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ABSTRACT

Integrative Gene-set, Network and Pathway Analysis
(GNPA) is a powerful data analysis approach devel-
oped to help interpret high-throughput omics data.
In PAGER 1.0, we demonstrated that researchers can
gain unbiased and reproducible biological insights
with the introduction of PAGs (Pathways, Annotated-
lists and Gene-signatures) as the basic data rep-
resentation elements. In PAGER 2.0, we improve
the utility of integrative GNPA by significantly ex-
panding the coverage of PAGs and PAG-to-PAG re-
lationships in the database, defining a new met-
ric to quantify PAG data qualities, and developing
new software features to simplify online integra-
tive GNPA. Specifically, we included 84 282 PAGs
spanning 24 different data sources that cover hu-
man diseases, published gene-expression signa-
tures, drug–gene, miRNA–gene interactions, path-
ways and tissue-specific gene expressions. We in-
troduced a new normalized Cohesion Coefficient
(nCoCo) score to assess the biological relevance of
genes inside a PAG, and RP-score to rank genes and
assign gene-specific weights inside a PAG. The com-
panion web interface contains numerous features to
help users query and navigate the database con-
tent. The database content can be freely downloaded
and is compatible with third-party Gene Set Enrich-
ment Analysis tools. We expect PAGER 2.0 to become
a major resource in integrative GNPA. PAGER 2.0
is available at http://discovery.informatics.uab.edu/
PAGER/.

INTRODUCTION

In a biological system, multiple genes and proteins regulate
in concert to exert specific processes (1–3). To study and de-
cipher these complex biological systems, high-throughput
technologies such as microarray, next-generation sequenc-
ing and mass spectrometry are routinely used to generate
measurements of gene and protein activities at genomic
and proteomic scale, respectively. The straightforward anal-
ysis is to perform candidate gene analysis to identify sta-
tistically significant genes or proteins that are differentially
expressed from these ‘omics’ datasets. However, the chal-
lenge from the candidate analysis is the interpretation of re-
sults. Alternatively, the ‘Gene-set, Network, and Pathway
Analysis’ (GNPA) provides an unbiased approach to ana-
lyze the ‘omics’ datasets (2). GNPA addresses many of the
candidate gene analysis with high reproducibility, model ro-
bustness and data interpretability.

Gene Set Enrichment Analysis (GSEA), first introduced
to perform a particular variant of GNPA, has revolution-
ized the data analysis and interpretation of high-throughput
omics data (4,5). Accompanying GSEA is the development
of Molecular Signature Database (MSigDB) (6–8), which
introduced the ‘gene-set’ concepts for GNPA. Inspired by
GSEA, many computational tools have been developed
over the years to perform GNPA over omics data (2,9).
Similarly, various gene signature databases including Gen-
eSigDB (10) and PAGER 1.0 (11) have been developed to
incorporate new biological knowledge into GNPA. How-
ever, current gene-sets or molecular signatures reside across
highly heterogeneous data sources; moreover, these data do
not readily capture molecular relationships/context infor-
mation. This has made GNPA today still a fairly ‘hit-or-
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Table 1. Statistics of PAGER 2.0 as compared to PAGER 1.0

PAGER 1.0 PAGER 2.0 Increase ratio

Genes in PAGs 44 313 65 774 148%
Gene–gene relationships 115 840 601 164 518%

PPI 93 713 579 037 617%
Gene Regulation 22 127 22 127 100%

PAG 38 379 84 282 219%
Singleton (n = 1) 19 772 27 206 137%
Regular (n > 1) 18 607 57 076 306%

with CoCo scores (n > 1) 14 701 42 048 286%
with CoCo score ≥ 1 13 856 15 028 108%

PAG-to-PAG pairs
m-type (V1:logPMF > 5 V2:logCDF > 10) 3 101 499 7 418 174 239%
r-type (V1:PMF < 0.05 V2:CDF < 0.05) 72 824 120 101 164%

sPAG to mPAG 7250 28 744 396%
mPAG to mPAG 39 253 83 741 213%
mPAG to sPAG 2479 4613 186%

Table 2. An example of comparing the PAG quality using nCoCo score

PAG Id Type PAG name PAG size Theoretical PPI PPI CoCo nCoCo

WIG001980 P Non-homologous end joining 6 15 13 88 1153
WIG001424 P Actin Nucleation and Branching 101 5050 612 2094 130

miss’ analysis––a laborious process requiring manual eval-
uations (2,12–15).

