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Chenghao Chu

MODELING LONGITUDINAL DATA WITH INTERVAL CENSORED

ANCHORING EVENTS

In many longitudinal studies, the time scales upon which we assess the primary out-

comes are anchored by pre-specified events. However, these anchoring events are

often not observable and they are randomly distributed with unknown distribution.

Without direct observations of the anchoring events, the time scale used for analysis

are not available, and analysts will not be able to use the traditional longitudinal

models to describe the temporal changes as desired. Existing methods often make

either ad hoc or strong assumptions on the anchoring events, which are unverifiable

and prone to biased estimation and invalid inference.

Although not able to directly observe, researchers can often ascertain an in-

terval that includes the unobserved anchoring events, i.e., the anchoring events are

interval censored. In this research, we proposed a two-stage method to fit commonly

used longitudinal models with interval censored anchoring events. In the first stage,

we obtain an estimate of the anchoring events distribution by nonparametric method

using the interval censored data; in the second stage, we obtain the parameter esti-

mates as stochastic functionals of the estimated distribution. The construction of the

stochastic functional depends on model settings. In this research, we considered two

types of models. The first model was a distribution-free model, in which no parametric

assumption was made on the distribution of the error term. The second model was

likelihood based, which extended the classic mixed-effects models to the situation
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that the origin of the time scale for analysis was interval censored. For the pur-

pose of large-sample statistical inference in both models, we studied the asymptotic

properties of the proposed functional estimator using empirical process theory. Theo-

retically, our method provided a general approach to study semiparametric maximum

pseudo-likelihood estimators in similar data situations. Finite sample performance of

the proposed method were examined through simulation study. Algorithmically effi-

cient algorithms for computing the parameter estimates were provided. We applied

the proposed method to a real data analysis and obtained new findings that were

incapable using traditional mixed-effects models.

Ying Zhang, Ph.D., Co-Chair

Wanzhu Tu, Ph.D., Co-Chair

vii



TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Chapter 2 Introduction to vector calculus . . . . . . . . . . . . . . . . . . 4

2.1 Vector calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Chapter 3 A short introduction to empirical process theory . . . . . . . . 9

3.1 Stochastic process and weak convergence . . . . . . . . . . . . . . 9

3.2 Empirical process, Glivenko-Cantelli class, and Donsker class . . . 12

3.3 Some Donsker classes . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.4 A general theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Chapter 4 A distribution-free model with interval censored anchoring points 27

4.1 Model formulation and estimation . . . . . . . . . . . . . . . . . . 27

4.2 Asymptotic property . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.3 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4 Analysis of pubertal skeletal growth data . . . . . . . . . . . . . . 48

Chapter 5 Mixed-effects model with interval censored anchoring points . . 56

5.1 Estimation with with interval-censored anchoring points . . . . . 57

5.1.1 Parameter estimation . . . . . . . . . . . . . . . . . . . . 57

5.1.2 Asymptotic property . . . . . . . . . . . . . . . . . . . . . 59

5.2 A case study: Linear mixed-effects models . . . . . . . . . . . . . 70

viii



5.2.1 Linear mixed-effects model with interval censored anchoring

points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.2.2 Computation . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2.3 Derivation of the formula in Section 5.2.1 . . . . . . . . . . 75

5.3 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.4 Analysis of pubertal weight growth data . . . . . . . . . . . . . . 91

Chapter 6 An R function for fitting linear mixed-effects model with interval

censored anchoring points . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.1 Nonparametric maximum likelihood estimation of the anchoring point

distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.2 A hybrid algorithm combining Fisher-Scoring algorithm and EM-

algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.3 A user-friendly function . . . . . . . . . . . . . . . . . . . . . . . 111

Chapter 7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

CURRICULUM VITAE

ix



LIST OF TABLES

4.1 Simulation result for wider censoring intervals. . . . . . . . . . . . . 45

4.2 Simulation result for narrower censoring intervals. . . . . . . . . . . 46

4.3 Empirical relative efficiency: proposed method vs knowing F0. . . . 47

5.1 Simulation result for Scenario (1) . . . . . . . . . . . . . . . . . . . 85

5.2 Simulation result for Scenario (2) . . . . . . . . . . . . . . . . . . . 86

5.3 Ratio of Monte Carlo standard deviations of linear mixed-effects model

vs distribution-free model . . . . . . . . . . . . . . . . . . . . . . . . 87

5.4 Ratio of Monte Carlo standard deviations of linear mixed-effects model

vs the model knowing true event time . . . . . . . . . . . . . . . . . 88

5.5 Simulation result for Scenario (1) with mixture normal errors . . . . 89

5.6 Simulation result for Scenario (2) with mixture normal errors . . . . 90

5.7 Ratio of Monte Carlo standard deviations of linear mixed-effects model

vs distribution-free model with mixture normal errors . . . . . . . . 91

5.8 Ratio of Monte Carlo standard deviations of proposed model vs the

model knowing true event times with mixture normal errors . . . . . 91

5.9 Parameter estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

x



LIST OF FIGURES

4.1 Peak growth periods in 360 children . . . . . . . . . . . . . . . . . . 49

4.2 Observed data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3 The estimated CDFs of F0 for males and females . . . . . . . . . . . 51

4.4 The fitted anchoring point models. . . . . . . . . . . . . . . . . . . . 52

5.1 Peak growth intervals and observed weight . . . . . . . . . . . . . . 93

xi



Chapter 1

Introduction

In many biomedical investigations, the process under study is known to be anchored

by certain event of clinical significance. We call such event as anchoring event and its

timing of occurrence as anchoring point. Researchers are often interested in quantify-

ing the patterns of the process around the anchoring events. For example, oncologists

want to assess the rates of neoplastic growth immediately following the initial tu-

morigenesis or subsequent tumor recurrence (Fournier et al., 1980; Spratt et al., 1993;

Carter et al., 1989). Human growth researchers want to evaluate the rates of skele-

tal changes before and after pubertal growth spurt (PGS), i.e., the time at which a

child’s height increase reaches its maximum velocity (Tanner and Whitehouse, 1976).

In these examples, tumorigenesis/recurrence and PGS only function as events that

anchor the time scale for the analysis. When these events are observed, the time

scale for analysis is available, and usual mixed-effects models (Laird and Ware, 1982)

or subject-specific smoothing models (Durbán et al., 2005) can be devised to model

the trajectory of the process under investigation. In reality, however, the anchoring

events are not always directly observed and the individual anchoring points should be

regarded as a random quantity with an unknown distribution. In such situation, the

time scale for analysis is not available, and all traditional methods can not be directly

applied, because the time scale for building those models is no longer available.
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We are interested in the situation that the anchoring points are interval cen-

sored. Such situation is abundant in real life studies, because investigators are usu-

ally able to determine the time intervals within which the anchoring events occur.

In literatures, parametric joint models were proposed to analyze data with interval

censored anchoring events (van den Hout et al., 2013; Robinson et al., 2010). Im-

putation methods were also often seen in practice (Shankar et al., 2005; Tu et al.,

2009). By assuming all subjects share the same anchoring point, changing-point

models (Muller, 1992) was also proposed. But these methods suffer from the follow-

ing fundamental limitations: (1) The parametric assumptions are not easy to verify,

and are prone to biased estimation; (2) They are unable to accommodate the un-

certainty associated with the estimation of the anchoring point for each individual

subject. Recently, Zhang et al. (2016) proposed a robust nonparametric estimator for

post-PGS pubertal growth, which was anchored by the unobservable PGS. Their ap-

proach was purely nonparametric and they showed that the estimator was consistent.

Although no asymptotic normality theory was established to allow an asymptotic

inference procedure, their two-stage estimation method shed a light to overcome the

aforementioned difficulties in these problems. First, it completely side-stepped the

difficulty of estimating the subject specific anchoring points; Second, by regarding the

model estimates as stochastic functionals of the estimated anchoring point distribu-

tion, asymptotic distributions of the model estimates were possible to study through

the empirical process theory.

In this research, we adopted the two-stage functional estimation method from

Zhang et al. (2016) to analyze longitudinal data involving interval censored anchoring

points. Two models were considered using the two-stage estimation procedure. The
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first model was distribution-free in the sense that we did not make any parametric

assumption on the outcomes. The advantages of this method were the robustness

against the unknown distribution of the outcomes, and the numerical convenience in

computing the parameter estimates. But it completely ignored the possible corre-

lations among the repeated measures within the same subject. Therefore, a second

model based on mixed-effects models was proposed. Although statistically more effi-

cient, the second model was numerically more complicated than the first model. For

both models, we showed under mild regularity conditions that the model estimates

were asymptotically normally distributed with
√
n-convergence rate, and hence statis-

tical inference can be conducted for large samples. Simulation studies were conducted

to validate the asymptotic properties, as well as to examine the good finite sample

performance. Real data analysis were presented to illustrate the application of the

proposed method.

The thesis is structured as follows. Chapter 2 reviews necessary vector cal-

culus needed for studying linear mixed-effects models. Chapter 3 briefly reviews the

empirical process theory that is used for this research. In addition, we provide a

general theory that is useful to study the large sample property of model estimates,

obtained from the proposed two-stage functional estimation procedure. With these

theoretic preparations, the distribution-free model is studied in Chapter 4, and the

mixed-effects model is studied in Chapter 5. The proposed methods are implemented

using R software in Chapter 6. A summary of this work is provided in Chapter 7.
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Chapter 2

Introduction to vector calculus

The likelihood function of a mixed-effects model naturally takes the covariance matrix

G of the random effects as an argument. To calculate the estimating equations, we

must calculate the derivatives with respect to the entries of G. One could simply

parameterize G by its entries, or some entries since G is symmetric and possibly

structured. However, taking derivatives with respect to one entry at a time may

be difficult since the likelihood function is complicated, especially when G has a

large size. Vector calculus is a mathematical tool that arranges all partial derivatives

in an organized manner, so that it takes partial derivatives with respect to all the

parameters in G in one step. In other words, vector calculus is a convenient device

that helps to calculate the estimating equations for mixed-effects models.

In this chapter, we review some results in vector calculus. These results are

well known and can be found in any textbook on vector calculus. We state them in

lemmas for the convenience of reference in later chapters.

2.1 Vector calculus

By “vector” we always mean a column vector. If V is a vector, its transpose is

denoted by V t, which is a row vector. Both column and row vectors are also regarded

as matrices.
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In many situations, a scalar function f takes a matrix G =
(
xij
)
m×n as an

argument. Indeed, f is a multivariate function on the variables {xij
∣∣1 ≤ i ≤ m, 1 ≤

j ≤ n}, and hence it makes sense to define the gradient of f with respect to the xij ’s.

It is more convenient to write the gradient ∇Gf in a matrix form as

∇Gf =

(
∂f

∂xij

)
m×n

.

In particular, if X = (x1, · · · , xn) is a row vector, then we write the gradient

∇Xf = (
∂f

∂x1
, · · · , ∂f

∂xn
)

as a row vector; if X = (x1, · · · , xn)t is a column vector, we write the gradient

∇Xf =

(
∂f

∂x1
, · · · , ∂f

∂xn

)t

as a column vector. For a multivariate function F = (f1(X), · · · , fm(X))t , regardless

of X being a row or column vector, we always denote the Jacobian of F as

∇XF =

(
∂fi
∂xj

)
m×n

which is a matrix. Some useful properties of these operations are summarized in the

following lemma, whose validity can be easily checked.

Lemma 2.1.1. (Wand, 2002, Section 3)
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• Product rule. For scalar function f and multivariate functions F, G:

∇(FTG) = Gt(∇F ) + F t(∇G) and ∇(fG) = G(∇f) + f(∇G).

• For a constant matrix A and a multivariate function F ,

∇(AF ) = A∇F.

• Chain rule. For a multivariate function G(X) =
(
g1(X), · · · , gm(X)

)t
and a

multivariable function F (y1, · · · , ym),

∇X(F ◦G) = ∇Y F
∣∣∣
Y =G(X)

· ∇XG.

• For scalar functions f and h of matrix variable G,

∇G(fh) = f(∇Gh) + h(∇Gf) and ∇G(f(h(G))) = f ′(h(G))(∇Gh).

Another often seen situation is when a matrix is a function of a variable t.

That is, A(t) =
(
aij(t)

)
, where the entries aij(t) are functions of t. The derivative of

A(t) is defined as the following matrix.

A′(t) =
dA(t)

dt
=

(
daij(t)

dt

)
.
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Lemma 2.1.2. (Wand, 2002, Section 3) For differentiable matrices A(t) and

B(t):

(A(t) +B(t))′ = A′(t) +B′(t), (A(t)B(t))′ = A(t)B′(t) +A′(t)B(t).

The following well-known result is very useful when deriving estimating equa-

tions of longitudinal models. A short proof is provided for self-completeness.

Lemma 2.1.3. (Wand, 2002, Section 3) If A(t) is nonsingular, then

1. (Jacobi’s Formula) d
dt(det(A(t))) = det(A(t)) · Tr

(
A(t)−1 dA(t)

dt

)
,

2. (A−1(t))′ = −A−1(t)A′(t)A−1(t).

Proof. For the Jacobi’s Formula, we have the following direct calculations.

d
dt(det(A(t)))

= lim
h→0

(
det(A(t+ h))− det(A(t))

)/
h

= det(A(t)) lim
h→0

(
det(A(t)−1A(t+ h))− 1

)/
h

= det(A(t)) lim
h→0

(
det(I + hA(t)−1 dAdt + h2A∗)− 1

)/
h by Taylor expanson,

where A∗ is a bounded matrix on h.

= det(A(t)) lim
h→0

(
1 + h · Tr(A(t)−1 dAdt ) +O(h2)− 1

)/
h

= det(A(t)) · Tr
(
A−1 dA(t)

dt

)
.
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For the derivative of the inverse matrix, we apply Lemma 2.1.2 to have the following

calculations.

I = A(t)A−1(t) =⇒ dI
dt =

d(A(t)A−1(t))
dt

=⇒ O = A′(t)A−1(t) +A(t)A−1(t)′

=⇒ (A−1(t))′ = −A−1(t)A′(t)A−1(t).
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Chapter 3

A short introduction to empirical process theory

The study of asymptotic properties in our work relies heavily on the modern empir-

ical process theory (Dudley, 1984; Pollard, 1990; van der Vaart and Wellner, 1996;

Kosorok, 2007). In this chapter we first review some important definitions and results

in empirical process theory, and then present a useful lemma that helps to study the

Donsker property of a class of functions. We also provide a general theorem, which

provides sufficient conditions for a sequence of stochastic functionals to converge.

By “map” we mean a map between sets. By “metric space” we mean a set

together with a notion of distance. By “measurable space” we mean a set together

with a σ-algebra, i.e., there is a notion of measurable sets. By “probability space” we

mean a set together with a probability measure, i.e, there is a notion of probability of

each measurable set. Note that for any metric space, we have a notion of “open sets”

(i.e., a topology), and hence a notion of “Borel σ-algebra” as the one generated by the

open sets. In other words, any metric space (indeed, topological space) is naturally a

measurable space, equipped with the Borel σ-algebra.

3.1 Stochastic process and weak convergence

There are three commonly used equivalent definitions of a stochastic process. Recall

that a d-dimensional random variable on a probability space Ω is a measurable func-

tion X : Ω → Rd. Let T be a set. The first definition of stochastic process simply
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regards a stochastic process Γ on Ω indexed by T as a collection of random variables

on Ω :

Γ = {Xt : Ω→ Rd
∣∣ t ∈ T}.

In different applications, different correlation structures among these random vari-

ables can be further imposed.

A second equivalent definition of a stochastic process Γ on Ω indexed by T is

to be a map between sets

Γ : T × Ω→ Rd,

which sends (t, ω) to Xt(ω), such that each restriction Xt, t ∈ T , is a measurable

function on Ω. Note that we treat the indexing set T simply as a set without any

possible extra structure, such as symmetry or topology.

There is a third equivalent definition. Following Holden et al. (1996, Section

2.1), it is intuitively helpful to think ω ∈ Ω as a particle, t ∈ T as time, and Xt(ω)

as the position of the particle ω at time t. If we fix ω and let t vary in T , we get a

sample path:

pω : T → Rd; t 7→ Xt(ω).

So a stochastic process on Ω can also be identified as a “measurable” function from

the probability space Ω to the space of functions T → Rd, denoted as (Rd)T . The

σ-algebra on (Rd)T is generated by the sets:

At1,··· ,tk;B1,··· ,Bk = {f : T → Rd
∣∣f(t1) ∈ B1, · · · , f(tk) ∈ Bk}

where k ≥ 1, t1, · · · , tk are points in T , and B1, · · · , Bk are Borel sets in Rd.
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Each of the above three equivalent definitions has its advantages in different

situations. The third definition makes it easier to define weak convergence of a se-

quence of stochastic processes. For a general discussion of weak convergence, we refer

the readers to Pollard (2012, Chpater 5). In this section, we define weak convergence

of stochastic processes when there is a metric, denoted as ‖ · ‖, on the space (Rd)T .

For example, in most of the problems in this research, the metric is given by the

supremum norm ‖ · ‖∞ on (Rd)T .

Definition 3.1.1. (Kosorok, 2007, Section 7.2.1) Let Γ1, · · · ,Γn, · · · be a se-

quence of stochastic processes on Ω indexed by T with values in Rd. The sequence is

called weakly convergent to a stochastic process Γ, denoted as

{Γi
∣∣i = 1, · · · } =⇒ Γ,

if for every bounded continuous function φ : (Rd)T → R, the sequence of random

variables {φ(Γi)
∣∣i = 1, 2, · · · } converges to φ(Γ) in distribution. The σ-algebra on

(Rd)T is the Borel algebra associated with the metric on (Rd)T .

Example 3.1.2. (1) A random variable can be thought as a stochastic process indexed

by one point. A sequence of random variables {Xi
∣∣i = 1, · · · } weakly converges to X,

viewed as stochastic processes, if and only if they converge to X in distribution, viewed

as random variables. This is a special case of the famous Portmanteau Theorem

(Klenke, 2008).

(2) A Gaussian process is a stochastic process such that the random vector(
Xt1 , · · · , Xtk

)
is multinormal for any finite number of points t1, · · · , tk. If {Γi

∣∣i =

1, · · · } weakly converges to a Gaussian process Γ, then for any finite number of indices

11



t1, · · · , tm, the sequence of random vectors {(Γi|t1 , · · · ,Γi|tm)
∣∣i = 1, · · · } converges

in distribution to the multinormal random vector (Γt1 , · · · ,Γtm). The converse is true

only under certain conditions, such as “tightness” (Kosorok, 2007, Section 7.1).

3.2 Empirical process, Glivenko-Cantelli class, and Donsker class

An empirical process indexed by T is a stochastic process that is defined through

random samples (Kosorok, 2007, Page 9). This general definition is rather abstract.

In all applications in this thesis, we consider the following special type of empirical

processes. Let Ω ⊂ Rd be a probability space with probability measure P. If f is

a random variable on Ω, we write the expectation of f as Pf . Let F be a class of

measurable functions on Ω, then we have a deterministic functional on F :

P : F → R; f 7→ Pf.

Now, if we have a random sample of size n on Ω, denoted as {ωi
∣∣i = 1, · · · }, we can

define an empirical measure Pn on Ω as

Pn(A) =
1

n

n∑
i=1

1(ωi ∈ A).

For a random variable f on Ω, we write the empirical expectation of f as Pnf =

1
n

n∑
i=1

f(ωi). For a class of measurable functions F on Ω, we have an empirical process

indexed by F :

Pn : F → R; f 7→ Pnf.
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Empirical process theory mainly focus on studying the weak convergency of

the process {Pn
∣∣n = 1, · · · } indexed by F , in which the metric on (Rd)F is usually

the supremum norm. Such a study is not trivial, mainly because the measure Pn

is not absolute continuous with respect to P. Consequently, the Radon-Nikodym

derivative dPn
dP does not exist, and hence special analysis tools are required. The

following two concepts are extremely useful, as they are used in most applications of

empirical process theory. The first concept is related to the consistency of a sequence

of empirical processes.

Definition 3.2.1. A class F is called P-Glivenko-Cantelli if

‖Pn − P‖∞ = sup
f∈F

(∣∣Pnf − Pf
∣∣) a.s.−→ 0

when n→∞.

It follows from the above definition that, if F is P-Glivenko-Cantelli, then for

any ε > 0, we have:

Prob

(
max
f∈F
{|Pnf − Pf |} < ε

)
−→1.

In other words, for n large, the random value Pnf is close to the fixed value Pf

a.s. regardless of the value of f . This is a much stronger statement than point-

wise convergence, i.e., for any f ∈ F , the random variable Pnf converges to Pf in

distribution.

The second concept is related to the limiting process of a sequence of empirical

processes. Let Gn =
√
n(Pn−P) be the “centralized” process of Pn. Define a Gaussian

process G indexed by F , to be the process that has a zero mean and covariance

13



structure given by

Cov(Gf1,Gf2) = P(f1f2)− (Pf1)(Pf2).

Definition 3.2.2. A class F is called P-Donsker if

Gn =⇒ G, as processes indexed by F ,

with respect to the supremum norm on (Rd)F , when n→∞.

It follows immediately from the definitions that a P-Donsker class is automat-

ically a P-Glivenko-Cantelli class. Using these two concepts, the study of asymptotic

properties of empirical processes reduces to checking whether the indexing class F is

Glivenko-Cantelli or Donsker. To do so, many helpful methods have been developed.

For the purpose of our application, the method of “bracketing numbers” and “brack-

eting entropy” are explained in the remaining part of this section. For more details

and more methods in studying the Glivenko-Cantelli property or Donsker property

of F , please refer to van der Vaart (1998) for an extensive exploration.

Let Lp(Ω) be the Lp-space on Ω, which is by definition the set of all measurable

functions f : Ω→ R such that E(
∣∣f ∣∣p) <∞, together with the Lp-norm

‖f‖p =
(
E(
∣∣f ∣∣p))1p .

An Lp(Ω)-ε-bracket (or simply ε-bracket if the metric is clear) is a pair of functions

(f−, f+) such that f− ∈ Lp(Ω), f+ ∈ Lp(Ω), and f−(ω) ≤ f+(ω) for any ω ∈ Ω.

Let F be a class of measurable functions and assume that F ⊂ Lp(Ω). A set X consists
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of ε-brackets is said to cover F if for any f ∈ F , there is a bracket (f−, f+) ∈ X that

covers f , i.e. f−(ω) ≤ f(ω) ≤ f+(ω) for any ω ∈ Ω. The Lp(Ω)-ε-bracketing number

of F is defined as

min
X

{
number of ε-brackets in X

∣∣X covers F
}

Conventionally, the ε-bracketing number of F is denoted as N[ ](ε,F , Lp(P)). To

continue the discussion, we assume that the number N[ ](ε,F , Lp(P)) is finite for any

given ε > 0. The Lp-bracketing entropy is then defined as the function that sends ε > 0

to log
(
N[ ](ε,F , Lp(P))

)
, which is monotone and hence integrable. The bracketing

entropy integral J[ ](δ,F , Lp(P)) is defined as

J[ ](δ,F , L
p(P)) =

∫ δ

0

√
log
(
N[ ](ε,F , Lp(P))

)
dε.

Roughly speaking, N[ ](ε,F , Lp(P)) and J[ ](δ,F , Lp(P)) measures the size of F in

Lp(Ω), and the variation of functions in F . These numbers are important because

they are useful to study the asymptotic properties of empirical processes indexed by

F , as described in the following two results.

Theorem 3.2.3. (Glivenko-Cantelli Theorem (van der Vaart, 1998, Theo-

rem 2.4.1)) If N[ ](ε,F , L1(P)) ≤ ∞ for all ε > 0, then F is P-Glivenko-Cantelli.

Theorem 3.2.4. (Donsker Theorem (van der Vaart, 1998, Theorem 2.5.2))

If J[ ](1,F , L2(P)) ≤ ∞, then F is P-Donsker.
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3.3 Some Donsker classes

In this section, we study the bracketing entropy of serval classes, which is required in

the derivation of the asymptotic properties of certain parameter estimates. Readers

with no interest in the technique details can skip this section by admitting the results

formulated in Lemma 3.3.4.

