, which 

can only be attributed to a cis-acting regulatory factor. A trans-acting factor would not 

differentially affect which allele was expressed, but rather the extent to which both alleles were 

expressed. The present study was not designed to identify trans-acting factors. Therefore, our 

discussion will focus on cis-acting regulatory factors. A cis-acting regulatory factor can be directly 

impacted by an environmental stimulus or by another cis-acting factor further upstream in the 

regulatory process. Such upstream regulatory factors can, in turn, also be influenced by 

environmental stimuli, such as alcohol drinking. Furthermore, alleles can be silenced due to 

methylation in the gametes passed on by one parent or the other (i.e., imprinting).  

The ASEs identified in the present study were likely due to a complex interaction between 

(a) genomic SNPs in the regulatory regions (promoter, enhancer, insulator and junctional region 

between intron and exon), (b) innate (inherited) differential epigenetics (e.g. imprinting as a result 

of DNA methylation), and/or (c) acquired epigenetics such as those, at least in part, induced by 

alcohol drinking. Regarding the first possibility, since the parental genome has been previously 

identified (Lo et al., 2016), we have identified 28 (14 from AD and 14 from ADL) ASE genes that 

have regulatory SNPs, which may influence ASE transcription (S4 Table). Regarding the second 

(innate epigenetics: including inheritable imprinting) possibility, we found a few ASE genes [e.g. 

Sphingomyelin Phosphodiesterase 1 (Smpd1), nucleosome assembly protein 1-like 5 (Nap1l5)] 

meeting these criteria. This strongly suggests that many of the remaining ASEs were influenced 

by the third possibility, an environmental factor presumably alcohol, within the generation 

exposed to alcohol. Importantly, within the environmental factor of alcohol consumption (i.e., 

AD), ASE was affected by ADL as well. Overall, these findings support our contention that ASE is 
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relatively common among non-imprinted autosomal genes. An important future direction will be 

to determine if the variant imbalances observed in the above functional categories can be 

transmitted across generations, which would add a third layer of inquiry to the 

gene-by-environment interactional effect on alcohol-drinking behavior.  

 

Gender and Parental Origins of ASE Effects 

The current study also revealed a significant effect of sex on ASE, such that ~3500 SNPs 

were associated with ASEs of roughly 2000 genes (FDR < 0.001). Alcohol also interacted 

significantly with this sex effect, although the mechanism for this interaction is unknown and 

needs further investigation. A number of these ASE genes have SNPs in regulatory regions i.e., 

in the promoter region of the parental gene (e.g. St5, Snrk, Itgb1bp1, Trappc9, Abhd16a, Kcnf1) 

(Lo et al., 2016). These parental SNPs may serve as cis-acting regulators. Thus, alcohol may 

affect the regulatory regions, which in turn affects sex-modulation of these ASE genes. For 

example, Kcnf1, a voltage gated potassium (Kv) channel regulates neurotransmitter release, 

neuronal excitability, heart rate, insulin secretion, and smooth muscle contraction; in addition, 

and importantly it is also a signature SNP between the HAD and LAD rat lines (Lo et al., 2016). 

Interestingly, there were five sex-modulated ASE sites associated with Trappc9, which encodes 

a protein that likely plays a role in NF-kappa-B signaling. Mutations in Trappc9 have been 

associated with autosomal-recessive mental retardation (Mir et al., 2009). In addition, Trappc9 

has been implicated in ethanol-associated effects (Mulligan et al., 2006, Ponomarev et al., 2012). 

Another sex-affected gene, Abhd16a, is within the human major class III histocompatibility 

complex region and interacts with cyclooxygenase-2 (Cox-2) (Turcotte et al., 2017) as well as 

Abhd12 and associated with lipopolysaccharide (LPS)-induced cytokine production (Kamat et al., 
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2015). Regarding this, the Trappc9 and Abhd16a proteins as well as NF-kappa-B signaling are 

commonly associated with neuroinflammation (Kim, 2015).  