To overcome these challenges, we previously devel-
oped PAGER, a novel and comprehensive database in-
frastructure by integrating PAGs––a new unified data
structure to represent heterogeneous Pathways (P-type),
Annotated-lists (A-type) and Gene-signatures (G-type)
(11). In PAGER 1.0, we compiled 44 313 genes from five
different species including human, 38 663 PAGs, 324 830
gene–gene relationships and 3 174 323 PAG-to-PAG reg-
ulatory relationships. We also developed a cohesion mea-
sure called Cohesion Coefficient (CoCo) to assist users in as-
sessing the biological relevance within each PAG. However,
there are several limitations, including inadequate PAG cov-
erage, lack of functional information and impact of genes in
the PAGs, and lack of molecular interaction/regulation de-
tails inside PAGs.

In PAGER 2.0, we provide a major update for PAGER
to provide substantially expanded PAG data coverage, a
new normalized quality score metric called nCoCo to as-
sess the biological relevance of genes inside each PAG, and
a new user-friendly interface to help users perform integra-
tive GNPA queries. The new PAGER 2.0 contains 84 282
PAGs, 601 164 gene–gene relationships, and 7 538 275 PAG-
to-PAG relationships. The PAGs were derived from 24 dif-
ferent data sources that cover, for example, human diseases,
published gene expression signatures, known gene lists af-
fected by shared drugs, pathways, shared miRNA–gene in-
teraction targets, tissue-specifically co-expressed genes and
all genes sharing common protein functional annotations.
The new normalized CoCo score (nCoCo) employs poly-
nomial regression models to correct for the PAG size bias,
which was not considered in the original CoCo score. To
assist users in prioritizing genes in the PAGs, we inte-
grated the functional gene–gene interaction data from the
recently published HAPPI-2 database (16) to generate a
gene ranking score (RP-score) (17) based on the biologi-
cal context-specific study. We also provided literature evi-

dence link wherever the gene was found in the context of
the PAGs descriptions as reported in PubMed literature.
Finally, we improved the web portal for easy navigating,
querying, and downloading the PAGER 2.0 database. We
intend for PAGER 2.0 to become a major resource for re-
searchers interested in integrative GNPA.

MATERIALS AND METHODS

Collections of PAGER 2.0 data sources

PAGER 2.0 consists of 24 data sources, 14 data sources are
inherited from the PAGER 1.0 and 10 are new data sources.
PAGER 2.0 now covers data sources from diseases (GAD
(18), GWAS Catalog (19), PheWAS (20)), gene expres-
sion signatures (MSigDB (7), GeneSigDB (10), Immune-
SigDB (21)), drug–gene interactions (PharmGKB (22),
DSigDB (23)), pathways (SPIKE (24), WikiPathways (25),
Human Pathway Database HPD (26), including HPD–
Reactome (27), HPD–BioCarta (28), HPD–PID (29),
HPD–KEGG (30)), miRNA–gene interactions (microcosm
Targets (31), TargetScan (32), miRTARbase (33)), tissue-
specific gene expression (NGS Catalog (34), GTEx (35)),
functional annotations (Gene Ontology Annotions (36)),
genes (Genome Data) and proteins (Protein Lounge: http:
//www.proteinlounge.com/Pathway, Pfam (37), Isozyme
(38)). The number of PAGs extracted and integrated in
PAGER 2.0 is listed in Table 1.