Let T be a random event time taking values inside a compact interval [τ1, τ2],

where τ1 < τ2 are constants. Let (L,R] be an independent censoring interval of T .

That is, there are a sequence of random screening times τ1 = T1 < T2 < · · · < Tn = τ2

that are jointly independent of T , and L < R are the adjacent screening times that

bracket T , i.e., L < T ≤ R. Let F0 be the cumulative distribution function (CDF) of

T . Assume that the censoring interval satisfies the separation condition:

Assumption 3.3.1. (Separation Condition) P (F0(R)−F0(L) ≥ c) = 1 for some

fixed constant c > 0.

The separation condition is almost always satisfied in real studies. It means

there is a minimum gap between any adjacent screening times. Unless subjects can be

continuously monitored without breaks, such a minimum gap is almost unavoidable.

In real data applications, in addition to the observed censoring interval (L,R],

there might be other observed random quantities, for which we denote by W . Let

H be the joint distribution of the random vector (W , L,R), and P the probability

measure associated to H. Assume the following differentiability properties of the

distribution of the observable data:

Assumption 3.3.2. 1. the support of P is contained in a compact set Ω.
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2. the Radon–Nikodym derivative dP
dQ exists and is bounded over Ω, where Q is the

usual Borel measure.

3. the marginal density of L and R are continuous in [τ1, τ2].

In Assumption 3.3.2, the first and last conditions are usually satisfied in

biomedical studies, since the event must happen during the subject’s life, which is of

course bounded. The second condition is hard to verify, but it is implied if H has

continuous first order derivatives.

For a small δ > 0, we let Fδ denote the class

Fδ =
{
F is a CDF over [τ1, τ2] satisfying ‖ F − F0 ‖∞< δ

}
.

Let Θ be a compact subset in some Euclidean space, and let G = G(W , L,R, t;θ)

be a continuous function where (W , L,R) ∈ Ω, t ∈ [τ1, τ2] and θ ∈ Θ. Let GΘ,Fδ be

the following induced class, indexed by Θ×Fδ.

GΘ,Fδ =

{∫ R

L
GdF =

∫ R

L
G(W , L,R, t;θ)dF (t)

∣∣∣ F ∈ Fδ,θ ∈ Θ

}
.

For the class GΘ,Fδ to have good properties, we assume

Assumption 3.3.3. ∂2G
∂t2

exists and is continuous on Ω× [τ1, τ2]×Θ.

The following lemma is used in Chapters 4 and 5 to derive the asymptotic

properties of our proposed estimators.

Lemma 3.3.4. Under Assumptions (3.3.2) and (3.3.3), the class GΘ,Fδ is P-Donsker

for small δ.
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Proof. To prove the theorem, We evaluate N[ ](ε,GΘ,Fδ , L
2(P)), the L2(P)-norm ε-

bracketing number of GΘ,Fδ with respect to the probability measure P. Let K be a

constant whose values vary from place to place.

By Theorem 2.7.5 of van der Vaart and Wellner (1996), the family Fδ can

be covered by Nε number of ε-brackets in L2-norm ‖ · ‖2 with respect to the Borel

measure with Nε ≤ exp(Kε ). In other words, there exist pairs of measurable functions

{(
F−i (t), F+

i (t)
)

: i = 1, · · ·Nε
}

such that, for any F ∈ Fδ, there exists a bracket
(
F−i (t), F+

i (t)
)

satisfying F−i (t) ≤

F (t) ≤ F+
i (t) and ‖ F−i (t)− F+

i (t) ‖2< ε. We assume that each bracket contains at

least one function F in Fδ. Otherwise, such a bracket should be removed and results

in fewer ε-brackets. We can also require that 0 ≤ F+
i ≤ 1 and 0 ≤ F−i ≤ 1. It

is obvious that there are no more than
(
K
ε

)d
solid hypercubes {Q1, Q2, · · · , QK},

whose union covers Θ and whose sides have lengths ε.

For any hypercube Qj and any t ∈ [τ1, τ2], define the following functions S−j,t,

S+j,t, S
′−
j,t and S

′+
j,t of (Y ,W , L,R) ∈ Ω.

S−j,t(Y ,W , L,R) = min
θ∈Qj

G(Y ,W , L,R, t,θ),

S+j,t(Y ,W , L,R) = max
θ∈Qj

G(Y ,W , L,R, t,θ),

S
′−
j,t(Y ,W , L,R) = min

θ∈Qj
∂G
∂t (Y ,W , L,R, t,θ),

S
′+
j,t(Y ,W , L,R) = max

θ∈Qj
∂G
∂t (Y ,W , L,R, t,θ).
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By Assumption 3.3.3, both G and ∂G
∂t are continuous on the compact set Ω×Θ, and

hence absolutely continuous. So |S+j,t−S
−
j,t| ≤ Kε and |S

′+
j,t −S

′−
j,t | ≤ Kε for all j and

t, where the value of K does not depend on j or t. For any bracket
(
F−i (t), F+

i (t)
)

and hypercube Qj , we define the following functions of (Y ,W , L,R) ∈ Ω.

G−ij = S−j,R ·
(
F−i (R) · 1(S−j,R > 0) + F+

i (R) · 1(S−j,R ≤ 0)
)

−S+j,L ·
(
F+
i (L) · 1(S+j,L > 0) + F−i (L) · 1(S+j,L ≤ 0)

)
−
∫ R
L S

′+
j,t ·

(
F+
i (t) · 1(S

′+
j,t > 0) + F−i (t) · 1(S

′+
j,t ≤ 0)

)
dt

G+
ij = S+j,R ·

(
F+
i (R) · 1(S+j,R > 0) + F−i (R) · 1(S+j,R ≤ 0)

)
−S−j,L ·

(
F−i (L) · 1(S−j,L > 0) + F+

i (L) · 1(S−j,L ≤ 0)
)

−
∫ R
L S

′−
j,t ·

(
F−i (t) · 1(S

′−
j,t > 0) + F+

i (t) · 1(S
′−
j,t ≤ 0)

)
dt.

Although the expressions of G−ij and G+
ij are complicate, it is easy to see that the

summands of these functions bracket the summands of the following integral in order.

Gθ,F =

∫ R

L
GdF = G

∣∣
t=R · F (R)−G

∣∣
t=L · F (L)−

∫ R

L

∂G

∂t
· F dt,

where F−i ≤ F ≤ F+
i and θ ∈ Qj . So we have G−ij ≤ Gθ,F ≤ G+

ij . In other words,

the bracket
(
G−ij , G

+
ij

)
covers Gθ,F .

Let ‖ · ‖2,P denote the L2(P)-norm with respect to the probability measure P.

The ‖ · ‖2,P-length of the bracket
(
G−ij , G

+
ij

)
is calculated below. Using the fact that∣∣F+

i

∣∣ ≤ 1,
∣∣F−i ∣∣ ≤ 1, the obvious relation AB − CD = A(B − D) + (A − C)D and
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the regularity condition 3, it follows that

‖G+
ij −G

−
ij‖2,P

≤
∥∥∥max(|S+j,R|) ·

(
F+
i (R)− F−i (R)

)∥∥∥
2,P

+
∥∥∥(S+j,R − S−j,R)∥∥∥2,P

+
∥∥∥max(|S+j,L|) ·

(
F+
i (L)− F−i (L)

)∥∥∥
2,P

+
∥∥∥(S+j,L − S−j,L)∥∥∥2,P

+
∥∥∥∫ RL max(|S

′+
j,t |)

(
F+
i (t)− F−i (t)

)
dt
∥∥∥
2,P

+
∥∥∥∫ RL (S+j,t − S−j,t)dt∥∥∥2,P

≤
∥∥K · (F+

i (R)− F−i (R)
)∥∥

2,P + ‖Kε‖2,P

+
∥∥K · (F+

i (L)− F−i (L)
)∥∥

2,P + ‖Kε‖2,P

+
∥∥∥∫ RL K ·

(
F+
i (t)− F−i (t)

)
dt
∥∥∥
2,P

+
∥∥∥∫ RL Kεdt

∥∥∥
2,P

≤ KdR
∥∥(F+

i (R)− F−i (R)
)∥∥

2 +Kε

+KdL
∥∥(F+

i (L)− F−i (L)
)∥∥

2 +Kε

+

∥∥∥∥√K(R− L)2
∫ R
L

(
F+
i (t)− F−i (t)

)2
dt

∥∥∥∥
2,P

+Kε · ‖R− L‖2,P

≤ Kε+Kε+Kε+Kε+
∥∥∥√Kε2∥∥∥

2,P
+Kε ≤ Kε.

where dL and dR denote the respective maximum of the marginal densities of L and

R.

In summary, we found a total of (K/ε)dNε brackets for GΘ,Fδ , each of length

≤ Kε, where K is independent on ε. So N[ ](ε,GΘ,Fδ , L
2(P)), the L2(P)-norm ε-
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bracketing number for GΘ,Fδ , is bounded by (K/ε)d exp(K/ε). Then it follows that

J[ ]
(
ε,GΘ,Fδ , L

2(P)
)

=
∫ 1
0

√
log
(
N[ ](ε,GΘ,Fδ , L

2(P))
)
dε

≤
∫ 1
0

√
K
ε −K log(ε)dε <∞.

By Theorem 3.2.4, GΘ,Fδ is a P-Donsker class.

3.4 A general theorem

In this section, we provide a general asymptotic normality theorem for semiparametric

maximum pseudo-likelihood estimator. Similar theorems can be found in Kosorok

(2007, Theorem 2.11) for nonparametric estimators, and in Wellner and Zhang (2007,

Theorem 7.1) for semiparametric maximum likelihood estimators.

We consider a general data situation involving latent variables. Let Y be the

random vector of outcomes, and C the random vector of independent variables. Let

F0 denote the unknown CDF of the latent variable T , and F a class of one dimensional

CDF’s containing F0. For example, in the situation considered in Section 5.1, we

have C = (W , L,R) and T is the anchoring point. Let θ0 denote the true value of

a d-dimensional parameter of interest, and Θ a subset in Rd containing θ0. Let P

denote the probability measure associated with (Y ,C), and Pn the empirical measure

associated with a random sample of (Y ,C) of size n. For any P-measurable function

f , the integrals
∫
fdP and

∫
fdPn are respectively denoted as P(f) and Pn(f).
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We consider the situation of semiparametric estimation with unbiased esti-

mating equation, i.e., the true parameter θ0 satisfies

P
(
ψ(Y ,C, F0,θ0)

)
= 0

where ψ = ψ(Y ,C, F,θ) is a d-dimensional estimating function for θ given a CDF

F ∈ F . When the true CDF F0 is unknown but a consistent estimator F̂n of F0 can

be obtained from the data, it leads to an asymptotically unbiased estimating equation

Pn
(
ψ(Y ,C, F̂n,θ)

)
= 0,

from which a semiparametric maximum pseudo-likelihood estimator θ̂n can be ob-

tained.

The following theorem provides sufficient conditions for
√
n(θ̂n − θ0) to con-

verge in distribution. For the sake of convenience in presentation, we define a map

Ψ : Θ×F → R by setting

Ψ(θ, F ) = P
(
ψ(Y ,C, F,θ)

)

for any (θ, F ) ∈ Θ × F . Let Ψn be the empirical version of Ψ, i.e., Ψn(θ, F ) =

Pn
(
ψ(Y ,C, F,θ)

)
.

Theorem 3.4.1. Suppose θ0 satisfies Ψ(θ0, F0) = 0. Let θ̂n be a solution of

Ψn(θ, F̂n) = 0, where F̂n is an estimate of F0 from the sample. Assume that
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T1. θ0 is an inner point of Θ. The function θ 7→ Ψ(θ, F0) has continuous second

order derivatives in a neighborhood of θ0 and the matrix A = ∇θΨ(θ0, F0) is

nonsingular.

T2. θ̂n
P−→θ0.

T3.
√
nΨn(θ0, F̂n)

D−→Z for some random vector Z.

T4.
(

1 +
√
n‖θ̂n − θ0‖

)−1∥∥∥√n(Ψ(θ̂n, F0) + Ψn(θ0, F̂n)
)∥∥∥ P−→0.

Then
√
n(θ̂n − θ0)

D−→−A−1Z.

Proof. Since θ̂n
P−→θ0, the Taylor expansion for Ψ(θ, F0) at θ = θ0 yields

Ψ(θ̂n, F0) =
(
∇θΨ(θ0, F0) + op(1)

)
(θ̂n − θ0) =

(
A+ op(1)

)
(θ̂n − θ0). (3.1)

and hence

√
n(θ̂n − θ0) =

(
A+ op(1)

)−1 · √nΨ(θ̂n, F0)

= (A+ op(1))−1 ·
(√

n
(
Ψ(θ̂n, F0) + Ψn(θ0, F̂n)

)
−
√
nΨn(θ0, F̂n)

)
.

(3.2)

Since
√
nΨn(θ0, F̂n)

D−→Z, we have
(
A+op(1)

)−1·(√nΨn(θ0, F̂n)
)

= A−1Z+op(1).

So Equation (3.2) becomes

√
n(θ̂n−θ0) =

(
A+op(1)

)−1 ·√n(Ψ(θ̂n, F0)+Ψn(θ0, F̂n)
)
−A−1Z+op(1). (3.3)
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Next we show that the first summand on the right hand side of Equation (3.3)

is op(1). Note that

∥∥∥√n(θ̂n − θ0)
∥∥∥− ∥∥∥A−1Z∥∥∥ ≤ ∥∥∥√n(θ̂n − θ0) +A−1Z

∥∥∥
=
∥∥∥(A+ op(1)

)−1 · √n(Ψ(θ̂n, F0) + Ψn(θ0, F̂n)
)

+ op(1)
∥∥∥ by Equation (3.3)

≤ op(1) ·
(

1 +
∥∥∥√n(θ̂n − θ0)

∥∥∥) by Condition T4

which implies
(
1− op(1)

)∥∥∥√n(θ̂n − θ0)
∥∥∥ ≤ ∥∥∥A−1Z∥∥∥ + op(1). So

∥∥∥√n(θ̂n − θ0)
∥∥∥ is

bounded in probability, and hence

√
n
(
Ψ(θ̂n, F0) + Ψn(θ0, F̂n)

)
= op(1) (3.4)

by Condition T4 again. Plugging Equation (3.4) into Equation (3.3), we have

√
n(θ̂n − θ0) =

(
A+ op(1)

)−1 · op(1)−A−1Z + op(1) = −A−1Z + op(1)

which completes the proof.

Remark. Condition T1 in Theorem 3.4.1 is the general regularity condition for

parametric models when F0 is known, which is usually satisfied if the estimating

function is a smooth function of θ. Method for verifying Conditions T2 and T3

depends on the specific model setting, and usually requires more efforts with empirical

process theory. The following lemma facilitates a set of sufficient conditions to justify

Condition T4.
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Lemma 3.4.2. Let Θ be a compact set that contains θ0 as an inner point. Let ‖ ·‖∞

be the supremum norm on F . Assume that

L1. For any F ∈ F , the Stieltjes-Lebesgue measure dF exists and is supported in a

finite closed interval [τ1, τ2], where the constants τ1 < τ2 do not depend on F .

L2. ‖F̂n − F0‖∞ = op(n
−1/4).

L3.
√
n
(
Ψn(θ̂n, F )−Ψ(θ̂n, F )

)
−
√
n
(
Ψn(θ0, F )−Ψ(θ0, F )

)
= op(1 +

√
n‖θ̂n−

θ0‖), uniformly over the class F .

L4. Ψ(θ, F̂n)−Ψ(θ, F0) =
∫
κ(θ, t)d(F̂n(t)− F0(t)) +Op(‖F̂n − F0‖2∞) uniformly

over Θ, where κ(θ, t) ∈ C1
(
Θ × [τ1, τ2]

)
, the set of functions on Θ × [τ1, τ2]

that have continuous first-order derivatives.

Then the Condition T4 of Theorem 3.4.1 is satisfied.

Proof. Since Ψn(θ̂n, F̂n) = 0 and Ψ(θ0, F0) = 0, by Condition L3 and triangle

inequality, verifying Condition T4 of Theorem 3.4.1 is equivalent to verifying

∥∥∥√n(Ψ(θ̂n, F̂n)−Ψ(θ̂n, F0))−
√
n(Ψ(θ0, F̂n)−Ψ(θ0, F0))

∥∥∥
1 +
√
n‖θ̂n − θ0‖

P−→0.

Because κ(θ, t) ∈ C1
(
Θ× [τ1, τ2]

)
, the partial derivative ∇θ

(
κ(θ, t)

)
is con-

tinuous on the compact set Θ× [τ1, τ2] and hence is uniformly bounded by a constant
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K. Using Conditions L2 and L4, we have

∥∥∥√n(Ψ(θ̂n,F̂n)−Ψ(θ̂n,F0))−
√
n(Ψ(θ0,F̂n)−Ψ(θ0,F0))

∥∥∥
1+
√
n‖θ̂n−θ0‖

≤

∥∥∥√n ∫ (κ(θ̂n,t)−κ(θ0,t))d(F̂n−F0)∥∥∥+∥∥∥Op(√n‖F̂n−F0‖2∞)∥∥∥
1+
√
n‖θ̂n−θ0‖

≤ K·
√
n‖θ̂n−θ0‖·‖F̂n−F0‖∞
1+
√
n‖θ̂n−θ0‖

+ op(1)

≤ K · ‖F̂n − F0‖∞ + op(1)
P−→0,

which completes the proof.

Remark. Verifying the conditions in Lemma 3.4.2 is often manageable. In many

applications, the class F consists of CDF’s whose densities are supported in a common

finite interval. The convergency rate of the estimated distribution function F̂n is often

shown to be faster than n1/4. Condition L3 is often satisfied if the class F is Donsker.

Condition L4 is satisfied if Ψ is smooth, which has been verified for applications of

interval censored data (Huang and Wellner, 1995; Geskus and Groeneboom, 1999).
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Chapter 4

A distribution-free model with interval censored anchoring points

Local rates around the anchoring points are often of clinic importance. For example,

tumor growth rate around cancer onset are important to study cancer, and skeleton

growth around pubertal growth spurt (PGS) describes the gender differences of adult

body shapes. However, there lacks statistical methods to appropriately quantify these

local rates around unobserved anchoring points. In this chapter, we introduce our

proposed method to model local rates around interval censored anchoring points. The

model is distribution-free in the sense that it does not make parametric assumptions

for the distributions of the anchoring points and the outcomes. We assume the mean

model of the process is locally linear around the anchoring point, which is reasonable

when the intervals are not too wide, such as in the real data situation studied in

Section 4.4. The model is formulated in Section 4.1, and the asymptotic property

of the model estimate is derived in Section 4.2. Finite sample performance of the

proposed model is examined through simulation studies in Section 4.3.

4.1 Model formulation and estimation

To illustrate model formulation and for the ease of model interpretation, we consider

a pubertal growth study, aimed to quantify the local growth rate in a somatic growth

outcome Y , such as wrist circumference or shoulder length, etc, before and after the

PGS. More details of this study is provided in Section 4.4.
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Suppose there are n independent subjects. For the ith subject, i = 1, 2, . . . , n,

the anchoring point Ti is censored by the interval (Ui, Vi]. That is, Ti is not observed

but is known to satisfy Ui < Ti ≤ Vi. The outcome of interest Y is assessed at the two

end points of the censoring interval, denoted respectively as YUi and YVi . For con-

venience, we write the observed data from the ith subject as Wi = (Ui, Vi, YUi , YVi),

and we assume that W1,W2, · · · ,Wn constitute an independent and identically dis-

tributed sample.

The goal of the analysis is to estimate the change rates in Y , immediately

before and after the unobserved subject-specific anchoring point T , therein referred

to as local rates.

The rates of interest can be modelled by a latent piecewise linear regression

model as 
YU = λ+ α(U − T ) + εU ,

YV = λ+ β(V − T ) + εV ,

(4.1)

where λ is the average value of the response variable Y at the latent time T ; α and β

are the respective pre and post-anchoring point rates of change; U and V are random

observation times bracketing T , and they follow an unspecified joint distribution

H(u, v); and εU and εV are random errors following an unknown distribution ψ(·, ·).

An implicit assumption in the model is that the local growth rates are ad-

equately depicted by this linear model. This assumption is appropriate to address

the scientific question pertinent to this study. In the human growth application,

growth curves are known to be smooth and the interval that brackets the PGS is

relatively tight. An advantage for adopting a linear model is that both pre and post-
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anchoring point rates are explicitly specified as model parameters, such as α and β

in Model (4.1).

In the absence of observed T , directly fitting Model (4.1) becomes intractable.

Let θ0 = (λ0, α0, β0)t be the true values of the parameters in Model (4.1), and let F0

be the true distribution of T . Following Zhang et al. (2016), we note that the true

parameter (θ0, F0) minimizes the deterministic functional

M(θ, F )

= EYU ,YV ,U,V

[(
YU− λ− α(U − EF,U,V T )

)2
+
(
YV − λ− β(V − EF,U,V T )

)2]

where θ = (λ, α, β)t ranges over all possible parameters in Model (4.1), F ranges

over all cumulative distribution functions (CDF), and EF,U,V T is the conditional

expectation of T given U < T ≤ V under law F .

An intuitive and logical way to estimate (θ0, F0) is, therefore, to minimize the

corresponding stochastic functional

Mn(θ, F ) =
n∑
i=1

[(
YUi −λ−α(Ui − EF,Ui,ViT )

)2
+
(
YVi −λ−β(Vi − EF,Ui,ViT )

)2]
.

Admittedly, minimizing Mn(θ, F ) jointly over θ and F is a daunting task computa-

tionally. To resolve, we employ a two-stage estimation procedure, which was originally

developed by Zhang et al. (2016).

In Stage 1, we obtain the following nonparametric maximum likelihood esti-

mator (NPMLE) of F0 (Groeneboom and Wellner, 1992), which is denoted as F̂n.

By definition, F̂n is the unique solution that maximizes the following nonparametric
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likelihood

F̂n = arg max
F∈F

n∏
i=1

(
F (Vi)− F (Ui)

)
,

where F is the class of all stepwise cumulative distribution functions that do not have

jumps outside of the set
{
U1, · · · , Un, V1, · · · , Vn

}
. The estimate F̂n can be computed

using an efficient hybrid algorithm combining an EM algorithm and an Iterative

Convex-Minorant algorithm, recommended by Zhang and Jamshidian (2004).

In Stage 2, we obtain θ̂n = (λ̂n, α̂n, β̂n)t as an M-estimator of θ0, by minimiz-

ing the plug-in stochastic objective function

Mn(θ, F̂n)

=
n∑
i=1

(
YUi − λ− α · (Ui − EF̂n,Ui,ViT )

)2
+
n∑
i=1

(
YVi − λ− β · (Vi − EF̂n,Ui,ViT )

)2
where E

F̂n,Ui,Vi
T is the conditional expectation of T given Ui < T ≤ Vi, under the

estimated CDF F̂n. Letting s1 < s2 < · · · < sk be the set of time points that F̂n

jumps, and letting p̂i = F̂n(si) − F̂n(si−) be the jump at si, we can calculate the

expectation term as

E
F̂n,Ui,Vi

T =
∑

Ui<sj≤Vi

sj p̂j

/ ∑
Ui<sj≤Vi

p̂j .

An immediate benefit of using the two-stage model is that θ̂n has a closed-form

solution. Let

Xi(F̂n) =

 1 Ui − EF̂n,Ui,ViT 0

1 0 Vi − EF̂n,Ui,ViT

 , Y i =

 YUi

YVi

 .
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The proposed estimator is essentially the least-square estimator θ̂n that minimizes

Mn(θ, F̂n) =
n∑
i=1

(
Y i −Xi(F̂n)θ

)t (
Y i −Xi(F̂n)θ

)
.