The present study also found that a paternal versus maternal predisposition for excessive 

alcohol drinking (i.e., a HAD rat) was a significant determinant of about 700 ASE genes (in the 

combined set of AD- and ADL-associated genes). Thus, paternal versus maternal alcoholics may 

differentially affect transcription through ASE genes. Importantly, this parallels findings from 

human studies (Morgan et al., 2010, Coffelt et al., 2006) suggesting parental sex-related 

influences on phenotypic (e.g. psychiatric disorders) expression. Overall, these findings (e.g. 

common loci, genes, and functional categories between the AD-ASE and the ADL-ASE gene 

sets) suggest that alcohol-induced ASEs are significantly affected by a paternal vs maternal 

genetic predisposition to develop AUDs and this has the potential to alter subsequent 

transcriptional activity.  

The cause of differential effect of paternal or maternal origin is unclear.  DNA methylation 

may be attributed to parental origin since the F1s of either line share the same genetic 

information at those loci, irregardless of parental origin.  Thus, the allelic expression difference 

in the reciprocal crossed F1s is a very interesting but more complex phenomenon than it first 

appears.  Besides differential imprinting (inherited methylation) between maternal and paternal 

loci, there is also evidence that the C/G SNPs between parents, in promoter regions, can also 

influence methylation patterns in adjacent regions. 

 

Summary 

Although ASEs are widespread across the genome (Palacios et al., 2009), alcohol’s 

influence on allele-specific expression has not been systematically investigated. A recent report 

indicated prenatal alcohol exposure altered maternal ASE of Iodothyronine Deiodinase 3 (Dio3) 
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and insulin-like growth factor 2 (Igf2) genes (Tunc-Ozcan et al., 2017). Also, a human study 

investigating the association between alcohol dependence and the gamma 3 GABA receptor 

subunit, GABRG3 revealed multiple SNPs in the GABRG3 gene (Dick et al., 2004). The SNPs in 

GABRG3 may be in the cis-acting regulatory factors that influence ASE, but this will require 

further investigation. The present finding of an imbalance in parental allele expression suggests 

that there is a high level of cis-acting regulation within this animal model of alcoholism. In 

addition, the present ASE findings indicated that there are significant contributions from the 

genetic variants observed between the HAD vs LAD animal model of genetic predisposition (Lo 

et al., 2016) that can be associated with alcohol drinking behaviors (Bell et al., 2017, McBride et 

al., 2014). Furthermore, the present study showed alcohol-drinking, including level of intake, 

influenced ASE. This supports the hypothesis that a gene-by-environment interaction mediates, 

at least in part, AUDs; and, in fact, suggests a third dimension of influence that could be depicted 

as an environment-by-gene-by-environment interaction. Both sex-of-progeny and parental 

genotype/phenotype (i.e. HAD vs LAD) affected ASE, and this effect also interacted with the 

effects of alcohol drinking (AD and ADL). In summary, the causes of the observed differences in 

ASE will require further research, but the present findings suggest that (1) parental genomic 

structure, (2) inheritable allelic specific expression, (3) sex-of-progeny, and (4) epigenetic 

alterations induced by alcohol drinking are major potential factors influencing a predisposition for, 

and/or the development of, AUDs. Our sequencing of the parental genome provides the 

addiction field of research with important opportunities to determine whether epigenetic changes 

have occurred in the cis-acting elements of these identified ASE genes. 
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Figure Legends 

 

Fig. 1. Examples of the Alcohol Drinking Level (ADL) associated with changes of allelic 

proportion. (A) Example of allelic imbalance in the Sorting nexin 17 (Snx17) gene 

(Chr6:26543926). The reference allele of this SNP is C, while the alternative allele is T, and 

changing in the DNA sequence results in missense mutation from Glycine (GGA) to Arginine 

(AGA) at the 168 protein position. Additionally, this SNP is at a splice donor site, which could 

affect alternative splicing. (B) Second example of ASE in the SPHK1-interactor, AKAP domain 

containing (Sphkap) at chr9: 89072920. This SNP is a missense variant, which changes from 

Glycine (GGG) to Valine (GTG) at the 765 protein position. Allelic proportion was calculated as 
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the number of SNP reads of the non-reference allele over the total number of reads at that 

position. 