Normalized CoCo score calculation

We previously developed CoCo score (a Correlation Co-
efficient derived from the measure of statistically signifi-
cant coverage of gene–gene functional correlations in gene
pairs or gene trios), a quality metric to measure PAGs in
PAGER 1.0. However, the limitation of the CoCo score is
it does not consider the PAG size. Here, we improve the
CoCo score to a new PAG size-normalized quality metric.
The new score––nCoCo rescales the original CoCo scores

http://www.proteinlounge.com/Pathway
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Figure 1. Distribution of the PAG size from 22 data sources. The color indicates the PAGs size distribution from 22 different sources. The MsigDB includes
the ImmuSigDB and the Genome Data has not shown since the size is equal to 1.

based on polynomial regression models to eliminate the
PAG size bias (see Supplementary Methods for details). The
nCoCo score allowed to compare the PAG quality indepen-
dent of the PAG size shown in Table 2. We have presented
an example of the comparison of the nCoCo score between
PAG WIG001980 ‘Non-homologous end joining’ and PAG
WIG001424 ‘Actin Nucleation and Branching’. The result
showed that the PAG WIG001424’s CoCo score is higher
than the PAG WIG001980’s CoCo score due to the size ef-
fect (6 versus 101). And in the nCoCo score comparison,
we were able to explore that quality of PAG WIG001980
is much higher than PAG WIG001424 since the protein–
protein interactions (PPIs) of the PAG WIG001980 reached
to the upper limit (13 out of 15).

Gene prioritization within PAGs

We used the RP-score gene prioritization algorithm initially
reported in (17) to rank the gene prioritization involved with
prior knowledge along with PAG information. The concept
of a PAG is the gene membership with a certain context. The
genes organized in the group are always considered as car-
rying out some certain function or disease gene signature.
The quality of the group is measured by the gene–gene in-
teractions in the group. Our RP-score rank utilizes the PAG
and the gene–gene interactions to rank the genes based on
the gene weight calculated in the PAG and the frequency the
genes appear in the PAGs (see Supplementary Methods for
details).

Literature support of the gene members in the PAGs

To support the gene members in the PAGs, we performed
biomedical literature mining using the PubMed corpus. We
employed GNormPlus (39) to normalize the gene names
from literature. For each gene in the PAG, we used the En-
trez Programming Utilities (40) to query the gene names
together with the PAG name. Using the E-utilities, we re-
trieved all the PubMed IDs related to both the PAG and
the genes. We annotated the sentences containing the gene
names in these articles as literature support for the gene
members in the PAGs.

Database and web portal implementation

We used PHP5, Javascript and Codeigniter version 2.1.3
(https://codeigniter.com/) as the web presentation frame-
work and Oracle 12g as the backend database. Real-time
calculation of hypergeometric cumulative distribution func-
tion (CDF) was implemented with PDL (https://github.
com/php-math/PDL), a PHP library for statistics. Cy-
toscape.js (http://js.cytoscape.org), an open-source graph li-
brary, and jQuery were used to visualize gene and PAG net-
works. D3.js (http://d3js.org/) was used to perform matrix
visualizations. DataTables, a plugin for jQuery was used for
displaying the tables and enabling download.

https://codeigniter.com/
https://github.com/php-math/PDL
http://js.cytoscape.org
http://d3js.org/
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Figure 2. Comparisons of PAGER 2.0 nCoCo distribution and PAGER 1.0 nCoCo distribution. (A) The cumulative percentage of nCoCo score in PAGER
1.0 and PAGER 2.0. The gray line is the nCoCo score of PAGER 1.0 and the black line is the nCoCo score of PAGER 2.0. The dash line indicates the cross
point of the nCoCo score of PAGER 1.0 and PAGER 2.0 at PAG size = 128 and cumulative percentage = 0.50. (B) PAGER 1.0 nCoCo distribution. The
bin size is in increments of 20.2 to form the range of [2x,2x+0.2]. x ranges from 0 to 16. (C) PAGER-2.0 nCoCo distribution. The pie-chart shows the nCoCo
bin of [26.8,27].