It then follows that θ̂n has a closed-form solution, given by

θ̂n =
( n∑
i=1

Xi(F̂n)tXi(F̂n)
)−1( n∑

i=1

Xi(F̂n)tY i

)
,

which can be viewed as a stochastic functional of F̂n, which we denote as Qn(F̂n).

4.2 Asymptotic property

For the purpose of inference, we examine the asymptotic behavior of the stochastic

functional estimator θ̂n = Qn(F̂n), which is by definition the M-estimator of the

stochastic objective function Mn(θ; F̂n).

If the true CDF of the anchoring point F0 is known, the asymptotic properties

of θ̃n = Qn(F0), the M-estimator of Mn(θ;F0), will follow directly from the standard

M-estimation theory for parametric models (Huber, 2011).

When F0 is unknown, as it is the case in the current research, we first obtain

its NPMLE F̂n, which converges to F0 at a rate of n
1
3 (Groeneboom and Wellner,

1992). In such a situation, development of the asymptotic properties of θ̂n = Qn(F̂n),

the M-estimator for Mn(θ, F̂n), is more challenging and technically involved with the

use of empirical process theory (Kosorok, 2007). The following regularity conditions

are required to establish the asymptotic properties of θ̂n.
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C1: There exist constants τ1 < τ2 <∞ such that the support of the density function

fT of the anchoring point T is contained in [τ1, τ2].

C2: The true anchoring point T is independent of the random observation interval

(U, V ] that brackets T .

C3: The support of F0, the CDF of T , is included in the union of the supports of

the CDF of U and the CDF of V .

C4: There exists a constant c such that P
(
F0(V )− F0(U) > c

)
= 1.

C5: The sum of marginal density functions of U and V , fU + fV , is strictly positive

over [τ1, τ2].

C6: The joint density function of (U, T, V ) is twice differentiable over [τ1, τ2]. In

particular, fU and fV are differentiable and uniformly bounded over [τ1, τ2].

C7: The density function fT is twice differentiable over [τ1, τ2].

Remark 4.2.1. Conditions C1-C4 are the general regularity conditions needed to

assure consistency and convergence rate of F̂n (Groeneboom and Wellner, 1992).

Conditions C5-C7 are distributional requirements for the observation and anchoring

points. These conditions are needed for studying the asymptotic properties of a class

of functionals of F̂n (Geskus and Groeneboom 1999), which helps in the derivation

of the asymptotic normality of θ̂n. In most interval-censored data situations, these

conditions are fairly mild and they pose no extra restriction on data analysis.

Theorem 4.2.2. Under conditions C1-C7, the functional estimator θ̂n = Qn(F̂n)

for the parameters in Model (4.1) is consistent and asymptotically normal with a

convergence rate of n
1
2 , i.e.,

√
n(θ̂n − θ0)

D−→ N(0,Σ), where θ0 = (λ0, α0, β0)t is
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the true value of the parameter vector and

Σ =
[
E
(
X(F0)⊗2

)]−1
E

[((
Φ(U, V ) +X(F0)tA

)t)⊗2] [
E
(
X(F0)⊗2

)]−1
,

where Φ(U, V ) =
(
0, φ1(U, V ), φ2(U, V )

)t
,

A =

 α0(EF0,U,V T − T ) + εU

β0(EF0,U,V T − T ) + εV

 ,

X(F0) =

 1 U − EF0,U,V T 0

1 0 V − EF0,U,V T


and we denote M tM as M⊗2 for any matrix M . Functions φ1 and φ2 are the unique

solutions to the following integral equations, respectively.

∫
U<T≤V

φ1(U, V )dH(U, V )

=
∫

U<T≤V

(∫ V
U sdF0(s)−T

(
F0(V )−F0(U)

))
EF0,U,V,θ0YU(

F0(V )−F0(U)
)2 dH(U, V |T )

∫
U<T≤V

φ2(U, V )dH(U, V )

=
∫

U<T≤V

(∫ V
U sdF0(s)−T

(
F0(V )−F0(U)

))
EF0,U,V,θ0YV(

F0(V )−F0(U)
)2 dH(U, V |T )

where H(U, V |T ) is the measure associated with the conditional joint distribution of

U and V for U < T ≤ V .
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Proof. Briefly, the theorem is proved in two steps. First, we show that
√
n(θ̃n − θ0)

is asymptotically normal. Then, we examine the difference
√
n(θ̂n− θ̃n) =

√
n(θ̂n−

θ0)−
√
n(θ̃n−θ0), which is by definition

√
n
(
Qn(F̂n)−Qn(F0)

)
. Using the empir-

ical process theory, we show that this quantity times E
(
X(F0)⊗2

)
is asymptotically

equivalent to
√
n
(
K(F̂n)−K(F0)

)
, where K is an appropriately defined determinis-

tic smooth functional. Using the general result from Geskus and Groeneboom (1999),

we show that
√
n
(
K(F̂n)−K(F0)

)
has an asymptotic linear expansion. Combining

the results, we establish the consistency and the asymptotic normality of θ̂n.

For a given cumulative distribution function (CDF) F , we write

X(F ) =

 1 U − EF,U,V T 0

1 0 V − EF,U,V T

 ,

where (U, V ] is a random censoring interval with U < V and F (U) < F (V ), and

EF,U,V (T ) =
∫ V
U TdF

/∫ V
U dF is the conditional expectation of the event time T

given U < T ≤ V . Let Xi(F ) be the X(F ) matrix associated with (Ui, Vi] for the

ith subject.

When the true CDF (F0) of the anchoring point T is known, a least square

estimator θ̃n = Qn(F0) can be obtained from Stage 2 of the proposed method. By

the assumption in Model (1), we have Y i = Xi(F0)θ0 +Ai, where θ0 = (λ0, α0, β0)t

is the true parameter vector and

Ai =
(
α0(EF0,Ui,ViT − Ti) + εUi , β0(EF0,Ui,ViT − Ti) + εVi

)t
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is the vector of A, associated with the observation (Ui, Vi, YUi , YVi) and unobserved

Ti for the ith subject.

From the explicit formula of θ̃n = Qn(F0) in Section 2, we have

θ̃n =

[
n∑
i=1

Xi(F0)tXi(F0)

]−1 [ n∑
i=1

Xi(F0)tY i

]

=

[
n∑
i=1

Xi(F0)tXi(F0)

]−1 [( n∑
i=1

Xi(F0)tXi(F0)θ0

)
+
( n∑
i=1

Xi(F0)tAi

)]

= θ0 +

[
n∑
i=1

Xi(F0)tXi(F0)

]−1 [ n∑
i=1

Xi(F0)tAi

]
,

which implies that

√
n
(
θ̃n − θ0

)
=

[
1

n

n∑
i=1

Xi(F0)tXi(F0)

]−1 [
1√
n

n∑
i=1

Xi(F0)tAi

]
.

Since Xi(F0), i = 1, · · · , n, are iid observations of X(F0), from the Law of

Large Numbers we have

1

n

n∑
i=1

Xi(F0)tXi(F0) = EF0
(
X(F0)tX(F0)

)
+ oP (1).

Further, since Xi(F0)tAi, i = 1, · · · , n, are iid observations of X(F0)tA, which has

zero mean and finite variance V ar
(
X(F0)tA

)
, from the Central Limit Theorem we

have

1√
n

n∑
i=1

Xi(F0)tAi = N
(
0, V ar

(
X(F0)tA

))
+ oP (1),
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which is an OP (1). So we write

√
n
(
θ̃n − θ0

)
=

[
EF0

(
X(F0)tX(F0)

)]−1 [ 1√
n

n∑
i=1

Xi(F0)tAi

]
+ oP (1),

(4.2)

which implies that θ̃n is a consistent estimator of θ0, and that
√
n
(
θ̃n − θ0

)
is

asymptotically normally distributed.

When F0 is unknown, we estimate it by F̂n. The asymptotics of θ̂n = Qn(F̂n)

must take into account the variation associated with estimation of F0, in Stage 1 of

the procedure. We note that
√
n
(
θ̂n − θ̃n

)
= (I) + (II), where

(I) =

[(
1
n

n∑
i=1

Xi(F̂n)tXi(F̂n)
)−1
−
(
1
n

n∑
i=1

Xi(F0)tXi(F0)
)−1]

×
[

1√
n

n∑
i=1

Xi(F̂n)tY i

]

(II) =

[
1
n

n∑
i=1

Xi(F0)tXi(F0)

]−1 [
1√
n

n∑
i=1

(
Xi(F̂n)−Xi(F0)

)t
Y i

]
.

We claim that there exists an influence function Φ = Φ(U, V ) with a zero

mean and a finite variance such that

1√
n

n∑
i=1

(
Xi(F̂n)−Xi(F0)

)t
Y i =

1√
n

n∑
i=1

Φ(Ui, Vi) + op(1). (∗)

For narrative convenience, we first complete the proof assuming that Claim (∗)

is true. We then prove the claim.

Since F̂n converges uniformly to F0 (Groeneboom and Wellner, 1992) and the

matrix EF0
(
X(F0)tX(F0)

)
is nonsingular, it follows that the first factor in (I) is an
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op(1):

[
1

n

n∑
i=1

Xi(F̂n)tXi(F̂n)

]−1
−

[
1

n

n∑
i=1

Xi(F0)tXi(F0)

]−1
= op(1).

By Claim (∗) and the fact that 1√
n

n∑
i=1

Xi(F0)tY i = OP (1), the second factor in (I)

is an OP (1):

1√
n

n∑
i=1

Xi(F̂n)tY i = OP (1).

So we proved that (I)= op(1) ·Op(1) = op(1), and hence

√
n
(
θ̂n − θ̃n

)
= op(1) +

[
1
n

n∑
i=1

Xi(F0)tXi(F0)

]−1 [
1√
n

n∑
i=1

(
Xi(F̂n)−Xi(F0)

)t
Y i

]
= op(1) +

[
EF0

(
X(F0)tX(F0)

)]−1 [ 1√
n

n∑
i=1

Φ(Ui, Vi)

]
.

Combining the above equation and Equation (4.2), we have

√
n
(
θ̂n − θ0

)
=
√
n
(
θ̂n − θ̃n

)
+
√
n
(
θ̃n − θ0

)
=

[
EF0

(
X(F0)tX(F0)

)]−1 [ 1√
n

n∑
i=1

(
Φ(Ui, Vi) +Xi(F0)tAi

)]
+ op(1).

Since Φ(Ui, Vi) +Xi(F0)tAi, i = 1, · · · , n, are iid observations of the random

vector Φ(U, V ) +X(F0)tA, which has a zero mean and a finite variance, we see that

θ̂n is a consistent estimator of θ0 and
√
n
(
θ̂n − θ0

)
is asymptotically normal by the

Central Limit Theorem. This completes the proof for Theorem 4.2.2.

The rest of this proof uses the empirical process theory to prove Claim (∗).
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Denote the empirical and the true probability measures for the random vector

(U, V, YU , YV ) by Pn and P, respectively. Let C be a constant, whose value varies

from place to place throughout the proof. For a small δ > 0, we let Fδ denote the

class

Fδ =
{
F is a CDF over [τ1, τ2] satisfying ‖ F − F0 ‖∞< δ

}
.

Considering the stochastic process U indexed by F in the class Fδ:

U(F ) =
((
YU , YV

)
X(F )

)t
=

(
YU + YV ,

(
U − EF,U,V T

)
YU ,

(
V − EF,U,V T

)
YV

)t
.

Using U , we can rewrite the left hand side of the equation in Claim (∗) as

1√
n

n∑
i=1

(
Xi(F̂n)t −Xi(F0)t

)
Y i =

√
nPn

(
U(F̂n)−U(F0)

)
= (III) + (IV ),

where (III) =
√
n(Pn − P)

(
U(F̂n)−U(F0)

)
and (IV ) =

√
nP
(
U(F̂n)−U(F0)

)
.

First, we show that (III) is an op(1). Consider the following class G induced

by the class F :

G =
{
GF (a, b) = EF,a,bT : F ∈ Fδ with F0(b)− F0(a) > c for a, b ∈ [τ1, τ2]

}

where c is the constant given by the regularity condition C4. By Lemma 3.3.4 and

van der Vaart and Wellner (1996, Theorem 2.10.6), G is P-Donsker, which further

implies that the class

{U(F )−U(F0) : F ∈ Fδ}
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is P-Donsker as well. By the uniform n
1
3 -convergency of F̂n (Groeneboom and Well-

ner, 1992, Section 4.3), we have F̂n ∈ Fδ and P
(
U(F̂n)−U(F0)

)2
→ 0 as n→∞.

So we have

(III) =
√
n(Pn − P)

(
U(F̂n)−U(F0)

)
= op(1)

by van der Vaart and Wellner (1996, Corollary 2.3.12).

Second, we evaluate (IV ) =
√
nP
(
U (F̂n)−U(F0)

)
. Direct calculation yields

√
nP
(
U(F̂n)−U(F0)

)
=
√
nP
((
EF0,U,V T − EF̂n,U,V T

)
(0, YU , YV )t

)
(4.3)

Using Taylor expansion, the regularity condition (C4) and n
1
3 -rate of convergence of

F̂n, the second entry of the vector in Equation (4.3) can be written as

√
nP
(

(EF0,U,V T − EF̂n,U,V T )YU

)

=
√
n
∫ (∫ V

U TdF0∫ V
U dF0

−
∫ V
U TdF̂n∫ V
U dF̂n

)
YUdP

=
√
n
∫ ∫ VU TdF0·

∫ V
U dF̂n−

∫ V
U dF0·

∫ V
U TdF̂n(∫ V

U dF0

)2
YUdP + oP (1)

=
√
n
(
K(F̂n)−K(F0)

)
+ op(1)

where K is the linear functional on Fδ defined by

K(F ) =
∫ (∫ VU TdF0·

∫ V
U dF−

∫ V
U dF0·

∫ V
U TdF

)
EF0,U,V,θ0YU(∫ V

U dF0

)2 dH(U, V )

=
∫ ( ∫

U<T≤V

(∫ V
U sdF0(s)−T

(
F0(V )−F0(U)

))
EF0,U,V,θ0YU(

F0(V )−F0(U)
)2 dH(U, V |T )

)
dF (T )
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where H(U, V |T ) is the measure associated with the conditional joint distribution of

U and V given U < T ≤ V .

To study the asymptotic distribution of
√
n
(
K(F̂n) −K(F0)

)
, we verify the

regularity conditions M1-M3, D1-D4 and F1-F3 stated in Geskus and Groeneboom

(1999): Condition M1 requires the true CDF F0 to be absolutely continuous with

bounded derivative, which is implied by our regularity conditions C1 and C7. Con-

dition M2 requires the censoring interval to be independent on the anchoring point

and the joint density of (U, V ) is absolutely continuous with respect to the two di-

mensional Lebesgue measure, which is implied by our regularity conditions C2 and

C6. Condition M3 requires F0 to have no mass where the marginal densities of U and

V are simultaneously zero, which is implied by our regularity condition C3. Condi-

tion D1 requires the marginal density of U and V not to be simultaneously zero over

[τ1, τ2], which is equivalent to our regularity condition C5. Condition D2 requires the

joint density of (U, V ) to be differentiable with bounded derivatives, which is implied

by our regularity condition C6. Condition D3 requires F0 to be differentiable except

for at most finitely many jumps, and the left/right-derivatives to be bounded, which

is implied by our regularity condition C7. Conditions F1 and F2 together require the

functional K to be Hellinger differentiable at F0 with a higher order term controlled

by the squared distance, more precisely,

K(G)−K(F0) =

∫
κF0(t)d(G− F0)(t) +O(‖G− F0‖2)

for some function κF0(t) (called the canonical gradient) and an appropriate metric

‖ · ‖ (in our case, the ‖ · ‖∞ norm is used). Since our functional K is linear, by the
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arguments given on Pages 631-632 in Geskus and Groeneboom (1999), Conditions

F1 and F2 are automatically satisfied, and the canonical gradient of K at F0 can be

computed using Proposition A.5.2 in Bickel et al. (1998) as

κF0(T ) =

∫
U<T≤V

(∫ V
U sdF0(s)− T

(
F0(V )− F0(U)

))
EF0,U,V,θ0YU(

F0(V )− F0(U)
)2 dH(U, V |T ).

Condition F3 requires κF0(T ) to have bounded derivatives over [τ1, τ2], which can be

verified through calculus based algebra using our regularity conditions C6 and C7.

With all conditions met, from Theorem 3.2 of Geskus and Groeneboom (1999),

we know that there is an influence function φ1 such that

√
nP

(
(EF0,U,V T − EF̂n,U,V T )YU

)
=
√
n
(
K(F̂n)−K(F0)

)
+ oP (1)

= 1√
n

n∑
i=1

φ1(Ui, Vi) + op(1),

where φ1(U, V ) has a zero mean and a finite variance, and it is uniquely determined

by the integral equation

∫
U<T≤V

φ1(U, V )dH(U, V ) = κF0(T )

by Geskus and Groeneboom (1999, Corollary 2.1) and van der Vaart (1991, Theorem

3.1).

Similarly, the last entry of the vector in Equation (4.3) can be expressed as

√
nP

(
(EF0,U,V T − EF̂n,U,V T )YV

)
= 1√

n

n∑
i=1

φ2(Ui, Vi) + op(1),
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for some influence function φ2 such that φ2(U, V ) has a zero mean and a finite vari-

ance, and it is uniquely determined by the integral equation given in Theorem 4.2.2.

In summary, we have shown that

1√
n

n∑
i=1

(
Xi(F̂n)t −Xi(F0)t

)
Y i = (III) + (IV ) = 1√

n

n∑
i=1

Φ(Ui, Vi) + op(1)

where Φ = (0, φ1, φ2)t. This completes the proof of Claim (∗), and hence the proof

of Theorem 4.2.2.

We finish this section with a few remarks regarding the application of Theo-

rem 4.2.2.

Remark 4.2.3. Given its complicated structure, direct evaluation of the asymptotic

variance matrix Σ is difficult. Since asymptotic normality is established and θ̂n is

relatively easy to compute, it is usually more convenient to use a resampling method to

estimate Σ. Here we estimate Σ by using a nonparametric bootstrap method. Specif-

ically, for a data set containing n subjects, we draw bootstrap resamples containing n

subjects from the original sample with equal weight and with replacement. We obtain

a prespecified number (b = 1, . . . , B) of resamples independently, and from which we

calculate B estimates θ̂
(b)
n , b = 1, . . . , B. We use the sample variance matrix of the

estimated sample mean of these estimates θ̂
(b)
n , b = 1, . . . , B, to approximate Σ; such

a variance estimate is known to be consistent (Efron and Tibshirani, 1994).

Remark 4.2.4. Finally, we note that the proposed model is further generalizable

in multiple ways. First, covariates could be included. Inclusion of covariates does

not fundamentally change the proof of theorem, except for the involvement of more
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complicate algebraic operations. Second, the main theoretical results hold for more

complicated functions of U − T and V − T . A more general model can be written as


YU = λt · Z +αt ·B(U − T ) + εU ,

YV = λt · Z + βt ·B(V − T ) + εV ,

where Z is a vector of time-invariant covariates, and B(t) =
(
b1(t), · · · , bq(t)

)T
is a vector of continuous and piecewise smooth functions satisfying bk(0) = 0 for

i = 1, 2, · · · , q. Such extensions may provide more enhanced modeling flexibility in

some applications.

4.3 Simulation study

To evaluate the operating characteristics of the proposed method, we conducted two

sets of simulation studies. The first one used data generated from a model in the form

of Model (4.1), while mimicking the data structure of the pubertal growth application.

Specifically, for each subject i, we first generated the anchoring point Ti from a Weibull

distribution with shape and scale parameters, 80 and 12, respectively. We simulated

a series of assessment times uniformly from the non-overlapping intervals (2j, 2j+ 2],

j = 0, 1, · · · . Based on Ti, we identified Ui and Vi as the adjacent points from the

series of the simulated assessment times that bracket Ti, i.e. Ui < Ti ≤ Vi. From

the simulated values of Ui, Ti and Vi, we generated the outcome (YUi , YVi) from the

piecewise linear model:

YUi = λ+ α · (Ui − Ti) + εUi , YVi = λ+ β · (Vi − Ti) + εVi ,
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with (εUi , εVi)
t being simulated from the bivariate normal distribution N (µ,Ω),

where

µ =

 0

0

 , Ω =

 5 4

4 5

 .

The true model parameters were chosen to be λ = 50, α = 5 and β = 8. We

considered four different sample sizes, n = 100, 200, 400 and 800. For a given sample

size, we conducted a Monte-Carlo simulation with 1000 replicates.

For each simulated dataset, three models were fitted. First, the proposed

model was fitted using the two-stage estimation method. Then for comparison pur-

poses, we considered two alternative approaches. One was a midpoint imputation

model, i.e., imputing Ti by the midpoint of the interval (Ui, Vi], and then estimating

the parameters using the ordinary least-squares method. This is a commonly used

technique in analytical practice (Shankar et al., 2005). The other was a model as-

suming the true anchoring point distribution F0 was known. For this latter model,

we used F0 instead of F̂n in Stage 2 to obtain parameter estimates. This second

model was not realistic for most applications. We use it here simply as a benchmark

to investigate the efficiency loss due to the estimation of F0. The estimated standard

errors of these three models were obtained by using the aforementioned bootstrap

method, based on B = 50 resamples.

For the 1000 replicates of samples of size n, we reported the percentage of

average estimation bias (% Bias), Monte-Carlo standard deviations (M-C SD), aver-

age bootstrap standard errors (Av. SE), and the empirical coverage probabilities of
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the 95% Wald-confidence intervals (95% CP) based on the asymptotical normality

described in Theorem 4.2.2. Simulation results were summarized in Table 4.1.

Table 4.1: Simulation result for wider censoring intervals.
λ = 50 α = 5 β = 8

n 100 200 400 800 100 200 400 800 100 200 400 800

Proposed model:

% Bias 0.182 0.052 0.047 0.017 0.117 0.464 0.115 0.189 0.417 0.212 0.240 0.178

M-C SD 0.453 0.291 0.215 0.147 0.254 0.173 0.128 0.086 0.278 0.193 0.137 0.094

Av. SE 0.425 0.297 0.207 0.146 0.244 0.175 0.124 0.088 0.274 0.192 0.134 0.096

95% CP 0.916 0.944 0.937 0.945 0.939 0.938 0.942 0.948 0.942 0.949 0.939 0.951

Midpoint imputation:

% Bias 1.195 1.135 1.223 1.160 11.02 10.51 11.03 10.59 7.237 7.005 7.217 7.035

M-C SD 1.041 0.748 0.530 0.360 1.023 0.710 0.508 0.350 1.139 0.774 0.556 0.388

Av. SE 1.031 0.738 0.521 0.371 0.987 0.710 0.504 0.359 1.086 0.782 0.556 0.396

95% CP 0.915 0.870 0.789 0.655 0.907 0.879 0.804 0.682 0.904 0.883 0.818 0.699

Use true F0:

% Bias 0.018 0.022 0.006 0.006 0.226 0.121 0.130 0.028 0.013 0.114 0.015 0.006

M-C SD 0.354 0.245 0.177 0.119 0.257 0.176 0.126 0.085 0.277 0.190 0.134 0.092

Av. SE 0.343 0.245 0.172 0.121 0.252 0.178 0.125 0.087 0.269 0.190 0.132 0.094

95% CP 0.947 0.948 0.932 0.944 0.948 0.947 0.944 0.953 0.940 0.949 0.933 0.957

Normal distribution approximation:

% Bias 0.463 0.255 0.245 0.223 0.170 0.361 0.167 0.345 1.723 1.267 0.978 0.910

M-C SD 0.792 0.568 0.398 0.269 0.261 0.184 0.129 0.088 0.342 0.238 0.169 0.112

Av. SE 0.738 0.555 0.394 0.278 0.257 0.183 0.129 0.090 0.380 0.251 0.172 0.120

95% CP 0.912 0.926 0.941 0.942 0.942 0.944 0.945 0.957 0.964 0.951 0.931 0.930

A second set of simulation was conducted to assess the influence of interval

width on the performance of the estimation. We used the same simulation scheme as

in the first set of simulation, but generated a series of the assessment times uniformly

from non-overlapping intervals (j, j+1], j = 0, 1, . . . . The resulted censoring intervals

were narrower than that in the first set of simulation. The simulation results were

summarized in Table 4.2.