 

Fig. 2. Comparison of AD-ASE and ADL-ASE genes. (A) Venn diagram shows the number of 

genes containing significant ASE at FDR 5%. There are ~27% common (65) genes between 

AD-ASE (246 genes) and the ADL-ASE (228 genes). (B) Venn diagram showing the number of 

significant ASE by positions at FDR 5%. There are 316 and 338 unique ASEs in AD and ADL 

respectively, and 53 ASEs (in 50 genes with same loci) shared between the two (about 1 out of 

6). Combined, Figure 2 shows that among the 65 genes common to AD and ADL, 50 of these 

genes have the same ASE loci.   

 

Fig. 3. Distribution of ASE SNPs throughout chromosomes.  (A) The distribution of AD-ASE 

SNPs: the effect of Alcohol Drinking was plotted based on the “LL” value along chromosomes 1 

to 20 and X. The red line at 3.355 indicating the cutoff for significance at FDR<0.05. “LL” is the 

negative of the log likelihood of the significance level (p) and was calculated using the formula 

given in (Armitage et al., 2001). 

 (B) The distribution of ADL-ASE SNPs plotted as of Alcohol Drinking Level. The red line at 

3.324 indicating the cutoff for significance at FDR<0.05. 
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Table 1. ASE Exon SNPs as function of alcohol 

 Total SNPs Significant signature 

at FDR 5% 

# of genes 

ASE: As effect of AD 41,096 369 310 

ASE: As effect of ADL 41,099 391 293 
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Table 2. Summary of Alcohol-Related ASE Genes. 

Biological functions By Alcohol Drinking (AD) By Alcohol Drinking Level (ADL) 

Acetaldehyde 

Metabolism 

Aldh2 (aldehyde dehydrogenase 2)   

Hormone Receptor Nr3c1 (GR, glucocorticoid receptor) Trip12, Thrb (thyroid hormone receptor) 

Neurotransmitter 

Receptor 

Cckbr (cholecystokinin B receptor) Cckbr (cholecystokinin B receptor) 

Chrm1 (muscarinic cholinergic receptor), 

Sstr3 (somatostatin receptor) 

Neurotransmitter 

Transporter 

Slc25a12 (glutamate/aspartate transporter), 

Slc1a1 (glutamate transporter) 

Slc25a12, Slc6a7 (GABA transporter) 

Ion Channel Kcnc3, Kcnab2, Kcnf1 (potassium channel); 

Scn2a, Scn9a (sodium channel); Cacna1a, 

Cacna1g (calcium channel) 

Kcng4 (potassium channel), Scn8a (sodium 

channel), Cacnb1 (calcium channel)  

Epigenetics SetD2 (SET domain containing 2), Brd4 

(bromodomain), Kmt2e (lysine-specific 

methyltransferase 2E); Ddx11 (DEAD/H box 

helicase 11), H2afy (H2A histone variant) 

Sirt2 (sirtuin 2), Cmtr1 (cap 

methyltransferase 1) 

Inflammatory or Stress 

Activity 

Hsbp1 (heat shock binding protein), Hspa12a 

(heat shock protein), Irak3, Il34 (interleukin) 

Atg12 (autophagy related 12), Cd84, 

Cyp2j10, (cytochrome P450), Coa5 

(cytochrome) 

Synaptic Function Camsap2 (calmodulin-regulated 

spectrin-associated protein 2), Unc13a (unc-13 

homolog A), Sntb1 (syntrophin; beta 1) 

Rims1(regulating synaptic membrane 

exocytosis 1), Syngr3 (synaptogyrin 3), 

Nfasc (neurofascin) 

ATP-Related Atp1a4 (ATPase; Na+/K+ transporting), 

Atp2a2, Atp2b2 (ATPase; Ca++ transporting), 

Atp1a2 (ATPase; Na+/K+ transporting), 

Atp2a2, Atp2b2, Atp2b3 (ATPase; Ca++ 
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Atpaf1 (ATP synthase assembly factor) transporting), Atp8a1 (ATPase), Abcg3l3 

(ATP-binding cassette) 

  

 

Table Legends 

Table 1. The number of significant signature and genes revealed as a function of Alcohol 

Drinking (AD) and Alcohol Drinking Level (ADL).  

 

Table 2. Examples of alcohol-related ASE genes identified by Alcohol Drinking (AD), and Alcohol 

Drinking Level (ADL). These genes were categorized by biological functions (column1).   

 
 

 

  



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

 

 
 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

 