DATABASE CONTENT AND WEB INTERFACE

Overall statistics of data in PAGER 2.0

The statistics show that PAGER 2.0 has significantly in-
creased the coverage of the PAGs and PAG-to-PAG rela-
tionship in Table 1. In brief, PAGER 2.0 contains 65 774
genes in 84 282 PAGs, which contains 601 164 gene–gene
relationships and 7 418 174 PAG-to-PAG pairs. The regular
PAGs (PAG size > 1) fold change is 3.06. After the nCoCo
score filtering (nCoCo > 1), the PAGs fold change is 2.86.
The m-type PAG-to-PAG relationship fold change is 2.39.
The m-type PAG-to-PAG relationship fold change is 1.64.
Among the r-type PAG-to-PAG relationship, the sPAG-
to-mPAG relationship fold change is 3.96, the mPAG-to-
mPAG relationship fold change is 2.13, and the mPAG-to-
sPAG relationship fold change is 1.86. This represents a sub-
stantial improvement in terms of size and coverage of PAGs
and PAG-to-PAG relationships from the previous version.

Statistics of the PAGs in PAGER 2.0

To evaluate the statistics of PAGs integrated into PAGER
2.0, we investigated the distribution of the PAG sizes in

PAGER 2.0. The peak at the PAG size of 200 in the PAG
size distribution shown in Figure 1 indicates that there are
specific sources that have contributed toward the inflation.
Most of the PAGs (44.1%) with size = 200 are contributed
by MSigDB. Since MSigDB is a human-curated gene sig-
nature database for diseases, the PAG size has a preference.
The PAG size distribution is grouped by the PAG type and
the derivation method is shown in Supplementary Figure
S1, and the identifier of the PAG is shown in Supplemen-
tary Table S2.

To evaluate the biological relevance of each PAG in
PAGER 2.0, we computed the nCoCo score for all the PAGs
in PAGER 2.0 and compared with PAGER-1.0. The nCoCo
score calculation distribution is shown in Supplementary
Figure S2. In the comparison of the frequency of nCoCo
score from PAGER 1.0 and PAGER 2.0 in Figure 2, the dif-
ference between PAGER 1.0 and PAGER 2.0’s nCoCo score
below the 50% is not significant (0.014 ± 0.010) and simi-
larly not significant when comparing the difference between
PAGER 1.0 and PAGER 2.0’s nCoCo score above the 50%
(0.057 ± 0.032). The break point of the frequency change is
due to the inflated nCoCo score = 128 shown in Figure 2C.
The major sources of the nCoCo score bin of size ranging
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Figure 3. PAGER 2.0 Web Interface. (A) The refined result page search-
ing by keyword. (B) The overall of retrieved PAG results by using a list of

from 26.8 to 27 in PAGER 2.0 are from DSigDB (48.1 %)
and GO term (29.1%). Since the PAGs of DSigDB and GO
term consists of functional biological biomarkers, the qual-
ity of the PAG is relatively good as the score is concentrated
in the bin of size ranging from 26.8 to 27.

After calculating the nCoCo score at the cumulative per-
centage of 50% (CP50), the quality of the 10 new sources
in PAGER 2.0 has been compared with the overall quality
of PAGER 2.0 in Supplementary Figure S3. The source’s
nCoCo score at CP50 indicates the quality of PAGs from the
source. A relative larger nCoCo score at CP50 suggests the
distribution of nCoCo is right-skewed. Therefore, the PAGs
from DSigDB, Isozyme, GO term and Pfam above the base-
line (nCoCo score at CP50 is in the between of 64 and 128)
indicate the gene members in the PAGs from these four
sources have relatively high interactions and trios. nCoCo
score cumulative percentage grouped by type is shown in
Supplementary Figure S4.

The Supplementary Figure S5 shows the power-law dis-
tributions of the m-type PAG-to-PAG relationship and the
r-type PAG-to-PAG relationship. This indicates that the m-
type PAG’s regulatory network CDF score and the r-type
PAG’s regulatory network CDF score are strong metrics to
stratify the quality level of the m-type PAG-to-PAG rela-
tionship and the r-type PAG-to-PAG relationship.

PAGER 2.0 web interface and user case examples

Users can query the PAGER 2.0 database via the web portal
by using the ‘Basic Search’ or ‘Advanced Search’ options.
For the ‘Basic Search’, users can query PAGs related to a
gene, protein, miRNA, drug or disease. The ‘Basic Search’
results will return a list of PAGs related to the query. For the
‘Advanced Search’ option, users can query a list of genes to
retrieve the most similar PAGs in the database.