Tables 4.1 and 4.2 show that the estimation bias is virtually ignorable in the

proposed method, even with a moderate sample size (n = 100). The average bootstrap

standard errors are all close to the corresponding Monte-Carlo standard deviations. In

45



Table 4.2: Simulation result for narrower censoring intervals.
λ = 50 α = 5 β = 8

n 100 200 400 800 100 200 400 800 100 200 400 800

Proposed model:

% Bias 0.123 0.050 0.053 0.028 0.118 0.646 0.013 0.094 1.446 0.880 0.786 0.536

M-C SD 0.367 0.241 0.185 0.123 0.456 0.331 0.238 0.161 0.499 0.346 0.247 0.166

Av. SE 0.346 0.248 0.175 0.124 0.434 0.316 0.228 0.162 0.482 0.343 0.243 0.174

95% CP 0.932 0.951 0.931 0.947 0.945 0.937 0.939 0.945 0.925 0.935 0.936 0.952

Midpoint imputation:

% Bias 0.500 0.446 0.521 0.487 9.143 7.920 9.089 8.510 5.929 5.204 5.880 5.615

M-C SD 0.807 0.589 0.420 0.274 1.479 1.077 0.763 0.500 1.578 1.139 0.810 0.532

Av. SE 0.810 0.578 0.405 0.289 1.470 1.044 0.735 0.527 1.566 1.112 0.783 0.563

95% CP 0.936 0.925 0.895 0.870 0.932 0.922 0.896 0.875 0.924 0.925 0.899 0.872

Use true F0:

% Bias 0.006 0.023 0.005 0.001 0.348 0.342 0.201 0.035 0.073 0.177 0.032 0.016

M-C SD 0.344 0.232 0.174 0.114 0.479 0.338 0.241 0.160 0.515 0.343 0.248 0.166

Av. SE 0.331 0.237 0.166 0.117 0.470 0.331 0.234 0.164 0.497 0.350 0.244 0.173

95% CP 0.935 0.954 0.939 0.956 0.947 0.942 0.946 0.953 0.940 0.943 0.939 0.959

Normal distribution approximation:

% Bias 0.416 0.243 0.258 0.235 0.565 1.349 0.827 1.056 4.296 3.228 2.678 2.569

M-C SD 0.648 0.437 0.315 0.208 0.462 0.328 0.229 0.153 0.676 0.457 0.328 0.212

Av. SE 0.609 0.446 0.316 0.219 0.479 0.331 0.229 0.160 0.816 0.484 0.319 0.221

95% CP 0.917 0.933 0.930 0.946 0.957 0.952 0.945 0.940 0.965 0.938 0.910 0.876

addition, the coverage probabilities of the 95% Wald-confidence intervals approach the

nominal level of 0.95 as the sample size increases. Together, the simulation provides a

strong numerical evidence in support of the asymptotic normality theory developed in

Section 4.2. In comparison, the bias in the estimates using the midpoint imputation

method is much larger and the bias is not reduced as sample size increases. Both

the Monte-Carlo standard deviations and bootstrap standard errors of the midpoint

imputation are markedly larger than those in the proposed method. The 95% Wald-

confidence intervals from the midpoint imputation method have decreasing coverage

probabilities when sample size increases.

As one would expect, parameter estimation performs best in the hypothetical

situation of known F0. But the bias in the proposed method are fairly small as
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well. The bias also decreases with sample size. In situations of moderate to large

sample sizes, the bias of the new method is practically ignorable, relatively to the

magnitudes of the true parameter values. The Monte-Carlo standard deviation and

average bootstrap standard errors of the parameters of the new method are slightly

larger that those obtained in the hypothetical situation of known F0. But importantly,

the coverage probabilities of the new method and the case of known F0 are quite

comparable, especially for moderately large samples (n ≥ 200).

To empirically evaluate the relative efficiency, we calculated the ratio of the

Monte-Carlo standard deviations in the proposed model over those from the case of

known F0; see Table 4.3. All ratios are close to 1, especially for the local change rates

α and β. Some ratios have values less than 1 due to random errors, since these ratios

are simulated relative efficiency.

Narrower censoring intervals produce more accurately estimated F̂n. In those

situations, the differences in standard errors between the proposed method and the

known F0 case are even smaller, suggesting that the new method does not lead to

substantial loss of efficiency in parameter estimation.

Table 4.3: Empirical relative efficiency: proposed method vs knowing F0.
λ = 50 α = 5 β = 8

n 100 200 400 800 100 200 400 800 100 200 400 800

Wider censoring intervals

M-C SD 1.280 1.191 1.213 1.233 0.986 0.986 1.008 1.013 1.005 1.016 1.019 1.023

Narrower censoring intervals

M-C SD 1.068 1.038 1.060 1.082 0.952 0.978 0.989 1.007 0.969 1.007 0.992 1.000

Finally, we fitted a parametric model under the assumption that F0 follows

a normal distribution with unknown mean µ and variance σ2. The parameters

(λ, α, β;µ, σ2) were jointly estimated. Such a model is commonly used in practice
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(Robinson et al., 2010). When the true F0 was not normally distributed, our sim-

ulation results show that it produces biased estimates and consequently suboptimal

coverage probability. Especially with narrow censoring intervals, the coverage prob-

ability of β was only 87.6% when sample size was 800.

In summary, the simulation study provides strong empirical evidence indicat-

ing good finite sample performance of the proposed method.

4.4 Analysis of pubertal skeletal growth data

To illustrate the application of the proposed method to real data, we analyze the

pubertal growth data from 360 children. The original data came from an observational

study of somatic growth and blood pressure development. The study protocol was

described elsewhere (Tu et al., 2009, 2014). In the current analysis, we attempt to

determine the rates of growth in height, upper body length (i.e., height in sitting

position), shoulder length, elbow, wrist, and knee diameters, and to compare the

rates between male and female participants, immediately before and after the subject-

specific pubertal growth spurt (PGS).

Although the exact PGS time for an individual was not observable, the in-

vestigators were able to determine the assessment times that flanked the unobserved

PGS (Shankar et al., 2005), which we referred to as the peak growth period. The

current analysis included a total of 169 girls and 191 boys. The age range from the

youngest and the oldest assessment times were between 9.005 and 16.930 years, thus

ensuring the coverage of PGS in all participants. Figure 4.1 shows the peak growth

intervals for the study children. Given the skeletal measurements at the endpoints of
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these intervals, we used the proposed method to estimate the change rates in these

outcomes before and after the unobserved PGS.

Figure 4.1: Peak growth periods in 360 children
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The skeletal measures of interest, including height, upper body length, shoul-

der length, elbow, wrist and knee diameters of the participants in the peak growth

intervals are shown in Figure 4.2, stratified by sex. The figure clearly show that

significant changes occur simultaneously in all skeletal dimensions during this peak

growth period.

49



Figure 4.2: Observed data
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As proposed, we used the NPMLE of the unknown CDF to depict the PGS

distribution in male and female children, as shown in Figure 4.3. From the NPMLE
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of the CDFs, we estimated median ages of PGS to be 11.05 years for girls, and 12.74

years for boys.

Figure 4.3: The estimated CDFs of F0 for males and females
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We then fit the following distribution-free model


E(YU ) = λ+ α · (U − T ),

E(YV ) = λ+ β · (V − T ),

separately for boys and girls, where YU and YV were the observed values of the skeletal

variables, including height, upper body length, shoulder length, and elbow, wrist, and

knee diameters, measured at the two end points of (U, V ], respectively. The functional

estimates of the pre and post-PGS skeletal growth in the six measures, stratified by

sex, are presented graphically in Figure 4.4.

51



Figure 4.4: The fitted anchoring point models.
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Inference on the post-PGS growth rate changes from the pre-PGS period were

made based on the asymptotic results of Theorem 4.2.2. Depending the specific

need of testing, one could express tests in form of linear contrast etθ, with null
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hypothesis written as H0 : etθ = 0. The two-sided test statistic, therefore, takes

the form n(etΣ̂ne)−1
(
etθ̂n

)2
, where θ̂n is the parameter estimate and Σ̂n is the

bootstrap estimate of the asymptotic variance matrix. The test statistic follows the

χ2-distribution with 1 degree of freedom asymptotically according to Theorem 4.2.2.

Letting e = (0,−1, 1)t, it allows for comparison of the pre-PGS rate α against the

post-PGS rate β of a given outcome.

Similarly, we can make inference on the difference in growth rates between

boys and girls by testing hypothesis H0 : et(θ1 − θ2) = 0. The corresponding test

statistic is derived from the standard independent two-sample test given by

[
n−11 (etΣ̂1,n1e) + n−12 (etΣ̂2,n2e)

]−1 (
et(θ̂1,n1 − θ̂2,n2)

)2

with e = (0, 0, 1)t, where θ̂1,n1 and θ̂2,n2 are the parameter estimates, and Σ̂1,n1

and Σ̂2,n2 are the bootstrap estimates of the asymptotic variance matrices for the

respective groups. Again, the test statistic follows a χ2-distribution with 1 degree of

freedom asymptotically.

The analysis represents the first attempt in quantifying the skeletal growth

rates in boys and girls around the time of PGS (See Figure 4.4). The analysis clearly

showed that boys and girls experienced very different rates of skeletal growth around

PGS. Three important observations emerged from the analysis: (1) Skeletal growth

continues around PGS in both sexes, as shown by the strictly positive growth rates in

all variables. (2) In comparison with girls, boys have greater skeletal measures around

PGS. Interestingly, sex differences show not only in the length of the bones but also

in the thickness of the bones, in both pre and post-PGS periods. For example,
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in the post-PGS period, boy’s elbow diameter increased at a rate of 0.57cm/year,

significantly greater than girl’s 0.28cm/year (p = 0.03). In the same period, boy’s

wrist diameter increases at a rate of 0.43cm/year, significantly greater than girl’s

0.21cm/year (p = 0.01). (3) Boy’s post-PGS growth rates are generally greater than

their pre-PGS rates. For example, the growth rate of upper-body length in boys

increases from 2.64cm/year in the pre-PGS period to 5.68cm/year in the post-PGS

period, a net increase of 3.04cm/year (p = 0.02), comparing to a slight decrease in

girls from 4.02cm/year pre-PGS to 3.87cm/year post-PGS (p = 0.88). The same was

true for the bone thickness. For example, the wrist diameter growth rate in boys

increases from 0.17cm/year pre-PGS to 0.43cm/year post-PGS (p = 0.04).

Viewed as a whole, the analysis provided a clearer picture of the emergence

of sexual dimorphism in human skeletal development. Although girls start puberty

and reach their peak height growth velocity nearly two years earlier than boys, at

the PGS boys exceed girls in all skeletal measures including both bone lengths and

bone thickness. Importantly, boy’s greater post-PGS growth rates in different body

parts set the stage for a stronger and more sustained growth that ultimately led their

bigger average body size.

The findings, however, also raised intriguing questions about the regulation

of such coordinated patterns of growth. One might speculate, for example, that sex

differences around the PGS could be the result of a surging influence of androgenic

hormones such as testosterone. In the absence of direct evidence, we simply note the

concurrent emergence of accelerated bone growth and male sexual characteristics right

after PGS appears to give credence to such a speculation. Of course, variations in

timing as well as length of pubertal growth suggest the existence of multiple operators,
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including hormonal (Rose et al., 1991), nutritional (Whiting et al., 2004), and genetic

(Tu et al., 2015) influences on the rapid skeletal development in puberty.
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Chapter 5

Mixed-effects model with interval censored anchoring points

The distribution-free model presented in the previous chapter completely ignores

the correlations of the longitudinal observations. The estimation efficiency can be

improved if the correlations can be appropriately modeled. Therefore, we consider a

likelihood based approach to study parameter estimations involving interval censored

anchoring points.

A second motivation comes from the need of extending the traditional mixed-

effects models for longitudinal data anchored by interval censored events. Longitu-

dinal data are collected on a predetermined time scale. To conduct analysis, such

as using mixed-effects models (Laird and Ware, 1982), the time scale for defining

the primary endpoint is needed to place the observations in a proper time context.

When the time scale needs to be defined using unobserved anchoring points that are

randomly distributed with unknown distributions, standard mixed-effects models are

not readily applicable. In this chapter, we apply the two-stage estimation method

to extend the standard mixed-effects models for longitudinal data to accommodate

interval censored anchoring points.
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5.1 Estimation with with interval-censored anchoring points

5.1.1 Parameter estimation

We formally define the notation in a generic longitudinal study setting. From each

subject, we observe the response vector Y , covariates vector W , and a censoring

interval (L,R] that contains the unobserved anchoring point T , i.e., L < T ≤ R.

Given W , L,R and unobserved T , the conditional density function of Y can be

modeled as

Y
∣∣(W , L,R, T ) ∼ φ(Y

∣∣W , L,R, T ;θ) (5.1)

for a known density function φ that contains the finite dimensional parameter θ,

whose true value θ0 is of the interest. Here, the conditional density function φ can

be any continuous or discrete distributions. For the main theoretical result to hold,

we only require φ to satisfy a set of regularity conditions (see Section 5.1.2). For

example, φ can be a member of the exponential family of distributions. When φ is

the density function of a normal distribution, the model can be written in the familiar

form of a linear mixed-effects model, which we shall examine as a special case with

greater details in Section 5.2.

In traditional longitudinal models, the parameter θ is well defined only when

W , L,R, and T are fully observed; when T is not observed, the true value θ0 cannot

be estimated from Model (5.1). An intuitive way to estimate θ0 in the absence of T is

to focus on the conditional density function of Y givenW , L and R, while integrating

out T :

Y
∣∣(W , L < T ≤ R) ∼

∫
φ(Y

∣∣W , L,R, t;θ) dFT |(W ,L<T≤R;θ)(t),
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where FT |(W ,L<T≤R;θ) is the conditional cumulative distribution function (CDF)

of T given the observed covariates W , L < T ≤ R, and parameter θ. We assume

that T is conditionally independent of W , given L and R; (L,R] is an independent

censoring interval; and the marginal distribution of T is not informative to θ. These

assumptions lead to FT |(W ,L<T≤R;θ)(t) = 1(L < t ≤ R)
(
F0(t)− F0(L)

)/(
F0(R)−

F0(L)
)
, where F0 denotes the true but often unknown CDF of the anchoring point

T . So we have

Y
∣∣(W , L < T ≤ R) ∼

∫ R
L

φ(Y
∣∣W ,L,R,t;θ)dF0(t)

F0(R)−F0(L)

∝
∫ R
L φ(Y

∣∣W , L,R, t;θ)dF0(t).

(5.2)

When the anchoring point distribution F0 is known, the true parameter value

θ0 can be estimated directly from Model (5.2). But F0 is often unknown in real

studies. In such a situation, ideally, one would jointly estimate θ0 and F0 from

Model (5.2). Given a random sample {(Y i,W i, Li, Ri)|i = 1, · · · , n}, i.e., without

observing the anchoring point Ti, i = 1, · · · , n, one could estimate θ0 and F0 by

maximizing the marginal log-likelihood

Ln(θ, F ) =
n∑
i=1

log

(∫ Ri

Li

φ(Y i

∣∣W i, Li, Ri, t;θ)dF (t)

)

jointly over Θ × F , where Θ is a parameter space for θ and F the class of one-

dimensional CDF’s. Maximization of the above likelihood function presents a daunt-

ing computational challenge because the surface of Ln(θ, F ) is often very complicated.

To solve the problem, we propose a pseudo-likelihood approach as described

in the Introduction. First, we estimate F0 by the nonparametric maximum likelihood
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estimator (NPMLE) F̂n using the interval censored data {(Li, Ri]|i = 1, · · · , n}, as

described in Section 4.1. With the estimated CDF F̂n, we then estimate θ0 by θ̂n,

the maximizer of the pseudo-likelihood

Ln(θ, F̂n) =
n∑
i=1

log

(∫ Ri

Li

φ(Y i

∣∣W i, Li, Ri, t;θ)dF̂n(t)

)
. (5.3)

The algorithmic efficiency for computing the parameter estimates θ̂n from Model (5.3)

depends on the specific model φ. In Section 5.2, we provide a hybrid algorithm in the

case that φ represents a linear mixed-effects model.

5.1.2 Asymptotic property

The estimator that we proposed can be regraded as a stochastic functional of the

NPMLE F̂n. Consider the following stochastic functional Qn, which maps a CDF F

to

Qn(F ) = arg max
θ∈Θ

(Ln(θ, F ))

= arg max
θ∈Θ

{
n∑
i=1

log
(∫ Ri
Li

φ(Y i

∣∣W i, Li, Ri, t;θ)dF (t)
)}

.

The proposed estimate θ̂n is the value of Qn at the estimated distribution F̂n,

i.e., θ̂n = Qn(F̂n). If F0 is known, the true parameter θ0 can be estimated from

Model (5.2). Let θ̃n be the estimate under F0, i.e., θ̃n = Qn(F0). It follows from

standard maximum likelihood theory that θ̃n is a consistent and asymptotic normal

estimator of θ0.

The idea in the proposed method is that, F̂n is a consistent estimate of F0 and

Qn is a smooth functional, so θ̂n = Qn(F̂n) is potentially asymptotically equivalent

to θ̃n = Qn(F0), and hence a possibly consistent estimate of θ0. Although the
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idea is simple, a rigorous study of the asymptotic property of θ̂n is much evolved,

because of the extra variability associated with the estimation of F̂n. Note that F̂n

has n1/3-convergency rate (Groeneboom and Wellner, 1992), which complicates the

study of asymptotic distribution of θ̂n. We adopt techniques from the empirical

process theory to accomplish this goal. Throughout the rest of the manuscript, for a

measurable function f on a measure space with measure P, let P(f) denote
∫
fdP,

the integral of f with respect to P. The following regularity conditions are sufficient

to justify the forthcoming theorem on the asymptotic properties of θ̂n.

1. Regularity conditions on the interval-censoring data: W , L,R and T .

F1: There exist constants τ1 < τ2 < ∞ such that the support of the density

function fT of the anchoring point T is contained in [τ1, τ2].

F2: The event time T is conditionally independent of W , given L and R. The

censoring interval (L,R] is independent of T .

F3: Support of F0 is included in the union of the supports of the CDF of L

and the CDF of R. And F0 does not depend on θ.

F4: There exists a constant c such that P
(
F0(R)− F0(L) > c

)
= 1.

F5: The sum of density functions of L and R, fL + fR, is strictly positive in

[τ1, τ2].

F6: The joint density function of (L, T,R), is twice differentiable in [τ1, τ2]. In

particular, fL and fR are differentiable and uniformly bounded in [τ1, τ2].

F7: The density function of T , fT , is twice differentiable.

2. Regularity conditions on the longitudinal data model when F0 is known.

Let ∇kθ denote the differential operator of taking all k-th order partial deriva-

tives with respect to the vector variable θ. Let d = dim(θ) denote the dimension

of θ. The model parameter space Θ is a subset of Rd such that:
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M1:
∫ R
L φ(Y

∣∣W , L,R, t;θ1)dF0(t) 6=
∫ R
L φ(Y

∣∣W , L,R, t;θ2)dF0(t) for any dif-

ferent parameters θ1 6= θ2 in Θ.

M2: The true parameter θ0 is an inner point of Θ .

M3: Support of
∫ R
L φ(Y

∣∣W , L,R, t;θ)dF0(t) does not dependent on θ ∈ Θ.

M4: The conditional density function φ = φ(Y
∣∣W , L,R, T ;θ) is continuous.

The third order partial derivative ∇3
θ(φ) exists and is continuous. Both

φ and its partial derivative function u = ∇θ(φ) have continuous partial

derivatives with respect to T .

M5: Let P be the probability measure associated with (Y ,W , L,R), then

∇θ
[
P

[
log

(∫
φdF0

)]]
= P

[
∇θ
[
log

(∫
φdF0

)]]

∇2
θ

[
P

[
log

(∫
φdF0

)]]
= P

[
∇2
θ

[
log

(∫
φdF0

)]]
3. The random vector (Y ,W , L,R) is bounded with probability 1.

Remark 5.1.1. The regularity conditions are mild and pose no extra restrictions

in most applications. The first set of conditions are usually assumed, in order to

have good estimate of smooth functionals on the CDF of interval-censored event time

(Geskus and Groeneboom, 1999). The second set of conditions are the usual regularity

conditions assumed in the maximum likelihood theory. The third condition is often

satisfied in practice. It means that, as long as the data do not contain substantial

amount of extreme observations, the parameter estimate is asymptotically normally

distributed as described in the following theorem.

Theorem 5.1.2. Under the stated regularity conditions, the model estimate θ̂n of

Model (5.3) is consistent and asymptotically normally distributed. More precisely,
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let P be the probability measure associated with (Y ,W , L,R), θ0 the true parameter,

u = ∇θφ the gradient of φ with respect to θ, Uθ0,F0 =

[(∫ R
L φdF0

)−1 ∫ R
L udF0

]
θ=θ0

the score function and A = −P
(
∇θ(Uθ,F0)

∣∣
θ=θ0

)
the information matrix when F0

is known, and Φ = Φ(L,R) the multidimensional function that has a zero mean and

uniquely solves the following integral equation system

∫
L<t≤R

Φ(L,R)dP =

∫
St

(∫ R

L
φdF0

)−2(
u

∫ R

L
φdF0 − φ

∫ R

L
udF0

)
θ=θ0

dPt,

where St denotes the domain of (Y ,W , L,R) given value T = t, and Pt is the con-

ditional measure of P when restricted to St. Then

√
n
(
θ̂n − θ0

)
= A−1 ·

√
nPn

(
Uθ0,F0 + Φ

)
+ op(1),

where Pn denotes the empirical probability measure associated with a random sample

of (Y ,W , L,R) of size n. In particular,
√
n
(
θ̂n − θ0

) P−→N (0,Σ), with the asymp-

totic variance matrix Σ given by

Σ = A−1 +A−1P
(
Uθ0,F0Φ

t + ΦU t
θ0,F0

+ Φ⊗2
)
A−1,

where M⊗2 denotes MM t for any matrix M .

Proof. Let K denote a constant, whose value differs from place to place. The proof

is done by applying Theorem 3.4.1. Consider the following multivariate random

62



functional,

U(Y ,W , L,R, F,θ) =

∫ R
L u(Y ,W , L,R, t;θ) dF (t)∫ R
L Φ(Y ,W , L,R, t;θ) dF (t)

=

∫ R
L u dF∫ R
L Φ dF

which is the score function of the parameter θ based on the marginal likelihood of

(Y ,W , L,R), obtained by integration on T using CDF F . The true parameter θ0 of

interest is the solution of

P
(
U(Y ,W , L,R, F0,θ)

)
=

∫ ∫ R
L u dF0∫ R
L Φ dF0

dP = 0.

From the regularity conditions (M2) and (M4), there exists a closed ball Θ with

radius K > 0 and with center θ0, over which the function P
(
U(Y ,W , L,R, F0,θ)

)
is C3 and strictly convex. Let Fδ denote the space of all CDF supported in [τ1, τ2],

whose ‖ · ‖∞-distances from F0 are less than a small number δ. Let Uθ,F denote the

following function on (Y ,W , L,R)

Uθ,F (Y ,W , L,R) = U(Y ,W , L,R, F,θ).

Define an empirical process Ψn by setting Ψn(θ, F ) = PnUθ,F , and the correspond-

ing functional Ψ by setting Ψ(θ, F ) = PUθ,F , where (θ, F ) ∈ Θ×Fδ.

To prove Theorem 5.1.2, we need two preparations.

The first preparation is to study the properties of several classes of functions.

By Lemma 3.3.4, the following two classes of functions are both P-Donsker.

NUMΘ,Fδ =

{∫ R

L
u dF

∣∣∣ F ∈ Fδ,θ ∈ Θ

}
,
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DENΘ,Fδ =

{∫ R

L
Φ dF

∣∣∣ F ∈ Fδ,θ ∈ Θ

}
.