To illustrate a use case example, we assume that a user is
interested in finding PAGs that are related to ‘Non-Small
Cell Lung Cancer’. The user can enter the keyword ‘Non-
Small Cell Lung Cancer’ in the search box of PAGER 2.0,
and the refined result page shows the relevant result by
direct matching with the PAG’s name, matching with the
PAG’s description in Figure 3A. In this example, there are
47 PAGs retrieved by matching with the names and 40 PAGs
retrieved by matching with the descriptions. The user can
click the PAGs to see the PAG detail’s page. This feature al-
lows user to quickly retrieve the relevant PAGs from differ-
ent omic-levels (e.g. GWAS catalog PAGs show genetic vari-
ations, KEGG PAGs provide pathways and MSigDB PAGs
present gene expression signatures) about the disease. An-
other example is a user can query a list of genes in PAGER
2.0 to identify related PAGs with the query. In Figure 3B,
a list of 94 genes related to ‘Non-Small Cell Lung Can-
cer’ was used as the query for the ‘Advanced Search’ op-
tion. We set up the parameter ‘the type of PAG’ as ‘all’, ‘the

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
genes relevant to Non-Small Cell Lung Cancer. Statistical parameters and
nCoCo score for filtering the results. (C) Results of the PAGs related to the
query of genes relevant to Non-Small Cell Lung Cancer. (D) The m-type
and r-type PAG-to-PAG relationships, (E) Visualization of the m-type and
r-type PAGs networks and PAG-to-PAG similarity matrix.
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Figure 4. The r-type PAG-to-PAG’s network of NSCLC study. The nodes represent the PAGs. The width of the edges denotes the score of r-type PAG-
to-PAG’s relationship. The node color represents the -log2(FDR) value of the PAGs in the NSCLC enrichment analysis. The size and shape of the nodes
represent the degree and the type of PAGs, respectively.

size of PAGs’ as ‘[2–1000]’, ‘the similarity score’ ≥ 0.1, ‘the
number of overlapping genes’ as ‘>1’, ‘the cohesion score’
≥100, ‘FDR’ ≤ 0.05. Figure 3C shows the results of this
query, where 500 PAGs (332 P-type + 25 A-type + 143 G-
type) were returned. The results page also contains all the
m-type and r-type PAG-to-PAG relationships (Figure 3D).
The user can further filter the list of the results by refin-
ing the parameters (e.g. FDR, P-value, nCoCo scores, PAG
size) tailored to their biological question and context. Fi-
nally, we also provide visualization options for the users to
explore the PAG-to-PAG relationships in networks or ma-
trix formats (Figure 3E). This visualization feature can as-
sist user to navigate the PAG networks, and potentially un-
cover new insights and generate novel hypothesis through
investigate the co-memberships of PAGs in the upstream
and downstream networks. For example, in the NSCLC
query, we were able to find the PAG:WAG000515 ‘RAF
phosphorylates MEK’ as the largest hub PAG in the r-type
PAG-to-PAG’s network (Figure 4). Moreover, investigation
of MEK inhibitors as the treatment for KRAS-mutant and
BRAF-mutant NSCLC are actively studied in multiple clin-
ical studies (41–44). In the advance search option, we could
also retrieve the drugs that are highly relevant to the disease
by searching the PAG term from DSigDB. In the example of
the 94 ‘Non-Small Cell Lung Cancer’ gene list, we were able
to find the drug ‘Gefitinib’ with FDR = 2.43e-26. Gefitinib
is the FDA approved drugs for EGFR mutant non-small
cell lung cancer patients. See USER MANUAL in the Sup-
plementary File for details on using the PAGER 2.0 web
interface.