The regularity condition 3 implies that both NUMΘ,Fδ and DENΘ,Fδ are uniformly

bounded. By Condition F4, DENΘ,Fδ is uniformly bounded away from zero when

δ is small enough. By van der Vaart and Wellner (1996, Theorem 2.10.6), both the

point-wise quotient class

UΘ,Fδ =

{
Uθ,F =

∫ R
L u dF∫ R
L Φ dF

∣∣∣θ ∈ Θ, F ∈ Fδ

}

and the smooth transformation class

MΘ,Fδ =

{
Mθ,F = log

(∫ R

L
Φ dF

)∣∣∣θ ∈ Θ, F ∈ Fδ

}

are also P-Donsker classes. In particular MΘ,Fδ is a Glivenko–Cantelli class. By

van der Vaart and Wellner (1996, Example 2.10.7), the difference class

DUΘ,Fδ =
{
Uθ1,F1 −Uθ2,F2

∣∣∣Uθ1,F1 ,Uθ2,F2 ∈ UΘ,Fδ

}

is also a P-Donsker class.

Next, we need to study the properties of the functional Ψ. For any θ ∈ Θ, a

direct computation shows Ψ(θ, F )−Ψ(θ, F0) = (I)− (II) + (III), where

(I) =

∫ (∫ R

L
φdF0

)−2
·

(∫ R

L
udF ·

∫ R

L
φdF0 −

∫ R

L
udF0 ·

∫ R

L
φdF

)
dP

(II) =

∫ (∫ R

L
φdF0

)−2
·
∫ R

L
ud(F − F0) ·

∫ R

L
φd(F − F0) dP
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(III) =

∫ (∫ R

L
φdF

)−1
·

(∫ R

L
φdF0

)−2
·

(∫ R

L
udF ·

∫ R

L
φd(F − F0)

)2

dP

The first term (I) can be calculated as

(I) =
∫ (∫ R

L φdF0

)−2(∫ R
L ud(F−F0) ·

∫ R
L φdF0 −

∫ R
L udF0 ·

∫ R
L φd(F−F0)

)
dP

=
∫ [∫ R

L

(∫ R
L φdF0

)−2 (
u
∫ R
L φdF0 − φ

∫ R
L udF0

)
d(F − F0)

]
dP

=
∫ [∫

St

(∫ R
L φdF0

)−2 (
u
∫ R
L φdF0 − φ

∫ R
L udF0

)
dPt

]
d(F − F0),

where the last equality follows from changing order of integrals, and St denotes the

domain of (Y ,W , L,R) given value t, and Pt denotes the induced conditional prob-

ability measure on St. By the regularity condition (M4) on the smoothness of φ and

regularity condition (F6) on H, a straightforward algebra yields that

κ(θ, t) =

∫
St

(∫ R

L
φdF0

)−2(
u

∫ R

L
φdF0 − φ

∫ R

L
udF0

)
dPt (5.4)

is a C1 function on Θ× [τ1, τ2].

Using the regularity condition 3, the terms (II) and (III) can be controlled

by

∣∣− (II) + (III)
∣∣ ≤ ( 1

K max(‖u‖) max(Φ) + 1
K max(‖u‖) max(Φ)2

)∥∥Fn − F0∥∥2∞
= K

∥∥Fn − F0∥∥2∞.
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Since the constant K does not depend on θ, we proved that

Ψ(θ, Fn)−Ψ(θ, F0) =

∫
κ(θ, t)d(Fn − F0) +Op(‖Fn − F0‖2∞), (5.5)

uniformly on Θ, as required in Condition L4 of Lemma 3.4.2.

We are now ready to verify the four conditions in Theorem 3.4.1 as follows.

1. Condition T1.

This is included in the regularity condition 2.

2. Condition T2: θ̂n
P−→θ0.

By definition, θ̂n maximizes PnMθ,F̂n
, where M

θ,F̂n
= log

(∫ R
L ΦdF̂n

)
. Since

MΘ,Fδ is a P-Glivenko–Cantelli class containing M
θ,F̂n

, it follows that

max
θ∈Θ
|
(
Pn − P

)
M
θ,F̂n
| P−→0.

Since n1/3‖F̂n−F‖∞
P−→0 by Groeneboom and Wellner (1992), it can be easily

shown by the Dominated Convergence Theorem (DCT) that

max
θ∈Θ
|PM

θ,F̂n
− PMθ,F0 |

P−→0.

Hence max
θ∈Θ
|PnMθ,F̂n

− PMθ,F0|
P−→0 as well. It follows from the regularity

condition 2 that PMθ,F0 is strictly convex over Θ with local maximum at θ0,

which implies

max
θ∈Θ,‖θ−θ0‖>ε

PMθ,F0 < PMθ0,F0 .

66



Therefore by Theorem 5.7 of van der Vaart (1998), there exists a θ̂n ∈ Θ

that maximizes PnMθ,F̂n
and θ̂n

P−→θ0. In particular, when n is large, θ̂n is

a maximizer inside Θ and hence a solution of Ψn(θ, F̂n) = 0, which is the

proposed estimate of the model parameter θ.

3. Condition T3:
√
nΨn(θ0, F̂n)

P−→Z for a zero mean normal distribution Z.

Since F̂n is the NPMLE with an interval censored data satisfying the regular-

ity condition 1, the Hellinger differentiability (Geskus and Groeneboom, 1999,

Pages 631-632) of Ψ(θ0, F ) with respect to F at F0, as shown in Equation (5.5),

implies that there exists a unique zero mean random variable Φ(L,R) such that

√
nΨ(θ0, F̂n) =

√
nΨ(θ0, F̂n)−

√
nΨ(θ0, F0) =

√
nPn

(
Φ(L,R))

)
+ op(1)

by Corollary 2.1 of Geskus and Groeneboom (1999) and Theorem 3.1 of van der

Vaart (1991). The function Φ(L,R) is characterized as the solution to the

integral equation ∫
L<t≤R

Φ(L,R)dP = κ(θ0, t),

where κ(θ0, t) is given in Equation (5.4).

On the other hand, we have

√
nΨn(θ0, F̂n)−

√
nΨn(θ0, F0) =

√
nPn

(
U
θ0,F̂n

−Uθ0,F0
)

=
√
n(Pn − P)

(
U
θ0,F̂n

−Uθ0,F0
)

+
√
nP
(
U
θ0,F̂n

−Uθ0,F0
)

= op(1) +
√
nΨ(θ0, F̂n).
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where the first term is op(1) by Corollary 2.3.12 of van der Vaart and Well-

ner (1996), because U
θ0,F̂n

− Uθ0,F0 is in the P-Donsker class DUΘ,Fδ and

n1/3‖F̂n − F‖∞
P−→0 implies P

(
U
θ0,F̂n

−Uθ0,F0
)2 P−→0 by DCT. Thus, we

have shown that

√
nΨn(θ0, F̂n) =

√
nΨn(θ0, F0) +

√
nΨ(θ0, F̂n) + op(1)

=
√
nPn

(
Uθ0,F0) +

√
nPn

(
Φ
)

+ op(1).

In particular, we have
√
nΨn(θ0, F̂n)

P−→Z, where Z is the limiting distribution

of
√
nPn

(
Uθ0,F0 + Φ

)
, which is normally distributed with a zero mean.

4. Condition T4.

We verify the four sufficient conditions in Lemma 3.4.2. The first two condi-

tions follow directly from the regularity conditions, and the n1/3-convergence

rate of F̂n (Groeneboom and Wellner, 1992). The last condition follows from

Equation (5.5). It remains to check the third condition.

For any F ∈ F , we have

√
n
(
Ψn(θ̂n, F ) − Ψ(θ̂n, F )

)
−
√
n
(
Ψn(θ0, F )−Ψ(θ0, F )

)
=
√
n(Pn − P)

(
U
θ̂n,F

−Uθ0,F
)
.

Notice that U
θ̂n,F

−Uθ0,F is a member in the P-Donsker class DUΘ,Fδ . Us-

ing the regularity condition 3, the consistency of θ̂n, and the fact that the

measure dF has support in the compact set [τ1, τ2], it follows by DCT that

P
(
U
θ̂n,F

−Uθ0,F
)2 P−→0. Hence

√
n(Pn − P)

(
U
θ̂n,F

−Uθ0,F
)

= op(1) by
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Corollary 2.3.12 of van der Vaart and Wellner (1996). This verifies the third

condition in Lemma 3.4.2.

So Condition T4 is satisfied by Lemma 3.4.2.

Finally, we complete the proof of Theorem 5.1.2 by applying Theorem 3.4.1

to obtain

√
n
(
θ̂n − θ0

)
= A−1 ·

√
nPn

(
Uθ0,F0 + Φ

)
+ op(1),

where−A is the Jacobian of P
(
Uθ,F0

)
at θ = θ0. So we have

√
n
(
θ̂n−θ0

) P−→N (0,Σ),

where Σ = A−1P
(
(Uθ0,F0 + Φ)⊗2

)
A−1. Since Uθ,F0 is the score function of θ, it

follows from the classical MLE theory that

A = −P
(
∇Uθ0,F0

)
= P

(
U⊗2θ0,F0

)
.

So the asymptotic variance matrix Σ can be decomposed as

Σ = A−1 +A−1P
(
Uθ0,F0Φ

t + ΦU t
θ0,F0

+ Φ⊗2
)
A−1

as in Theorem 5.1.2.

Similar to the estimation of the asymptotic variance in Theorem 4.2.2, the

asymptotic variance matrix Σ has a complicated description. Since the
√
n-convergence

rate and the asymptotic normality of the parameter estimate are achieved, we rec-

ommend the bootstrap resembling method to estimate Σ.
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5.2 A case study: Linear mixed-effects models

In this section, we apply the general method proposed in Section 5.1 to study parame-

ter estimation in linear mixed-effects models with interval censored anchoring points.

Linear mixed-effects models have been a work horse for analysis of longitudinal data

with continuous outcomes. Here we discuss the situations where the anchoring points

defining the longitudinal time scale are interval censored. A more specific real data

application is described in Section 5.4.

5.2.1 Linear mixed-effects model with interval censored anchoring points

As before, we let Y denote the longitudinal outcome, W the covariates, and (L,R]

the time interval that brackets the unobserved anchoring point T . We consider a

linear mixed-effects model:

Y
∣∣(W , L,R, T, r) ∼N

(
Xβ +Zr, σ2I

)
, r ∼N (0,G),

where G is the fixed but unknown covariance matrix of the random effects r, X =

X(W , L,R, T ) and Z = Z(W , L,R, T ) are respectively the design matrices for the

fixed effects and random effects. Entries of X and Z are functions of W , L, R and

T . The parameter of interest is θ = (β, σ2,G). For the unobservable event time

T , we assume a conditional independence that FT |(W ,L<T≤R) = FT |L<T≤R, which

is not informative to θ. We also assume that (L,R] is an independent censoring

interval of T . It follows from these assumptions that FT |(W ,L<T≤R)(t) = 1(L < t ≤

R)
(
F0(t)−F0(L)

)/(
F0(R)− F0(L)

)
, where F0 is the true but unknown CDF of the

anchoring point T .
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To estimate the true parameter θ0 using the functional estimation process

proposed in Section 5.1.1, we first obtain the NPMLE F̂n of F0 by using the interval

censored data (L,R]. Assume that F̂n has jumps pj at time sj , j = 1, · · · , k, then

the pseudo-likelihood of Y
∣∣(W , L < T ≤ R) is given as

∑
L<sj≤R

pj∑
L<sk≤R

pk
|V (sj)|−1/2 exp

(
−1

2

(
Y −X(sj)β

)t
V (sj)

−1(Y −X(sj)β
))
,

where X(sj) = X|T=sj , Z(sj) = Z|T=sj and V (sj) = σ2I +Z(sj)GZ(sj)
t.

Given a random sample:
{

(Y i,W i, Li, Ri)
∣∣∣i = 1, · · · , n

}
, for the i-th sub-

ject and index j such that Li < sj ≤ Ri, we write Xij = X(W i, Li, Ri, sj),

Zij = Zi(W i, Li, Ri, sj), Vecij = Y i −Xijβ, V ij = σ2I + ZijGZ
t
ij , and pij =

pj

/ ∑
Li<sk≤Ri

pk . Under this notational abbreviation, the log pseudo-likelihood for

the observed data is given by

Lpln (θ) ∝
n∑
i=1

log

 ∑
Li<sj≤Ri

pij |V ij |−1/2 exp

(
−1

2
VectijV

−1
ij Vecij

) . (5.6)

The parameter estimate θ̂n is the maximizer of the above function Lpln (θ).

5.2.2 Computation

The function Lpln (θ) has a complicated structure. The commonly used computation

algorithms in fitting traditional linear mixed-effects models, namely the profile like-

lihood method and the restricted maximum likelihood method, do not seem to be

easily applicable to maximize Lpln (θ). Therefore, we propose a hybrid computation

algorithm to maximize Lpln (θ), combining the Fisher-Scoring (FS) algorithm with an
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EM-algorithm. The hybrid algorithm is more robust than the FS-algorithm, and

converges faster than the EM-algorithm.

The following notation is defined for the computation algorithm. For a posi-

tive definite matrix G, there exists a unique lower triangular matrix A with positive

diagonal entries such that G = AAt. We re-parameterize G using A for the compu-

tational advantage that the boundary condition is easy to check, becauseG is positive

definite if and only if A has positive diagonal entries. To simplify notation, for any

parameter value θ = (β, σ2,A), interval (Li, Ri], and index j such that Li < sj ≤ Ri,

let p̃ij(θ) denote the quantity p̃ij(θ) = pij |V ij |−1/2 exp
(
−1

2Vec
t
ij · V

−1
ij · Vecij

)
,

and let pij(θ) denote the quantity pij(θ) = p̃ij(θ)

/ ∑
Li<sk≤Ri

p̃ik(θ) . Let Xi and

Zi denote the functions of T , defined as Xi(T ) = X(W i, Li, Ri, T ) and Zi(T ) =

Z(W i, Li, Ri, T ).

The score function U(θ) can be expressed as U(θ) = ∂
∂θ

(
Lpln (θ)

)
=

n∑
i=1
Ui(θ),

where U i(θ) is the score function computed from the i-th subject. Using the vector

calculus reviewed in Chapter 2, the component functions of U i(θ) are computed as:

U i(β) =
∑

Li<sj≤Ri
Xt
ijV
−1
ij Vecij · pij(θ),

Ui(σ
2) =

∑
Li<sj≤Ri

1
2Tr

(
(V −1ij Vecij)

⊗2 − V −1ij
)
· pij(θ),

Ui(apq) =
∑

Li<sj≤Ri
EtpZ

t
ij

(
(V −1ij Vecij)

⊗2 − V −1ij
)
ZijAEq · pij(θ),

where apq is the (p, q)-th entry of A and p ≥ q, and Ek denotes the column vector

with all entries equal 0 except that the k-th entry is 1. Using the above formula, the

FS-algorithm with step-halving line search strategy is adopted.
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To implement the FS-algorithm, a good initial value is very important. We

propose to start with the EM-algorithm to obtain a reasonably good initial value. The

derivation of the E-step and M-step is lengthy but algebraically straightforward. We

provide the essential details in Section 5.2.3. Given the current parameter estimate

θ(k) =
(
β(k), σ(k)

2
,G(k)

)
, the EM-algorithm computes the next estimate θ(k+1) =(

β(k+1), σ(k+1)2,G(k+1)
)

as

β(k+1) = β(k) + σ(k)
2 · arg min

∆

n∑
i=1

B
(k)
i (∆), where ∆ = β−β(k)

σ(k)
2

σ(k+1)2 = σ(k)
2

+ σ(k)
4
(

min
∆

n∑
i=1

B
(k)
i (∆)

)/
n∑
i=1

qi

−σ(k)4
(

n∑
i=1

E
T
(k)
i

[
Tr

(
V

(k)
i

−1)])/ n∑
i=1

qi

G(k+1) = G(k) + 1
nG

(k)

(
n∑
i=1

E
T
(k)
i

[
Zti
(
V

(k)
i

−1
Vec

(k)
i

)⊗2
Zi

])
G(k)

− 1
nG

(k)

(
n∑
i=1

E
T
(k)
i

[
ZtiV

(k)
i

−1
Zi

])
G(k)

where B
(k)
i (∆) = E

T
(k)
i

[(
V

(k)
i

−1
Vec

(k)
i −Xi∆

)t]⊗2
is a function of ∆; E

T
(k)
i

denotes the expectation with respect to the random variable T
(k)
i , which has density

pij

(
θ(k)

)
at sj ∈ (Li, Ri] and 0 elsewhere; V i(k) = σ(k)

2
I+ZiG

(k)Zti and Vec
(k)
i =

Y i −Xiβ
(k) are functions of T = T

(k)
i ; and qi is the number of observations for the

i-th subject. Note that
n∑
i=1

B
(k)
i (∆) is a quadratic function of ∆. So minimizing

n∑
i=1

B
(k)
i (∆) over ∆ is easy to accomplish. The above formula for θ(k+1) does not

guarantee σ(k+1)2 or G(k+1) to be non-negatively definite. The step-halving line

search strategy is built in the algorithm to guarantee that θ(k+1) is inside Θ.
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Regardless of initial values, the FS-algorithm could fail to converge because of

poor approximation of the Hessian matrix, especially when the sample size is small.

To overcome this algorithmic difficulty, we propose the following hybrid approach: For

the current parameter estimate θ(k), we compute a temporary parameter estimate

θ̃
(k+1)

using the FS-algorithm. If Lpln
(
θ̃
(k+1)

)
≥ Lpln

(
θ(k)

)
, the updated parameter

estimate θ(k+1) is set to be θ̃
(k+1)

. Otherwise, θ(k+1) is obtained by running the EM-

algorithm for N iterations, where N ≥ 2 is a pre-specified number. In other words,

this hybrid algorithm attempts to use FS-algorithm to accelerate the EM-algorithm,

while also keep the FS-iterations in the right track of increasing the likelihood with

the assist of the EM-steps. The performance of this algorithm was tested in the

simulation study and in a real data analysis reported in the following sections. In all

these applications, the hybrid algorithm produced algorithmically convergent series

of updated parameter estimates.

The proposed algorithm is implemented using the R software. A user friendly

R function is provided in Chapter 6.
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5.2.3 Derivation of the formula in Section 5.2.1

Using the vector calculus reviewed in Chapter 2, this subsection provides details in

the derivation of the formulas in Section 5.2.2.

We first derive the score functions for θ = (β, σ2,A). Using Lemma 2.1.1, the

computation of U i(β) is straightforward.

U i(β) = ∂
∂β

{
log

[ ∑
Li<sj≤Ri

pij |V ij |−
1
2 exp

(
−1

2Vec
t
ijV
−1
ij Vecij

)]}

=

∑
Li<sj≤Ri

pij |V ij |−
1
2 exp

(
−1

2Vec
t
ijV
−1
ij Vecij

)
· ∂∂β

(
−1

2Vec
t
ijV
−1
ij Vecij

)
∑

Li<sj≤Ri
pij |V ij |−

1
2 exp

(
−1

2Vec
t
ijV
−1
ij Vecij

)

=
∑

Li<sj≤Ri

pij |V ij |−
1
2 exp

(
−1

2Vec
t
ijV
−1
ij Vecij

)
·Xt

ijV
−1
ij Vecij∑

Li<sj≤Ri
pij |V ij |−

1
2 exp

(
−1

2Vec
t
ijV
−1
ij Vecij

)

=
∑

Li<sj≤Ri
pij(θ) ·Xt

ijV
−1
ij Vecij .

For Ui(σ
2), the same computation as for U i(β) leads to the first step in the

following calculations.

Ui(σ
2) =

∑
Li<sj≤Ri

pij(θ) · ∂
∂σ2

(
−1

2Vec
t
ijV
−1
ij Vecij −

1
2 log(|V ij |)

)

=
∑

Li<sj≤Ri
pij(θ) · 12

(
VectijV

−1
ij

∂V ij

∂σ2
V −1ij Vecij − Tr

(
V −1ij

∂V ij

∂σ2

))

=
∑

Li<sj≤Ri
pij(θ) · 12Tr

((
V −1ij Vecij

)⊗2
− V −1ij

)

where the second step follows from Lemma 2.1.3 and the last step follows from the

fact that
∂V ij

∂σ2
= I.
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For Ui(apq), the same computation as for Ui(σ
2) leads to

Ui(apq) =
∑

Li<sj≤Ri
pij(θ)12

(
VectijV

−1
ij

∂V ij
∂apq

V −1ij Vecij − Tr
(
V −1ij

∂V ij
∂apq

))
.

By Lemma 2.1.2, we have

∂V ij

∂apq
=

∂

∂apq

(
σ2I +ZijAA

tZtij

)
= ZijEpE

t
qA

tZtij +ZijAEqE
t
pZ

t
ij ,

which implies

Tr
(
V −1ij

∂V ij
∂apq

)
= Tr

(
V −1ij ZijEp ·E

t
qA

tZtij

)
+ Tr

(
V −1ij ZijAEq ·E

t
pZ

t
ij

)
= Tr

(
(V −1ij ZijEp)

t · (EtqAtZtij)
t
)

+ Tr
(
EtpZ

t
ij · V

−1
ij ZijAEq

)
= EtpZ

t
ijV
−1
ij ·ZijAEq +EtpZ

t
ij · V

−1
ij ZijAEq = 2EtpZ

t
ij · V

−1
ij ·ZijAEq

VectijV
−1
ij

∂V ij
∂apq

V −1ij Vecij

= VectijV
−1
ij ZijEp ·E

t
qA

tZtijV
−1
ij Vecij + VectijV

−1
ij ZijAEq ·E

t
pZ

t
ijV
−1
ij Vecij

=
(
VectijV

−1
ij ZijEp

)t
·
(
EtqA

tZtijV
−1
ij Vecij

)t
+EtpZ

t
ijV
−1
ij Vecij · Vec

t
ijV
−1
ij ZijAEq

= 2EtpZ
t
ij ·
(
V −1ij Vecij

)⊗2
·ZijAEq

Plug-in the above results, we have

Ui(apq) =
∑

Li<sj≤Ri

pij(θ) ·EtpZtij
((
V −1ij Vecij

)⊗2
− V −1ij

)
ZijAEq.
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Next, we derive the iterative formula used in the EM-algorithm. The com-

plete log-likelihood corresponding to the marginal likelihood in Equation 5.6 for

θ = (β, σ2,G) is

lC (θ) ∝
n∑
i=1

−qi log(σ2)− σ−2
(
(Y i −Xiβ −Ziui)t

)⊗2 − log(|G|)− utiG
−1ui,

where qi is the number of observations of the i-th subject, and the coefficient matrices

Xi and Zi are functions of the anchoring point Ti. There are two sets of missing

data in lC (θ), namely the random effects u = {u1, · · ·un} and the anchoring points

T = {T1, · · · , Tn}.

In the E-step, we need to compute the Q-function

Q
(
θ;θ(k)

)
= E

u,T
∣∣θ(k),F̂n,Data(lC (θ)

)
,

where θ(k) =
(
β(k), σ(k)

2
,G(k)

)
is the current parameter estimate. The expectation

is computed in two steps as

Q
(
θ;θ(k)

)
= E

u,T
∣∣θ(k),F̂n,Data(lC (θ)

)
= E

T
∣∣θ(k),F̂n,Data(Eu∣∣θ(k),T,Data(lC (θ)

))

We now write down the last two conditional expectations in the above equation.

Based on the usual linear mixed-effects model theory, it can be derived that the
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conditional distribution of ui
∣∣(θ(k), Ti,Y i,W i, Li, Ri) is

N

((
σ(k)

2
G(k)−1 +ZtiZi

)−1
Zti(Y i −Xiβ

(k)), σ2(k)

(
σ2(k)G(k)−1 +ZtiZi

)−1)
.

To simplify notation, let E
T
(k)
i

(
−
)

denote the conditional expectation with respect

to Ti given the observed data (Y i,W i, Li < Ti ≤ Ri), the current parameter value

θ(k), and the plug-in distribution F̂n of T , which can be shown to have a point mass

pij

(
θ(k)

)
at sj , where Li < sj ≤ Ri, and 0 elsewhere. See Section 5.2.2 for the

definition of the function pij (θ). In other words, for any function G(t), we have

E
T
(k)
i

(
G(t)

)
=

∑
Li<sj≤Ri

pij

(
θ(k)

)
G(sj).

Using these conditional distributions, the Q-function can be calculated as

Q
(
θ;θ(k)

)
= E

T
∣∣θ(k),F̂n,Data(Eu∣∣θ(k),T,Data(lC (θ)

))

= −n log(|G|)− σ(k)2
n∑
i=1

E
T
(k)
i

[
Tr

((
σ(k)

2
G(k)−1 +ZtiZi

)−1
G−1

)]

−
n∑
i=1

E
T
(k)
i

[
Tr

((
G(k)ZtiV

(k)
i

−1
Vec

(k)
i

)⊗2
G−1

)]

−
n∑
i=1

qi log(σ2)− σ−2
n∑
i=1

E
T
(k)
i

[
Tr
(
σ(k)

2
I − σ(k)4V (k)

i

−1)]

−σ−2
n∑
i=1

E
T
(k)
i

[
Tr
(
σ(k)

2
V

(k)
i

−1
Vec

(k)
i −Xi

(
β − β(k)

))⊗2]
.
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In the M-step, the updated estimate θ(k+1) is the maximizer of the above

Q-function. Using the matrix identity that

(I +M1M2)−1 = I −M1(I +M2M1)−1M2,

one checks easily that

σ(k)
2
V −1i (k) = I −Zi

(
G(k)−1 +

ZtiZi

σ(k)
2

)−1
Zti

σ(k)
2
.

It follows that, as a function of β, we have

Q = Q(β)

∝
n∑
i=1

E
T
(k)
i

(Y i −Xiβ −Zi
(
G(k)−1 +

ZtiZi

σ(k)
2

)−1
Zti

σ(k)
2

[
Y i −Xiβ

(k)
])t⊗2

=
n∑
i=1

E
T
(k)
i

[(
Y i −Xiβ −

[
I − σ(k)2V (k)

i

−1] [
Y i −Xiβ

(k)
])t]⊗2

=
n∑
i=1

E
T
(k)
i

[(
σ(k)

2
V

(k)
i

−1
Vec

(k)
i −Xi(β − β(k))

)t]⊗2
= σ(k)

4 n∑
i=1

B
(k)
i (∆)

where ∆ = (β − β(k))
/
σ(k)

2
. Since

n∑
i=1

B
(k)
i (∆) is a quadratic function on ∆, its

minimizer can be easily calculated. This shows that

β(k+1) = β(k) + σ(k)
2
· arg min

∆

(
n∑
i=1

B
(k)
i (∆)

)
.
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Plug in β = β(k+1), as a function of σ2, we have

Q = Q(σ2;β = β(k+1))

∝ −
n∑
i=1

dim(V i) log(σ2)− σ−2σ(k)4 min
∆

(
n∑
i=1

B
(k)
i (∆)

)

−σ−2
n∑
i=1

E
T
(k)
i

[
Tr

(
Zi ·

(
G(k)−1 +

ZtiZi

σ(k)
2

)−1
·Zti

)]

= −
n∑
i=1

dim(V i) log(σ2)− σ−2σ(k)4 min
∆

(
n∑
i=1

B
(k)
i (∆)

)

−σ−2
n∑
i=1

E
T
(k)
i

[
Tr

(
σ(k)

2
Ii − σ(k)

4
V

(k)
i

−1)]

where Ii is the identity matrix of the same size as V i. Using elementary calculus, we

can easily get the minimizer of Q(σ2;β = β(k+1)) as

σ(k+1)2 = σ(k)
2
+σ(k)

4
{

min
∆

(
n∑
i=1

B
(k)
i (∆)

)
−

n∑
i=1

E
T
(k)
i

[
Tr

(
V

(k)
i

−1)]}/ n∑
i=1

qi

To compute G(k+1), we simplify the notation by defining

M1i =
(
G(k)−1 +ZtiZi/σ

(k)2
)−1

M2i =
(
G(k)−1 +ZtiZi/σ

(k)2
)−1 Zti

σ(k)
2

(
Y i −Xiβ

(k)
)
.

Note that M1i is a symmetric matrix and M2i is a column vector. One checks that

(
G(k)−1 +ZtiZi/σ

(k)2
)(

G(k) −G(k)ZtiV
(k)
i

−1
ZiG

(k)
)

= I
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and

(
G(k)−1 +ZtiZi/σ

(k)2
)
·G(k)ZtiV

(k)
i

−1
Vec

(k)
i =

Zti

σ(k)
2

(
Y i −Xiβ

(k)),
which immediately implies that

M1i = G(k) −G(k)ZtiV
(k)
i

−1
ZiG

(k), M2i = G(k)ZtiV
(k)
i

−1
Vec

(k)
i . (5.7)

Using M1i and M2i, we can rewrite Q as a function of G as

Q = Q(G) = −n log(|G|)−
n∑
i=1

E
T
(k)
i

Tr
(
G−1M1i

)
−

n∑
i=1

E
T
(k)
i

M2i
tG−1M2i.

Let tpq be the (p, q)-th entry, which is also the (q, p)-th entry of G. First, we assume

p 6= q. In this case, we have ∂G
∂tpq

= EpE
t
q +EqE

t
p. Using Lemma 2.1.3, we have

∂Q
∂tpq

= −nTr
(
G−1(EpE

t
q +EqE

t
p)
)

+
n∑
i=1

E
T
(k)
i

(
G−1EpEtqG

−1M1i +G−1EqEtpG
−1M1i

)
+

n∑
i=1

E
T
(k)
i

(
M2i

tG−1Ep ·EtqG−1M2i +M2i
tG−1Eq ·EtpG−1M2i

)
= −n

(
EtqG

−1Ep +EtpG
−1Eq

)
+

n∑
i=1

E
T
(k)
i

Tr
(
EtqG

−1M1iG
−1Ep +EtpG

−1M1iG
−1Eq

)
+

n∑
i=1

E
T
(k)
i

(
EtqG

−1M2i
⊗2G−1Ep +EtpG

−1M2i
⊗2G−1Eq

)
= 2Ep

(
−nG−1 +G−1

(
n∑
i=1

E
T
(k)
i

(
M1i +M2i

⊗2))G−1)Etq
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where the last equality follows from the fact that G−1,M1i and M2i
⊗2 are all

symmetric. Setting ∂Q
∂tpq

= 0 we have

0 = Ep

(
−nG(k+1)−1 +G(k+1)−1

(
n∑
i=1

E
T
(k)
i

(
M1i +M2i

⊗2))G(k+1)−1
)
Etq.

A similar calculation shows that the above equation also holds for p = q. Since the

above equation holds for all indices (p, q), we have

0 = −nG(k+1)−1 +G(k+1)−1
(

n∑
i=1

E
T
(k)
i

(
M1i +M2i

⊗2))G(k+1)−1

⇒ 0 = −nG(k+1) +
n∑
i=1

E
T
(k)
i

(
M1i +M2i

⊗2) by ×G(k+1) from left and right

⇒ G(k+1) = 1
n

n∑
i=1

E
T
(k)
i

(
M1i +M2i

⊗2) .
Plug-in the identities in Equations (5.7), the above equation can be rewritten as

G(k+1) = G(k) +
1

n
G(k)

n∑
i=1

E
T
(k)
i

[
Zti

((
V

(k)
i

−1
Vec

(k)
i

)⊗2
− V (k)

i

−1
)
Zi

]
G(k).

5.3 Simulation study

Simulation studies were conducted to investigate the performance of the proposed

model in finite-sample situations. Two sample sizes were considered: n = 200, and

400. To evaluate the impact of the interval lengths, for each given sample size n, we

simulated two scenarios: (1) average censoring interval length l = 1; and (2) average

censoring interval length l = 2.

For a given sample size n and the average interval length l, we generated a total

of 1500 simulated data sets as follows: For the i-th subject, the true anchoring point
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Ti was independently generated from a Weibull distribution with shape parameter 80

and scale parameter 12. For each non-overlapping time window (kl, (k + 1)l], where

k = 0, 1, 2, · · · , a uniformly distributed screening time was generated. The censoring

interval (Li, Ri] was identified as the adjacent screening times that bracket Ti, i.e.,

Li < Ti ≤ Ri. To allow covariates in the proposed method, we also simulated a

binary covariate X1i with equal probability P (X1i = 0) = P (X2i = 1) = 1/2, and

a continuous covariate X2i that was N(0, 1) distributed. The observations at the

two endpoints of the censoring interval, YL,i and YR,i, were then generated from the

following linear mixed-effects model


YL,i = λ+ β1X1i + β2X2i + α(Li − Ti) + λi + αi(Li − Ti) + εL,i

YR,i = λ+ β1X1i + β2X2i + β(Ri − Ti) + λi + βi(Ri − Ti) + εR,i

(5.8)

where (λ, β1, β2, α, β) were the parameters for the population fixed effects, (λi, αi, βi)

were the subject-specific random deviations, and εL,i and εR,i were the independent

error terms. The true values of the parameters were λ = 50, β1 = −2, β2 = −3, α =

5, β = 8. The random effects (λi, αi, βi) were generated from N (0,G), and the error

terms (εL,i, εR,i) were generated from N (0, diag(σ2, σ2)), where σ2 = 2.25 and

G =


9 1 −1

1 3 −1

−1 −1 4


.
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Model 5.8 was a changing-point model in the sense of van den Hout et al. (2013)

and many others. But our method is not restricted to changing-point problems. For

example, if the data before the anchoring points are not available, there is no “change”

to model at all. Our method can still estimate the average slope β that is “anchored”

by the anchoring event, as long as the censoring-intervals are observed.

For each simulated data set, four models were fitted. First, the linear mixed-

effects model Model (5.8) was fitted using the proposed two-stage estimation proce-

dure, with standard errors of estimators estimated using Bootstrap method with 50

resamples. Second, the distribution-free model proposed in Chapter 4 was fitted, by

ignoring the random effects in Model (5.8). To compare with existing methods used

in practice (Shankar et al., 2005), the third method used the “nlme” R-package to fit

Model (5.8) with the unobserved anchoring point Ti imputed by Li+Ri
2 , the midpoint

of the censoring interval. The last method also used the “nlme” R-package to fit

Model (5.8), where the true anchoring point Ti was used. Note that our research

focuses on the situation when Ti is unobserved, which is often encountered in real

studies. So the last model is often not available in practice. It was fitted only to serve

as a benchmark model to evaluate the efficiency loss in our proposed method.

It is worth noting that the standard algorithm with the “nlme” R-package

for computing the maximum likelihood estimates for longitudinal normal data with

midpoint imputation of T failed to algorithmically converge in about 20% of the sim-

ulated data sets. For each sample size n and average censoring interval length l, we

summarized the simulation result from the first 1000 data sets that provided numer-

ically convergent parameter estimates from all of the four methods. The percentage

of bias in parameter estimates (% Bias), Monte-Carlo standard deviation (M-C SD),
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average Bootstrap standard error (Av. SE) and coverage probability of the 95%

Wald-confidence intervals (95% CP) are reported in Tables 5.1 and 5.2.

Table 5.1: Simulation result for Scenario (1)

sample size =200 sample size =400

λ β1 β2 α β λ β1 β2 α β

linear mixed-effects model:

% Bias 0.073 0.834 0.976 1.145 0.838 0.067 0.063 0.620 0.640 0.541

M-C SD 0.571 0.469 0.812 0.415 0.432 0.383 0.335 0.559 0.284 0.290

Av. SE 0.565 0.468 0.803 0.400 0.418 0.395 0.328 0.568 0.283 0.294

95% CP 0.947 0.942 0.935 0.921 0.923 0.951 0.943 0.945 0.940 0.948

distribution-free model:

% Bias 0.053 0.875 0.908 0.162 1.172 0.034 0.017 0.579 0.714 0.670

M-C SD 0.596 0.471 0.809 0.535 0.567 0.395 0.337 0.561 0.375 0.379

Av. SE 0.587 0.467 0.800 0.512 0.539 0.414 0.328 0.569 0.370 0.389

95% CP 0.947 0.943 0.936 0.928 0.928 0.950 0.938 0.943 0.937 0.946

midpoint imputation:

% Bias 0.438 0.710 0.784 8.076 5.234 0.373 0.341 0.351 6.482 4.100

M-C SD 0.917 0.506 0.878 1.370 1.414 0.620 0.368 0.623 0.931 0.953

Av. SE 0.895 0.502 0.871 1.316 1.359 0.631 0.358 0.621 0.930 0.961

95% CP 0.944 0.947 0.943 0.929 0.938 0.939 0.954 0.950 0.933 0.935

event time is known:

% Bias 0.021 1.194 0.868 0.048 0.041 0.009 0.078 0.526 0.256 0.087

M-C SD 0.536 0.447 0.769 0.390 0.397 0.353 0.323 0.533 0.253 0.263

Av. SE 0.523 0.442 0.766 0.357 0.368 0.370 0.314 0.544 0.254 0.262

95% CP 0.947 0.938 0.945 0.929 0.930 0.965 0.945 0.954 0.944 0.946

The simulation result in Tables 5.1 and 5.2 show that the proposed method

has a generally excellent finite-sample performance. Estimation bias is very small and

virtually ignorable when the sample size is large (less than 1%). Both bias and Monte-

Carlo standard deviation decrease with sample size. The bootstrap standard error

are very close to Monte-Carlo standard deviation, which justifies the use of bootstrap

method in estimating the standard errors. The empirical coverage probabilities of the
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Table 5.2: Simulation result for Scenario (2)

sample size =200 sample size =400

λ β1 β2 α β λ β1 β2 α β

linear mixed-effects model:

% Bias 0.119 0.148 0.051 0.607 0.436 0.112 0.063 1.098 0.501 0.328

M-C SD 0.612 0.496 0.840 0.285 0.312 0.420 0.338 0.597 0.202 0.212

Av. SE 0.616 0.492 0.843 0.287 0.305 0.433 0.343 0.597 0.203 0.212

95% CP 0.949 0.938 0.944 0.946 0.938 0.955 0.958 0.947 0.944 0.945

distribution-free model:

% Bias 0.079 0.318 0.053 0.375 0.517 0.060 0.001 0.966 0.410 0.356

M-C SD 0.657 0.513 0.855 0.368 0.390 0.456 0.345 0.615 0.264 0.263

Av. SE 0.656 0.500 0.860 0.351 0.371 0.466 0.353 0.612 0.260 0.266

95% CP 0.937 0.940 0.940 0.917 0.933 0.951 0.955 0.946 0.936 0.950

midpoint imputation:

% Bias 0.855 0.155 0.694 7.630 4.895 0.734 0.571 0.792 6.464 3.903

M-C SD 1.029 0.616 1.083 0.811 0.848 0.712 0.439 0.754 0.545 0.573

Av. SE 1.011 0.611 1.060 0.779 0.823 0.712 0.435 0.754 0.550 0.580

95% CP 0.928 0.948 0.950 0.916 0.916 0.917 0.953 0.948 0.915 0.927

event time is known:

% Bias 0.005 0.198 0.017 0.001 0.126 0.021 0.056 0.915 0.081 0.098

M-C SD 0.569 0.475 0.788 0.281 0.298 0.382 0.328 0.560 0.192 0.199

Av. SE 0.556 0.458 0.794 0.269 0.280 0.393 0.325 0.563 0.191 0.198

95% CP 0.952 0.928 0.944 0.944 0.937 0.957 0.946 0.946 0.951 0.953

95% Wald-confidence intervals are all close to the nominal level. The result clearly

validates the large sample theory derived in Theorem 5.1.2.

The same pattern of simulation results using the linear mixed-effects model was

also observed for the distribution-free model. To numerically evaluated the gain in es-

timation efficiency, we calculated the ratio of Monte-Carlo standard deviations of the

parameter estimates using the linear mixed-effects model to that of the distribution-

free model. See Table 5.3. The ratios showed that, if a covariate is not associated

with the unobserved anchoring point T , then there is no noticeably efficiency gain
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in estimating the corresponding parameter, such as λ, β1, and β2. If a covariate is

associated with the unobserved anchoring point T , then there is about 25% efficiency

gain in estimating the corresponding parameter, such as α and β.

Table 5.3: Ratio of Monte Carlo standard deviations of linear mixed-effects model vs
distribution-free model

sample size =200 sample size =400

λ β1 β2 α β λ β1 β2 α β

Scenario (1)

ratio 0.959 0.997 1.004 0.776 0.762 0.970 0.996 0.995 0.757 0.764

Scenario (2)

ratio 0.932 0.966 0.982 0.773 0.800 0.921 0.981 0.972 0.764 0.806

For a fixed sample size n, the simulation study shows an improved model

performance with wider censoring intervals, which is expected in view of the regularity

condition (F4). When censoring interval is narrow and n is not large enough, the

NPMLE F̂n is possibly not a satisfactory estimate of F0, which leads to a decreased

performance of the proposed method. In such situations, a larger sample size is

generally required to have an asymptotic normal distribution for the estimated model

parameters.

Not surprisingly, the midpoint imputation method did not perform well. For

parameters α and β that are associated with the anchoring point T , the bias did

not appear to decrease with sample size; the Monte-Carlo standard deviations almost

tripled in comparison with that of the proposed method; the coverage probability

of the 95% Wald-confidence intervals noticeably deviated from the nominal level.

However, the estimation bias of the parameters λ, β1, β2 (the parameters that are not

associated with the anchoring point T ) was ignorable compared to that of α and β.
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As expected, the method using the true anchoring point outperformed all

its competitors. But it is important to note that the proposed method also had

practically ignorable bias and comparable efficiency in parameter estimation. To

empirically evaluate the relative efficiency, we computed the ratios of the Monte-

Carlo standard deviations of the parameter estimates between the proposed method

and the model with known true anchoring points; see Table 5.4. The Monte-Carlo

standard deviations of the parameter estimates in the proposed method were 1.4%-

12.3% larger, indicating only a mild loss of efficiency compared to the ideal situation

of knowing T values.

Table 5.4: Ratio of Monte Carlo standard deviations of linear mixed-effects model vs
the model knowing true event time

sample size =200 sample size =400

λ β1 β2 α β λ β1 β2 α β

Scenario (1)

ratio 1.065 1.049 1.056 1.064 1.088 1.085 1.037 1.049 1.123 1.103

Scenario (2)

ratio 1.076 1.044 1.066 1.014 1.047 1.099 1.030 1.066 1.052 1.065

To investigate the robustness of the normality assumption on the error term

in the proposed method, we repeated the previous simulation with a change that

the error terms, εL,i and εR,i in Model 5.8, were simulated from a mixture normal

distribution

Z1Z2 + (1− Z1)Z3

where Z1 was a binary random variable with equal probability P (Z1 = 0) = P (Z1 =

1) = 1
2 , Z2 was N(−1, 12) distributed, and Z3 was N(1, 0.52) distributed. The

simulation results are summarized in Tables 5.5 and 5.6.
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Table 5.5: Simulation result for Scenario (1) with mixture normal errors

sample size =200 sample size =400

λ β1 β2 α β λ β1 β2 α β

linear mixed-effects model:

% Bias 0.098 0.830 0.679 1.360 0.866 0.084 0.204 0.490 0.953 0.780

M-C SD 0.552 0.462 0.808 0.377 0.388 0.379 0.331 0.552 0.268 0.277

Av. SE 0.554 0.462 0.795 0.371 0.387 0.386 0.323 0.560 0.262 0.271

95% CP 0.944 0.943 0.948 0.939 0.939 0.948 0.939 0.947 0.928 0.935

distribution-free model:

% Bias 0.064 0.716 0.717 0.062 1.157 0.037 0.153 0.518 0.635 0.733

M-C SD 0.581 0.464 0.808 0.512 0.541 0.394 0.331 0.554 0.363 0.382

Av. SE 0.577 0.461 0.791 0.494 0.524 0.408 0.324 0.562 0.359 0.376

95% CP 0.941 0.943 0.943 0.936 0.929 0.956 0.938 0.950 0.936 0.928

midpoint imputation:

% Bias 0.438 1.039 0.764 7.965 5.007 0.370 0.131 0.158 6.378 4.066

M-C SD 0.885 0.501 0.871 1.326 1.359 0.622 0.363 0.621 0.927 0.961

Av. SE 0.880 0.495 0.858 1.295 1.336 0.622 0.353 0.611 0.916 0.946

95% CP 0.936 0.943 0.951 0.933 0.936 0.938 0.954 0.956 0.928 0.928

event time is known:

% Bias 0.014 1.007 0.690 0.008 0.035 0.001 0.039 0.391 0.002 0.117

M-C SD 0.513 0.437 0.763 0.350 0.355 0.345 0.317 0.524 0.236 0.247

Av. SE 0.506 0.431 0.748 0.324 0.337 0.359 0.307 0.533 0.233 0.240

95% CP 0.953 0.940 0.942 0.941 0.939 0.970 0.946 0.954 0.946 0.945

Although the error terms were not normally distributed, the simulation in

Tables 5.5 and 5.6 show a similar pattern as those reported in Tables 5.1 and 5.2.

Estimation bias is small and ignorable in larger samples; the average Bootstrap stan-

dard errors are close to the Monte-Carlo standard deviations; the observed coverage

probabilities of the 95% confidence intervals are close to the nominal level. In conclu-

sion, the simulation result indicates that the normal assumption on the error terms

in the proposed method is generally robust for larger samples.
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Table 5.6: Simulation result for Scenario (2) with mixture normal errors

sample size =200 sample size =400

λ β1 β2 α β λ β1 β2 α β

linear mixed-effects model:

% Bias 0.134 0.600 0.546 0.658 0.338 0.109 0.120 0.776 0.510 0.364

M-C SD 0.606 0.475 0.858 0.275 0.295 0.417 0.336 0.587 0.196 0.204

Av. SE 0.605 0.486 0.832 0.275 0.293 0.424 0.338 0.588 0.193 0.203

95% CP 0.943 0.944 0.936 0.946 0.940 0.951 0.947 0.952 0.933 0.939

distribution-free model:

% Bias 0.070 0.537 0.678 0.476 0.346 0.050 0.116 0.809 0.506 0.318

M-C SD 0.650 0.495 0.872 0.364 0.378 0.455 0.342 0.608 0.258 0.260

Av. SE 0.649 0.497 0.853 0.346 0.364 0.460 0.349 0.605 0.255 0.261

95% CP 0.940 0.943 0.937 0.924 0.938 0.947 0.948 0.951 0.936 0.937

midpoint imputation:

% Bias 0.821 1.322 0.087 7.206 4.452 0.741 0.246 0.795 6.376 3.861

M-C SD 1.006 0.604 1.081 0.804 0.835 0.698 0.436 0.755 0.528 0.560

Av. SE 0.993 0.602 1.044 0.768 0.809 0.702 0.429 0.744 0.542 0.572

95% CP 0.928 0.948 0.938 0.924 0.930 0.924 0.949 0.945 0.921 0.924

event time is known:

% Bias 0.010 0.551 0.482 0.043 0.007 0.017 0.062 0.671 0.070 0.132

M-C SD 0.545 0.449 0.801 0.266 0.278 0.374 0.318 0.550 0.186 0.191

Av. SE 0.538 0.447 0.775 0.254 0.265 0.382 0.318 0.551 0.182 0.189

95% CP 0.956 0.942 0.948 0.943 0.945 0.963 0.954 0.957 0.938 0.943

For the distribution-free model, similar patterns were also observed. There

were noticeably larger estimation variations for α and β, but not for λ, β1 or β2,

similar to the simulation results for normal errors. See the ratio of Monti-Carlo

standard deviation of these two models, calculated in Table 5.7.