Gene prioritization using RP-score

To illustrate the new intra-PAG gene prioritization feature
in PAGER 2.0, we used the PAG named ‘Non-Small Cell
Lung Cancer (NSCLC)’ (ID = WAG000379) as an example.
Figure 5A shows a result of the top 10 genes (colored in red)
with the size drawn in proportion to their RP-scores calcu-
lated in this PAG. Since the RP-score may incorporate ei-
ther direct or indirect PPI information, genes such as EGFR
and AKT1 that are positioned upstream of the NSCLC
signaling cascades, which includes EGFR, RAS/MAPK
and AKT/PI3K pathways, gained higher scores than other
genes positioned downstream of the NSCLC signaling cas-
cades. In Figure 5B, we show a network visualization plot,
which we draw using the Cytoscape software version 2.83
with the data exported from PAGER 2.0 query results. The
network visualization enables the user to gain insights on
functionally significant genes within a PAG.

Download of results and data availability

For every query performed, users can customize the results
(columns) of interest in the PAG result page. The results can
then be downloaded in common formats, including flat files
(comma separated), Excel, and PDF. In addition, we also
provide users the option to download the entirety of PAGs
in PAGER 2.0 as a GSEA gene set (.gmt) file. The .gmt file
format can be directly imported into GSEA to execute the
program. Similarly, we allow bulk download of all PAG’s
information, PAG-to-PAG relationship and gene–gene re-
lationship contains in PAGER 2.0.
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Figure 5. Gene prioritization with RP-score. (A) Top 10 genes in the ‘Non-Small Cell Lung Cancer’ PAG WAG000379 ranked by RP-score. (B) Genes
with high RP-score (colored in red) are tightly connected in the protein–protein interactions. The size of the nodes represents the RP-score, and the width
of the edges represents the confidence score for the protein–protein interactions as obtained from HAPPI-2 database source.

New features of PAGER 2.0

The summary of the new features of PAGER 2.0 is in Ta-
ble 3. We have implemented four content updates and four
functional updates in PAGER 2.0.

CONCLUSION

Genes act in concert to drive various biological processes in
a complex biological system. High-throughput omics tech-
nologies are generating measurements for these biological
systems at an unprecedented pace. GNPA provide a power-
ful approach to analyze and interpret these ‘omics’ datasets
to reveal the underlying molecular mechanisms of gene–

gene interactions. To facilitate and support GNPA methods,
we have developed PAGER 2.0, a comprehensive database
that integrates heterogeneous gene-sets, molecular signa-
tures, and pathway/network modules into a unified frame-
work. In PAGER 2.0, we extended the concepts of PAGs
and imported new PAGs from 10 sources that increased the
amount of PAGs by almost three times. The significant im-
provement in heterogeneous PAGs definition can assist re-
searchers in acquiring comprehensive insight (diseases, gene
expression signatures, drug, miRNA, gene, protein, path-
ways, functional annotation, tissue-specific expression) of
GNPA. The m-type and r-type PAG-to-PAG relationships
have been increased by four times. The increased coverage
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Table 3. New features in PAGER 2.0

New features in PAGER 2.0

Contents • Gene prioritization in PAGs
• Evidence of gene member in PAGs supporting from PUBMED
• m-type and r-type PAG-to-PAG relationship detail, gene–gene interaction and gene–gene regulation in PAGs
• New PAGER 2.0 GMT file for GSEA

Functions • Bulk download of PAG’s information, PAG-to-PAG relationship, and gene–gene relationship
• Marks the suspected PAGs with comments and submit to our system for curation
• Uploading system updates: supports file uploading
• Search button to filter the content in the results

of PAG-to-PAG relationships provides the comprehensive
linking between the omics data. The new PAGs’ quality
measurement, the nCoCo score is designed for assessing the
biological relevance, and gene ranking score (RP-score) is
developed to rank the gene member in PAGs, which raises
researcher’s interests on network analysis level. The nCoCo
score and gene prioritization enable the user to filter the
genes in GPNA. In summary, we have updated PAGER 2.0
with new features and data (PAGs coverage and size) that
could help users to gain more significant and quantitative
biological insights in analyzing their omics datasets. We be-
lieve PAGER 2.0 will be a powerful tool and data resource
that facilitates the use of GPNA in various omics data and
network biology studies.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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