Again, the midpoint imputation method showed worse performance, especially

in estimating α and β. The relative estimation efficiency of the proposed method v.s.

the ideal method using true anchoring point was empirically evaluated using the ratios

of the Monte-Carlo standard deviations. See Table 5.8. Similar to the situation with
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Table 5.7: Ratio of Monte Carlo standard deviations of linear mixed-effects model vs
distribution-free model with mixture normal errors

sample size =200 sample size =400

λ β1 β2 α β λ β1 β2 α β

Scenario (1)

ratio 0.951 0.995 1.000 0.736 0.718 0.960 1.002 0.997 0.739 0.725

Scenario (2)

ratio 0.934 0.958 0.984 0.755 0.781 0.916 0.984 0.965 0.760 0.785

normal error terms, the Monte-Carlo standard deviation of the parameter estimates

was about 3.4%-13.6% larger, indicating again only a mild loss of efficiency with the

non-normal errors.

Table 5.8: Ratio of Monte Carlo standard deviations of proposed model vs the model
knowing true event times with mixture normal errors

sample size =200 sample size =400

λ β1 β2 α β λ β1 β2 α β

Scenario (1)

ratio 1.076 1.057 1.059 1.077 1.093 1.099 1.044 1.053 1.136 1.121

Scenario (2)

ratio 1.112 1.058 1.071 1.034 1.061 1.115 1.057 1.067 1.054 1.068

5.4 Analysis of pubertal weight growth data

In a longitudinal study of pubertal growth and blood pressure regulation, school

children aged from 5 to 17 were recruited for longitudinal assessment of somatic

growth and blood pressure. At each assessment, somatic growth measures were taken

and recorded. The detailed study protocol was described in Tu et al. (2009, 2014).

For each study participant, the investigators identified the interval that showed the

greatest rate of height increase and used it as the interval containing the pubertal

growth spurt (PGS) (Shankar et al., 2005).
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An overarching objective of this research was to quantify the weight changes

around the time of PGS, with the goal of improving the existing understanding of the

adolescent growth. We focused on growth rates around of the time of PGS, because

they are thought to set the trajectory of adolescent development into the adulthood.

The outcome of interest in this particular analysis was weight, which is one of the the

primary markers of body development. Specifically, we attempted to compare: (1)

the pre and post-PGS rates of weight increase, (2) the average weights at the time of

PGS between races, and (3) the race difference in weight increase rates around the

time of PGS. Because of the known differences in pubertal growth patterns between

boys and girls, analyses often proceed in sex-specific groups. The current analysis

was based on data from 188 boys.

The peak growth intervals, i.e., the censoring intervals containing the unob-

served PGS, are presented in the left panel of Figure 5.1. Weights measured at the

endpoints of the censoring intervals are depicted in the right panel of Figure 5.1. The

pre and post-PGS weight measures from the same individuals are connected by line

segments.

To analyze, we considered the following piece-wise linear mixed-effects model

with random intercepts and and post-PGS growth rates. We did not include ran-

dom pre-PGS slopes because existing literature suggests that heterogeneity in rate of

weight increase started at the PGS.


YL,i = λ1 + α1(Li−Ti) +

(
λ2 + α2(Li−Ti)

)
Iw + λi + εL,i

YR,i = λ1 + β1(Ri−Ti) +
(
λ2 + β2(Ri−Ti)

)
Iw + λi + βi(Ri−Ti) + εR,i

(5.9)
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Figure 5.1: Peak growth intervals and observed weight

where (Li, Ri] was the censoring interval for the i-th subject; Ti was the unobserved

PGS time; YL,i and YR,i were the respective weights measured at Li and Ri; Iw was

an indicator for being whites; λ1 was the average weight at PGS in non-whites; and α1

and β1 were the respectively average pre and post-PGS weight growth rates in non-

whites. Similarly, λ2, α2 and β2 respectively represented the differences in average

value, pre and post-PGS weight growth rates between non-whites and whites. Here

λi and βi were the random intercept and slope; and εL,i and εR,i were the random

errors.

All regularity conditions were satisfied in this data application. For exam-

ple, Condition (F2) was satisfied, as Figure 5.1 did not show substantial differ-

ences in PGS distributions between whites and non-whites. So we applied the pro-

posed functional estimation method to fit Model (5.9). The parameter estimates

θ̂n = (λ̂n,1, λ̂n,2, α̂n,1, β̂n,1, α̂n,2, β̂n,2) are summarized in Table 5.9.
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Table 5.9: Parameter estimates
λ1 λ2 α1 β1 α2 β2

estimate 54.478 -6.927 7.526 9.730 -1.583 -0.543

se 1.901 1.992 0.811 1.005 0.971 1.256

The following covariance matrix Σ̂n of the parameter estimates was estimated

using bootstrap resampling method with 100 resamples.

Σ̂n =



3.613 −3.409 0.278 0.769 −0.329 −0.659

−3.409 3.968 −0.117 −0.879 0.334 0.733

0.278 −0.117 0.658 −0.442 −0.671 0.491

0.769 −0.879 −0.442 1.009 0.450 −1.004

−0.329 0.334 −0.671 0.450 0.942 −0.741

−0.659 0.733 0.491 −1.004 −0.741 1.577



.

We then proceeded to make inferences on parameters of interest along the lines

laid out by Theorem 5.1.2. First, the pre and post-PGS rates of weight increase can

be compared by testing hypothesis that α1 = β1 and α2 = β2 in all ethnic groups.

Using contrast

M =

 0 0 1 −1 0 0

0 0 0 0 1 −1

 ,

the test statistic (Mθ̂n)t(MΣ̂nM
t)−1(Mθ̂n) was approximately χ2(2)-distributed

under the null hypothesis. The observed value of this statistic was calculated to be

10.150, which resulted in a p-value of 0.006 for a χ2-test. So we had evidence that

rate of weight growth was greater in the post-PGS period.
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To compare the average weight at PGS between individuals in different ethnic

groups, we simply test the hypothesis that λ2 = 0. Under the null hypothesis, the

Z-score of λ̂2 was calculated as −6.927/1.992 = −3.477, which resulted in a p-value

of 0.0005 for the two-sided Z-test. So we concluded that whites and ethnic minority

children had different weights at PGS, with whites had lower weights.

Finally, to compare the rates of weight increase around PGS between individ-

uals of different ethnic groups, we tested the hypothesis α2 = β2 = 0. To implement,

we calculated the value of the statistic (α̂n,2, β̂n,2) · Σ̂′−1n · (α̂n,2, β̂n,2)t, which can be

approximated by a χ2(2)-distribution under the null hypothesis. Here matrix Σ̂
′
n is

the covariance matrix of α̂n,2 and β̂n,2, which was a submatrix of Σ̂n. The observed

value of this statistic was calculated to be 5.877, which led to a p-value of 0.053. So

we conclude that there was some indication that whites had slower rate of weight

gain around PGS, although the difference did not meet the threshold of 0.05 to be

statistically significant. We note that all findings were consistent with the observed

data shown in Figure 5.1.

Through this real data example, we demonstrated the operations of parameter

estimation and statistical inference using the new method, which handled interval

censored PGS times nicely in this application. While we note that the findings are

largely consistent with the existing theory of human growth (Hall, 2006), no studies

to the best of our knowledge have actually quantified the growth parameters around

PGS, because of the traditional longitudinal models’ inability to accommodate the

unobserved anchoring points, unless strong and unverifiable parametric assumption

on the PGS distribution is imposed, which could produce biased estimates.
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Chapter 6

An R function for fitting linear mixed-effects model with interval

censored anchoring points

In this chapter we provide a user-friendly R function that implements the hybrid

algorithm proposed in Chapter 5. We follow the two-stage estimation procedure.

6.1 Nonparametric maximum likelihood estimation of the anchoring point

distribution

Although our research focuses on the situation that F0, the true distribution of the

anchoring points, does not depend on covariates, we present here a function that

computes the baseline hazard Λ0(t) and the parameters β, for the situation that the

anchoring points follow a proportional hazards model, i.e.,

Λ(t|Z) = exp(βtZ)Λ0(t)

where Z is the covariate that determines the hazard ratio for a subject. We estimate

Λ0(t) as a step function. The function is attached below.

PHregIC<-function(L, R, Z=NULL,

bndry.ctrl.alpha=(1e-10), NR.ctrl=1e-5,

CumHazard.max=1e200, print.hist.phreg=TRUE)

{tryCatch({

time.start<-proc.time()

N<-length(R)

if(is.null(Z)){Z<-matrix(rep(0, N), ncol=1)}

#### Find S over which \Lambda_0 has jumps
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df<-data.frame(c(L,R), rep(c(0, 1), each=N))

df<-df[order(df[,1], -df[2]),]

chs.temp<-df[,2]

chs<-chs.temp-c(0, chs.temp[-length(chs.temp)])

S<-df[,1][chs==1]; N.alphas<-length(S)

X.L<-outer(L, S, ">="); X.R<-outer(R, S, ">=");

#### initial setup

beta<-rep(0, dim(Z)[2]); alpha<-rep(1/N.alphas, N.alphas);

finished.profile<-N; iter.profile<-0;

while(finished.profile>1 & iter.profile<1000){

iter.profile<-iter.profile+1;

#Given beta, find Lambda_0:

if(print.hist.phreg==TRUE)

{cat("\n\n\n profile step-", iter.profile,

":****** Fix beta, find alpha ******\n")}

weight<-as.vector(exp(Z%*%beta))

coef.L<-X.L*weight

coef.R<-X.R*weight

sum.coef.L<-matrix(colSums(coef.L), ncol=1)

coef.L.minus.R<-coef.L-coef.R

Surv.L<-exp(-coef.L%*%alpha)

Surv.R<-exp(-coef.R%*%alpha)

NewLogLik<-sum(log(Surv.L-Surv.R ))

U.score<-matrix(-colSums(as.vector(Surv.R/(Surv.L-Surv.R))*

coef.L.minus.R), ncol=1)-sum.coef.L

Hessian.part.L<-as.vector(Surv.L/(Surv.L-Surv.R))*coef.L.minus.R

Hessian.part.R<-as.vector(Surv.R/(Surv.L-Surv.R))*coef.L.minus.R

Hessian<-t(Hessian.part.L)%*%Hessian.part.R

ctrl.alpha<-max(abs(U.score[ alpha>=0|U.score>0 ]));

iter.alpha<-0;

while(ctrl.alpha>NR.ctrl & iter.alpha<100)

{ if(print.hist.phreg==TRUE)

{cat(" iter.alpha=", iter.alpha, ", LogL=", NewLogLik,

", ctrl.alpha=", ctrl.alpha, "\n", sep="")}

on.bndry<-(((alpha<bndry.ctrl.alpha)&(U.score<0))|

(abs(U.score)<(NR.ctrl/2)));

if(prod(on.bndry)==0){ alwd.step<-0;

while(alwd.step < (1e-100) & iter.alpha<100 )

{ iter.alpha<-iter.alpha+1
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alwd<-(1-on.bndry)

alwd.alpha<-alpha[alwd==1]

alwd.U<-U.score[alwd==1]

alwd.Hessian<-Hessian[alwd==1, alwd==1]

alwd.vec.temp<-solve(alwd.Hessian, alwd.U)

if(sum(alwd)>1){

alwd.vec.temp<-solve(alwd.Hessian/diag(alwd.Hessian),

alwd.U/diag(alwd.Hessian))

}else{alwd.vec.temp<-alwd.U/alwd.Hessian}

cond<-(-alwd.alpha[alwd.vec.temp<0]/

alwd.vec.temp[alwd.vec.temp<0])

alwd.step<-ifelse(length(cond)==0, 1, min(c(cond,1)))

new.on.bndry.temp<-(alwd.alpha<bndry.ctrl.alpha)*

(alwd.vec.temp<0)

on.bndry[on.bndry==0]<-new.on.bndry.temp }# End of while

alwd.vec<-rep(0, length(alpha))

alwd.vec[alwd==1]<-alwd.vec.temp

while(sum(alpha+alwd.step*alwd.vec) >= CumHazard.max)

{alwd.step=alwd.step/2}

while(min(alpha+alwd.step*alwd.vec) < 0)

{alwd.step=alwd.step*0.9999}

alpha<-alpha+alwd.step*alwd.vec

Surv.L<-exp(-coef.L%*%alpha); Surv.R<-exp(-coef.R%*%alpha)

NewLogLik<-sum(log(Surv.L-Surv.R ))

U.score<-matrix(-colSums(as.vector(Surv.R/(Surv.L-Surv.R))*

coef.L.minus.R), ncol=1)-sum.coef.L

Hessian.part.L<-as.vector(Surv.L/(Surv.L-Surv.R))*

coef.L.minus.R

Hessian.part.R<-as.vector(Surv.R/(Surv.L-Surv.R))*

coef.L.minus.R

Hessian<-t(Hessian.part.L)%*%Hessian.part.R

on.bndry<-(alpha<bndry.ctrl.alpha)*(U.score<0)

alwd.U<-U.score[on.bndry==0]

ctrl.alpha=max(abs(alwd.U))}else{ctrl.alpha<-0;}

}# End of while

if(print.hist.phreg==TRUE)

{ cat(" iter.alpha=", iter.alpha, "LogL=", NewLogLik,

"ctrl.alpha=", ctrl.alpha, "\n") }

#Given Lambda_0, find beta:

if(print.hist.phreg==TRUE)

{ cat("\n profile step-", iter.profile,

":****** Fix alpha, find beta ******\n")}
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A.i.tmp<-(-X.L%*%alpha); B.i.tmp<-(-X.R%*%alpha);

A.i<-A.i.tmp*exp(Z%*%beta); B.i<-B.i.tmp*exp(Z%*%beta)

den.4.UZ<-(exp(A.i)-exp(B.i)); NewLogLik<-sum(log(den.4.UZ))

UZ<-matrix(colSums(as.vector((exp(A.i)*A.i-exp(B.i)*B.i)/

den.4.UZ)*Z), ncol=1)

num.4.HZ<-exp(A.i+B.i)*((A.i-B.i)^2+A.i+B.i)-

exp(2*A.i)*A.i-exp(2*B.i)*B.i

num.4.HZ[num.4.HZ<0]<-0

scaled.Z.4.HZ<-as.vector(sqrt(num.4.HZ)/den.4.UZ)*Z

HZ<-t(scaled.Z.4.HZ)%*%scaled.Z.4.HZ

ctrl.beta<-max(abs(UZ)); iter.beta<-0;

while(ctrl.beta>NR.ctrl & iter.beta<100){

if(print.hist.phreg==TRUE)

{ cat(" iter.beta=", iter.beta, ", LogL=", NewLogLik,

", ctrl.beta=", ctrl.beta, "\n", sep="")}

iter.beta<-iter.beta+1

beta<-beta+solve(HZ,UZ)

A.i<-A.i.tmp*exp(Z%*%beta); B.i<-B.i.tmp*exp(Z%*%beta)

den.4.UZ<-(exp(A.i)-exp(B.i)); NewLogLik<-sum(log(den.4.UZ))

UZ<-matrix(colSums(as.vector((exp(A.i)*A.i-exp(B.i)*B.i)/

den.4.UZ)*Z), ncol=1)

num.4.HZ<-exp(A.i+B.i)*((A.i-B.i)^2+A.i+B.i)-

exp(2*A.i)*A.i-exp(2*B.i)*B.i

num.4.HZ[num.4.HZ<0]<-0

scaled.Z.4.HZ<-as.vector(sqrt(num.4.HZ)/den.4.UZ)*Z

HZ<-t(scaled.Z.4.HZ)%*%scaled.Z.4.HZ

ctrl.beta=max(abs(UZ))

}

if(print.hist.phreg==TRUE)

{ cat(" iter.beta=", iter.beta, ", LogL=", NewLogLik,

", ctrl.beta=", ctrl.beta, "\n", sep="") }

finished.profile<-iter.beta+iter.alpha

}

time.stop<-proc.time()

new.S<-S[alpha>bndry.ctrl.alpha]

new.hr<-alpha[alpha>bndry.ctrl.alpha]

return(list("beta"=beta,

"S"=new.S,

"hr"=new.hr,

"weight"=weight,

"domain"=c(min(S), max(S)),
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"used.time"=time.stop-time.start,

"control"=ctrl.beta+ctrl.alpha))

}, error=function(e){cat("ERROR :", conditionMessage(e), "\n")}

) #### end of tryCatch

}

The function “PHregIC()” has the following arguments.

1. L, R

The vector of left endpoints and right endpoints of the censoring intervals. The

i-th entry of L and the i-th entry of R are the endpoints from the i-th censoring

interval.

2. Z

The matrix of covariates. The i-th row of Z are the covariates of the i-th subject.

If F0 does not depend on any covariates, such as in the current research, then

Z does not need to be specified.

3. bndry.ctrl.alpha

Λ0 is computed as a step function that has jumps over a finite set S. At some

s ∈ S, Λ0 may have no jump, but for numerical stability, the function regard a

jump that has value ≤bndry.ctrl.alpha as no jump. The default value is 1e-10.

4. NR.ctrl

A small quantity that controls the accuracy of the numeric solution. Smaller

value results in more accurate solution. The default value is 1e-5.

5. CumHazard.max

For numeric stability, the function forces Λ0 ≤CumHazard.max. The default

value is 1e200.
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6. print.hist.phreg An option for user to investigate details for each iteration. The

default value is TRUE.

The function “PHregIC()” returns a list, which contains

1. beta

The vector of β in the proportional hazard model. If F0 does not depend on

any covariate, then the value of beta is the constant 0.

2. S, hr

S is the vector of points over which Λ0 has a jump. hr is the vector of jumps of

Λ0. The i-th entry of hr is the jump at the i-th entry of S.

3. weight

A useful quantity for the use in this research. It computes exp(βtZ) for each

subject.

4. control

A value for user to check wether the algorithm terminated with convergence.

If the convergence is achieved, this value should be no larger than NR.ctrl.

Otherwise, the algorithm did not terminate with convergence, and the estimate

is not reliable.

6.2 A hybrid algorithm combining Fisher-Scoring algorithm and EM-
algorithm

The following two functions decompose a symmetric matrix M as M = AAt for a

lower triangular matrix A. The first function “LL.decomp()” returns A as a vector,

and the second function “vec.to.lower.mat()” changes the vector into a lower trian-

gular matrix. These two functions are used in the main function to be explained in

this section.
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LL.decomp<-function(M){

if(length(M)>1)

{ n<-dim(M)[1]

if(M[1,1]<(1e-5)){ A.vec<-c(c(1e-5, rep(0, n-1)),

LL.decomp(M[-1,-1]))

}else{A.vec<-c(M[1,]/sqrt(M[1,1]),

LL.decomp(M[-1,-1]-M[2:n,1]%*%t(M[1,2:n])/M[1,1]))}

}else{ A.vec<-sqrt(max(M,0)) }

return(A.vec) }

vec.to.lower.mat<-function(vec){

n<-floor(sqrt(2*length(vec)))

if(n>1){ M.vec<-c(outer(1:n, 1:n, "-"))

M<-rep(0, n^2); M[M.vec >=0]<-vec

return( matrix(M, nrow=n) )}else{return(vec)} }

The following function computes linear mixed-effects model parameters, as

described in Chapter 5.

get.para.EMFS<-function(lst, weight, n.fixed, n.random, initial.G,

outlier.control=(1e-50), initial.sigma.sq=1,

max.iter=1000, accuracy=0.00001,

min.step.ctrl=(2e-4), initial.EM.ctrl=0.1,

EM.acc=2, EM.max.iter=1000, GroupEM.num=25,

print.hist.lme=TRUE, plot.hist=TRUE,

plot.index=c(1), plot.y=0.2, plot.x=250,

plot.pch=".", plot.cex=3, plot.title="")

{tryCatch({

n.tmp<-length(lst); sum.weight<-sum(weight);

total.obs<-sum(sapply(1:n.tmp,

function(i.tmp) lst[[i.tmp]]$nobs.i)*weight)

## get initial values of beta by using LSE method.

FindXpXXpY<-function(i.tmp)

{EX.i<-Reduce("+", lapply(1:length(lst[[i.tmp]]$X.ij),

function(j.tmp) lst[[i.tmp]]$X.ij[[j.tmp]]*

lst[[i.tmp]]$Fhat.i[j.tmp,2]))

return(t(EX.i)%*%cbind(EX.i, lst[[i.tmp]]$Y.i)) }

XpX.XpY<-Reduce("+", lapply(1:n.tmp, function(i.tmp)

FindXpXXpY(i.tmp)*weight[i.tmp]))

beta.lse<-solve(XpX.XpY[,-n.fixed-1], XpX.XpY[,n.fixed+1])

#### get initial value of all parameters

all.para.initial<-c(beta.lse, initial.sigma.sq,
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LL.decomp(initial.G))

A.pattern<-LL.decomp(diag(1, n.random))

need2check.A<-(1:length(A.pattern))[A.pattern==1]

need2check<-n.fixed+1+c(0, need2check.A)

select.lower<-as.vector(outer(1:n.random, 1:n.random, ">="))

#### function to compute material for observation i evaluated at s_j

get.mtrl.ij<-function(i.ttmp=1, beta.ttmp,

sigma.sq.ttmp, G.ttmp, j.ttmp)

{ V.ij.inv<-solve(diag(sigma.sq.ttmp, lst[[i.ttmp]]$nobs.i)+

(lst[[i.ttmp]]$Z.ij[[j.ttmp]])%*%G.ttmp%*%

t(lst[[i.ttmp]]$Z.ij[[j.ttmp]]))

Vec.ij<-(lst[[i.ttmp]]$Y.i)-

(lst[[i.ttmp]]$X.ij[[j.ttmp]])%*%beta.ttmp

V.inv.Vec.ij=V.ij.inv%*%Vec.ij

return(list("tr.V.ij.inv"=sum(diag(V.ij.inv)),

"V.inv.Vec.ij"=V.inv.Vec.ij,

"mat.for.G.ij"=t(lst[[i.ttmp]]$Z.ij[[j.ttmp]])%*%

(V.inv.Vec.ij%*%t(V.inv.Vec.ij)-V.ij.inv)%*%

(lst[[i.ttmp]]$Z.ij[[j.ttmp]]),

"newp.ij.unscaled"=(lst[[i.ttmp]]$Fhat.i[j.ttmp, 2])*

sqrt(det(V.ij.inv))/exp( t(Vec.ij)%*%

V.ij.inv%*%Vec.ij/2 ) ))

}##End of get.mtrl.ij()

#### EM-step

NextStep.EM<-function(all.para.tmp=all.para.initial)

{ beta.tmp<-all.para.tmp[1:n.fixed]

sigma.sq.tmp<-all.para.tmp[1+n.fixed]

G.sqrt.tmp<-vec.to.lower.mat(

all.para.tmp[(2+n.fixed):length(all.para.tmp)] )

G.tmp<-G.sqrt.tmp%*%t(G.sqrt.tmp)

newlist<-lapply(1:n.tmp,

function(i){lapply(1:length(lst[[i]]$X.ij),

function(j) {get.mtrl.ij(i.ttmp=i,

beta.ttmp=beta.tmp,

sigma.sq.ttmp=sigma.sq.tmp,

G.ttmp=G.tmp,

j.ttmp=j)})})

lkhd.i<-sapply(1:n.tmp,

function(i){sum(sapply(1:length(newlist[[i]]),

function(j){newlist[[i]][[j]]$newp.ij.unscaled}))})
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possible.outliers<-(1:length(lkhd.i))[lkhd.i<outlier.control]

if(length(possible.outliers)>0)

{ cat("There are possible outliers,

recommend to remove subjects:\n")

print(possible.outliers) }

newp.ij<-lapply(1:n.tmp,

function(i){lapply(1:length(newlist[[i]]),

function(j){as.numeric(newlist[[i]][[j]]$newp.ij.unscaled)/

lkhd.i[i]})})

####compute logl

logl<-sum(weight*log(lkhd.i))

####compute G.next

mat4G<-Reduce("+", lapply(1:n.tmp,

function(i) {weight[i]*Reduce("+", lapply(1:length(newlist[[i]]),

function(j) {newlist[[i]][[j]]$mat.for.G.ij*

newp.ij[[i]][[j]]} ))}))

delta.G<-G.tmp%*%mat4G%*%G.tmp/sum.weight

G.next<-G.tmp+delta.G; A.next<-LL.decomp(G.next)

####compute beta.next

mat4beta<-Reduce("+", lapply(1:n.tmp,

function(i) weight[i]*Reduce("+", lapply(1:length(newlist[[i]]),

function(j) t(lst[[i]]$X.ij[[j]])%*%cbind(lst[[i]]$X.ij[[j]],

newlist[[i]][[j]]$V.inv.Vec.ij)*

newp.ij[[i]][[j]]))))

Delta.tmp<-solve(mat4beta[,-n.fixed-1],

mat4beta[,n.fixed+1])

delta.beta<-Delta.tmp*sigma.sq.tmp

beta.next<-beta.tmp+delta.beta

####compute sigma.sq.next

min.C<-sum(sapply(1:n.tmp,

function(i) weight[i]*sum(sapply(1:length(newlist[[i]]),

function(j) sum((newlist[[i]][[j]]$V.inv.Vec.ij-

lst[[i]]$X.ij[[j]]%*%Delta.tmp)^2)*newp.ij[[i]][[j]]))))

ETr<-sum(sapply(1:n.tmp,

function(i) weight[i]*sum(sapply(1:length(newlist[[i]]),

function(j) sum((newlist[[i]][[j]]$tr.V.ij.inv)*

newp.ij[[i]][[j]])))))

delta.sigma.sq<-sigma.sq.tmp^2*(min.C-ETr)/total.obs

sigma.sq.next<-max(0.000001, sigma.sq.tmp + delta.sigma.sq)
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return(list("LogL"=logl,

"next.para"=c(beta.next, sigma.sq.next, A.next),

"change"=sum(abs(delta.beta)/abs(beta.tmp))+

sum(abs(delta.beta))+

sum(abs(c(delta.sigma.sq, delta.G)))/

(1+n.random))) }### End of NextStep.EM()

#### FS step

NextStep.FS<-function(all.para.tmp=all.para.initial)

{ beta.tmp<-all.para.tmp[1:n.fixed]

sigma.sq.tmp<-all.para.tmp[1+n.fixed]

G.sqrt.tmp<-vec.to.lower.mat(

all.para.tmp[(2+n.fixed):length(all.para.tmp)])

G.tmp<-G.sqrt.tmp%*%t(G.sqrt.tmp)

newlist<-lapply(1:n.tmp,

function(i) {lapply(1:length(lst[[i]]$X.ij),

function(j) {get.mtrl.ij(i.ttmp=i,

beta.ttmp=beta.tmp,

sigma.sq.ttmp=sigma.sq.tmp,

G.ttmp=G.tmp,

j.ttmp=j)})})

lkhd.i<-sapply(1:n.tmp,

function(i) {sum(sapply(1:length(newlist[[i]]),

function(j) {newlist[[i]][[j]]$newp.ij.unscaled}))})

newp.ij<-lapply(1:n.tmp,

function(i) {lapply(1:length(newlist[[i]]),

function(j){as.numeric(newlist[[i]][[j]]$newp.ij.unscaled)/

lkhd.i[i]})})

####compute logl

logl<-sum(weight*log(lkhd.i))

#### compute U

U<-rbind( ####compute U.beta

Ubeta=sapply(1:n.tmp,

function(i) Reduce("+", lapply(1:length(newlist[[i]]),

function(j) t(lst[[i]]$X.ij[[j]])%*%

newlist[[i]][[j]]$V.inv.Vec.ij*

newp.ij[[i]][[j]]))),

####compute U.sigma.sq

Usigma.sq=sapply(1:n.tmp,
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function(i) sum(sapply(1:length(newlist[[i]]),

function(j)(sum(newlist[[i]][[j]]$V.inv.Vec.ij^2)-

newlist[[i]][[j]]$tr.V.ij.inv)*

newp.ij[[i]][[j]]))/2),

####compute U.A

UA=sapply(1:n.tmp,

function(i) c(Reduce("+", lapply(1:length(newlist[[i]]),

function(j) newlist[[i]][[j]]$mat.for.G.ij*

newp.ij[[i]][[j]]))%*%

G.sqrt.tmp)[select.lower] )

) #### End of U<-rbind(Ubeta=, Usigma.sq, UA)

return(list("LogL"=logl,

"Score"=colSums(weight*t(U)),

"Fisher.I"= t(weight*t(U))%*%t(U) ))

} ##End of function NextStep.FS()

#### intialized and run EM for several times

all.para<-all.para.initial

used.EM<-0; EM.change<-1;

while( (used.EM<GroupEM.num | EM.change>initial.EM.ctrl)&

(used.EM < EM.max.iter) )

{ used.EM<-used.EM+1;

Next.EM<-NextStep.EM(all.para);

all.para<-Next.EM$next.para;

EM.change<-Next.EM$change }

#### Start Fisher.Scoring-EM mixture algorithm

if(plot.hist==TRUE)

{ plot.adj<-all.para[plot.index]; n2plot<-length(plot.index)

plot(NULL, xlim=c(0, plot.x), ylim=c(-plot.y, plot.y),

xlab="FS.iter", ylab="", main=plot.title) }

FS.infor<-NextStep.FS(all.para)

LogL.current<-FS.infor$LogL

n.all.para<-length(all.para); iter<-0; ctrl.FS<-1;

min.step=ifelse(n.tmp<400, n.tmp/400, 1);

target.min.step=1; used.FS<-0;

while(iter<max.iter & ctrl.FS>accuracy & min.step>min.step.ctrl){

iter=iter+1

#### remove paras that are on boundary.

on.bndry<-rep(0, n.all.para)
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next.direction<-rep(0, n.all.para)

for(i.tmp in need2check){on.bndry[i.tmp]=(all.para[i.tmp]<(1e-5)&

FS.infor$Score[i.tmp]<(1e-10))}

Fisher.I<-FS.infor$Fisher.I

if(min(eigen(Fisher.I[on.bndry==0,on.bndry==0])$values)<(1e-8)){

cat("\n EM used before FS. \n")

target.min.step=min.step*0.9

min.step=min.step/2

used.EM<-used.EM+GroupEM.num; used.FS<-0;

for(dummy in 1:GroupEM.num){

Next.EM<-NextStep.EM(all.para)

all.para<-all.para+EM.acc*(Next.EM$next.para-all.para) }

FS.infor<-NextStep.FS(all.para)

LogL.current<-FS.infor$LogL

ctrl.FS<-Next.EM$change+abs(LogL.current-Next.EM$LogL)

}else{

next.direction[on.bndry==0]<-solve(Fisher.I[on.bndry==0,on.bndry==0],

FS.infor$Score[on.bndry==0])

need.to.check=c(1,need2check)

while(length(need.to.check) > 1)

{ find.bndry<-0

for(i.tmp in need.to.check[-1])

{if(all.para[i.tmp]<(1e-8)&next.direction[i.tmp]<0&

on.bndry[i.tmp]<1)

{on.bndry[i.tmp]<-1; next.direction[i.tmp]<-0;

find.bndry<-find.bndry+1 } }

if(find.bndry>1){

next.direction[on.bndry==0]<-solve(Fisher.I[on.bndry==0,on.bndry==0],

FS.infor$Score[on.bndry==0])

}else{need.to.check<-c(1)}

}#### End of While(length(need.to.check) > 1)

next.step<-min(min.step, sapply(need2check,

function(i.tmp) ifelse(next.direction[i.tmp]>(-1e-100), 1,

abs(all.para[i.tmp]/next.direction[i.tmp]))))

tmp.move<-next.step*next.direction;

tmp.all.para<-all.para+tmp.move;

FS.infor<-NextStep.FS(tmp.all.para)

if(FS.infor$LogL>(LogL.current-(1e-10)))

{ctrl.FS<-sum(abs(c(tmp.move[1:n.fixed],

next.direction/sum(1-on.bndry),

tmp.move[(1+n.fixed):n.all.para]/(1+n.random),
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FS.infor$LogL-LogL.current)))

used.FS<-used.FS+1;

LogL.current<-FS.infor$Log

all.para<-tmp.all.para

min.step=min.step+(target.min.step-min.step)/10

if(used.FS>10){target.min.step=target.min.step+

min(10*min.step, 1-target.min.step)/(used.FS) }

}else{ cat("\n EM used. \n")

target.min.step=min.step*0.9

min.step=min.step/2

used.EM<-used.EM+GroupEM.num; used.FS<-0;

for(dummy in 1:GroupEM.num){

Next.EM<-NextStep.EM(all.para)

all.para<-all.para+

EM.acc*(Next.EM$next.para-all.para)}

FS.infor<-NextStep.FS(all.para)

LogL.current<-FS.infor$LogL

ctrl.FS<-Next.EM$change+abs(LogL.current-Next.EM$LogL)

}#End of if-else

}#End of if=else

if(print.hist.lme==TRUE) {

cat("\n Iter=",round(iter, 1),". min.step=", min.step,

". Ctrl.FS=", round(ctrl.FS, 6),

". LogL=", LogL.current, ". Sigma.sq=",

round(all.para[1+n.fixed],6),"\n fixed.effects(lse lme)=:",

"\n", sep="")

print(rbind(beta.lse=beta.lse, beta.lme=all.para[1:n.fixed]))

A.tmp<-vec.to.lower.mat(all.para[(2+n.fixed):n.all.para])

cat("\n G-matrix is: \n");

print(A.tmp%*%t(A.tmp)) }

if(plot.hist==TRUE){

points(x=rep(iter-floor(iter/plot.x)*plot.x, n2plot),

y=all.para[plot.index]-plot.adj,

pch=plot.pch, cex=plot.cex, col=plot.index) }

} #### End of while()

#### Control the convergence with EM

new.iter<-0;

Next.EM<-NextStep.EM(all.para)

ctrl<-abs(Next.EM$LogL-LogL.current)+Next.EM$change
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if(ctrl>10*accuracy){ cat("\n \n Finalize with EM. \n \n ")

acc=c(1, EM.acc, EM.acc, EM.acc)

while(ctrl>10*accuracy & new.iter<EM.max.iter)

{ new.iter <- new.iter +1;

need.acc<-new.iter-floor(new.iter/4)*4+1

Next.EM<-NextStep.EM(all.para)

ctrl<-abs(Next.EM$LogL-LogL.current)+Next.EM$change

all.para<-all.para+(Next.EM$next.para-all.para)*acc[need.acc]

LogL.current<-Next.EM$LogL;

if(print.hist.lme==TRUE) {

cat("\n new.iter=", round(new.iter, 1),

". Ctrl=", round(ctrl, 6),

". LogL=", LogL.current,

". Sigma.sq=", round(all.para[1+n.fixed], 6),

"\n", sep="")

print(c(beta.lse, all.para[1:n.fixed]))

A.tmp<-vec.to.lower.mat(all.para[(2+n.fixed):n.all.para])

print(A.tmp%*%t(A.tmp)) }

if(plot.hist==TRUE) {

points(x=rep(iter-floor(iter/plot.x)*plot.x, n2plot),

y=all.para[plot.index]-plot.adj,

pch=plot.pch, cex=plot.cex, col=plot.index) }

}#### End of while.

}####End of if(ctrl>10*accuracy)

cat("ctrl.final=", ctrl,

". total iteration:",iter+new.iter+used.EM,

"\n", sep="")

return(c(para.LSE=beta.lse,

LogL=LogL.current,

all.para=all.para,

iter=iter+new.iter+used.EM))

}, error=function(e){cat("ERROR :", conditionMessage(e), "\n")}

) #### end of tryCatch

} #### End of function get.para.EMFS()

Before calling the function “get.para.EMFS()”, the anchoring point distribu-

tion F0 needs to be obtained as a step function, such as computed by the “PHregIC()”
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function in Section 6.1. For the i-th subject, assume the censoring interval is (L.i, R.i],

and assume T
∣∣(Li < T ≤ Ri) has jumps pij at sij , where j = 1, · · · , ki. Let S.i de-

note the vector of sij ’s and let P.i denote the vector of the pij ’s. The function

“get.para.EMFS()” has the following arguments.

1. lst

A list of list. The i-th element of lst is a list that contains the following in-

formation of the i-th subject: list(intvl, Fhat.i, nobs.i, Y.i, X.ij, Z.ij), where

(a) intvl=c(L.i, R.i) the censoring interval.

(b) Fhat.i=cbind(S.i, P.i)

(c) nobs.i= number of observations

(d) Y.i= the column matrix of response

(e) X.ij, Z.ij = lists of matrices, the j-th matrices of X.ij and Z.ij are the re-

spective fixed and random effects matrices when the event time is assumed

to be at T = sij

2. weight

The weight for each subject, if specified. Default weight is 1 for each subject.

3. n.fixed, n.random

number of parameters in fixed and random effects.

4. initial.G

initial value for the random effect matrices G. Default value is the identity

matrix.

5. outlier.control=(1e-50), initial.sigma.sq=1, max.iter=1000, accuracy=0.00001,

min.step.ctrl=(2e-4), initial.EM.ctrl=0.1, EM.acc=2, EM.max.iter=1000,
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GroupEM.num=25, print.hist.lme=TRUE, plot.hist=TRUE, plot.index=c(1),

plot.y=0.2, plot.x=250, plot.pch=”.”, plot.cex=3, plot.title=””

These are optional arguments to control the convergence of the algorithm, and

obtain details of the updated parameter estimates in each iteration. Please see

the definition of the function for details.

When the algorithm terminates because of convergence, the function returns

the following vector c(para.LSE, LogL, all.para, iter), where

1. para.LSE = the parameter estimate in the distribution-free model, i.e., the LSE

based model.

2. LogL = the log-likelihood at the parameter estimates.

3. all.para = the vector of parameter estimate of fixed effects and the lower trian-

gular entries of A that parameterizes the covariance matrices for the random

effects.

4. iter = the number of total iteration used in the algorithm.

6.3 A user-friendly function

Using the functions “PHregIC()” and “get.para.EMFS()”, we provide the following

function that can be directly used for analyzing longitudinal data anchored by interval

censored anchoring point.

PHregLMEICA<-function(int.l, int.r, int.subject, phreg.covariate=NULL,

subject, response, covariates, fixed.fun, random.fun,

bs.se=TRUE, bs.seed.start=20170502, bs.num=50,

outlier.control=(1e-50), initial.sigma.sq=1,

max.iter=1000, accuracy=(1e-5), min.step.ctrl=(2e-4),

initial.EM.ctrl=0.1, EM.acc=2, EM.max.iter=1000,

GroupEM.num=25, print.hist.phreg=FALSE,

print.hist.lme=TRUE, plot.hist=TRUE, plot.index=2:3,

plot.y=0.2, plot.x=100, plot.pch=20, plot.cex=1,
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plot.title=""){

if(!((length(int.l)==length(int.r)) &

(length(int.r)==length(int.subject))))

{stop("rows of int.l, int.r, int.subject must match!")}

if(!is.null(phreg.covariate))

{ if(!(is.matrix(phreg.covariate)))

{stop("phreg.covariate must be in matrix form!")}

if(length(int.l)!=dim(phreg.covariate)[1])

{stop("rows of phreg.covariate must match intervals")}}

ID<-1:length(int.subject)

get.covariate<-function(i.tmp=1, F.tmp=F.hat){

L.i<-int.l[i.tmp]; R.i<-int.r[i.tmp];

S.i<-F.tmp$S[ L.i<F.tmp$S & F.tmp$S<=R.i ]

hr.at.S.i<-F.tmp$weight[i.tmp]*

F.tmp$hr[L.i<F.tmp$S & F.tmp$S<=R.i]

F.at.S.i<-1-exp(-cumsum(hr.at.S.i))

P.i.tmp<-F.at.S.i-c(0, F.at.S.i[-length(F.at.S.i)])

P.i<-P.i.tmp/sum(P.i.tmp)

Fhat.i<-cbind(S.i, P.i )

covariates.i.tmp<-covariates[(subject==int.subject[i.tmp]),]

response.i.tmp<-response[(subject==int.subject[i.tmp])]

not.missing.i<-!is.na(rowSums(covariates.i.tmp)+response.i.tmp)

covariates.i<-covariates.i.tmp[not.missing.i,]

response.i<-response.i.tmp[not.missing.i]

nobs.i<-sum(not.missing.i)

X.ij<-lapply(S.i, function(ap.tmp)

{t(apply(covariates.i, 1,

function(vec.tmp=covariates[1,]) fixed.fun(vec.tmp, ap.tmp)))})

Z.ij<-lapply(S.i, function(ap.tmp)

{Z.ij.tmp<-apply(covariates.i, 1,

function(vec.tmp) random.fun(vec.tmp, ap.tmp))

if(length(Z.ij.tmp)==dim(covariates.i)[1])

{return(matrix(Z.ij.tmp, ncol=1))}else{return(t(Z.ij.tmp))}})

list("intvl"=c(L.i, R.i), "Fhat.i"=Fhat.i, "nobs.i"=nobs.i,

"Y.i"=matrix(response.i, ncol=1), "X.ij"=X.ij, "Z.ij"=Z.ij)

}

112



F.hat<-PHregIC(L=int.l, R=int.r, Z=phreg.covariate,

print.hist.phreg=print.hist.phreg)

if(is.null(F.hat)){stop("Cannot compute CDF.")}

dt.list<-lapply(ID, function(id.tmp)

get.covariate(i.tmp=id.tmp, F.tmp=F.hat))

N.fixed <-dim( (dt.list[[1]]$X.ij)[[1]] )[2]

N.random<-dim( (dt.list[[1]]$Z.ij)[[1]] )[2]

#### get para.est

para.est<-get.para.EMFS( lst=dt.list, weight=rep(1, length(dt.list)),

n.fixed=N.fixed, n.random=N.random,

initial.G=diag(N.random),

outlier.control=outlier.control,

initial.sigma.sq=initial.sigma.sq,

max.iter=max.iter, accuracy=accuracy,

min.step.ctrl=min.step.ctrl,

initial.EM.ctrl=initial.EM.ctrl, EM.acc=EM.acc,

EM.max.iter=EM.max.iter, GroupEM.num=GroupEM.num,

print.hist.lme=print.hist.lme, plot.hist=plot.hist,

plot.index=plot.index, plot.y=plot.y,

plot.x=plot.x, plot.pch=plot.pch,

plot.cex=plot.cex, plot.title=plot.title)

if(is.null(para.est)){stop("Cannot get parameter estiamte")}

if(bs.se){

cat("\n Start bootstrap===>:\n")

bs.paras<-matrix(rep(0, length(para.est)*bs.num), nrow=bs.num)

bs.seed<-bs.seed.start; dummy<-1;

while(dummy <= bs.num){

cat(" bs", dummy, ": ", sep="")

set.seed(bs.seed)

bs.id.dup<-sample(ID, size=length(ID), replace=TRUE)

bs.id.dup<-bs.id.dup[order(bs.id.dup)]

bs.id.unique<-unique(bs.id.dup)

weight.bs<-as.vector(table(bs.id.dup))

bs.phreg.covariates<-phreg.covariate[bs.id.dup,]

if(!is.null(bs.phreg.covariates)){

if(!is.matrix(bs.phreg.covariates))

{bs.phreg.covariates<-as.matrix(bs.phreg.covariates)}}

bs.F.hat<-PHregIC(L=int.l[bs.id.dup], R=int.r[bs.id.dup],

Z=bs.phreg.covariates,

print.hist.phreg=print.hist.phreg)

bs.dt.list<-lapply(bs.id.unique, function(id.tmp)

get.covariate(i.tmp=id.tmp, F.tmp=bs.F.hat))
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bs.para.tmp<-get.para.EMFS(lst=bs.dt.list, weight=weight.bs,

n.fixed=N.fixed, n.random=N.random, initial.G=diag(N.random),

initial.sigma.sq=initial.sigma.sq, max.iter=max.iter,

accuracy=accuracy, min.step.ctrl=min.step.ctrl,

outlier.control=outlier.control, initial.EM.ctrl=initial.EM.ctrl,

EM.acc=EM.acc, EM.max.iter=EM.max.iter,

GroupEM.num=GroupEM.num, print.hist.lme=print.hist.lme,

plot.hist=plot.hist, plot.index=plot.index,

plot.y=plot.y, plot.x=plot.x, plot.pch=plot.pch,

plot.cex=plot.cex,

plot.title=paste(plot.title, ": seed-", bs.seed, sep=""))

if(!is.null(bs.para.tmp))

{ bs.paras[dummy,]<-bs.para.tmp; dummy<-dummy+1 }

bs.seed<-bs.seed+1

}## End of for-loop

cat("\n ===>: Finish Boostrap \n")

chs.tmp<-bs.paras[,length(para.est)]<(max.iter+EM.max.iter)

bs.paras<-bs.paras[chs.tmp, ]

if(dim(bs.paras)[1]<bs.num)

{cat("Some bootstrap steps do not converge.",

"Covariance matrix estimated based on convergent steps")}

bs.cov.lse<-cov(bs.paras[, 1:N.fixed])

bs.cov.lme<-cov(bs.paras[, N.fixed+1+(1:N.fixed)])

bs.cov.sigma.and.A<-cov(bs.paras[,(2*N.fixed+2):(length(para.est)-1)])

lse.est<-rbind(lse.est=para.est[1:N.fixed], se=sqrt(diag(bs.cov.lse)))

lme.est<-rbind(lme.est=para.est[N.fixed+1+ (1:N.fixed)],

se=sqrt(diag(bs.cov.lme)))

ests<-rbind(lse.est, lme.est)

colnames(ests)<-paste("para", 1:N.fixed, sep="")

return(list("data.list"=dt.list,

"F.hat"=F.hat,

"para.est"=para.est,

"bs.paras"=bs.paras,

"bs.covs"=list("bs.cov.lse"=bs.cov.lse,

"bs.cov.lme"=bs.cov.lme,

"bs.cov.sigma.and.A"=bs.cov.sigma.and.A)))

}else{return(list("data.list"=dt.list,

"F.hat"=F.hat,

"para.est"=para.est))}

}
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The above function takes the following arguments.

1. int.l, int.r

Vectors. The i-th element of int.l and int.r are the left and right endpoints of

the i-th censoring interval.

2. int.subject

Vector. The i-th element is the subject id for the i-th subject.

3. phreg.covariate

Covariance matrix for the proportional hazards model. The i-th row are the

covariates for the i-th subject.

4. subject response, covariates

the vector for subject, response, and the covariance matrix for the longitudinal

model. int.subject must be a subset of subject. Subjects may have different

number of observations. Missing values are allowed. response and covariates

must be numerical.

5. fixed.fun, random.fun

Because the true event time is not observed, fixed.fun and random.fun are func-

tions that defines the fixed and random effects coefficient matrices as a function

of event time t. fixed.fun must be a function that returns a vector of length at

least 2

6. all other arugment

These are options to manually control the algorithm, and obtain details of the

iterations. Please see the definition of the function for details.

The function returns a list, which contains:
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1. data.lst

Data used to run the model. data.lst is a list of the same structure as lst in the

“get.para.EMFS()” function in Section 6.2.

2. F.hat

Estimate anchoring point distributions. F.hat is a list of the same structure as

the list returned by the “PHregIC()” function in Section 6.1.

3. para.est

The vector of parameter estimates, as returned by the “get.para.EMFS()” func-

tion in Section 6.2.

4. bs.paras

All parameter estimates from the bootstrap steps, whose sample covariance

matrix gives the bootstrap covariance matrix.

5. bs.covs

Bootstrap covariance matrices for the distribution-free model estimates and the

linear mixed-effects model estimates.

To avoid numeric problem of extremely small or large residuals, and hence to

achieve stable computations, it is advised to scale the covariates vector and/or the

response vector if they are large. It is also advised to remove outliers, if possible.
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Chapter 7

Summary

Longitudinal data with subject-specific random anchoring events are often encoun-

tered in scientific research. Most of the existing methods rely on assumptions of the

anchoring event time distribution. These assumptions are usually hard to verify, and

hence the analysis is prone to biased estimation and questionable inference.

In this research, we took an initial step toward solving the problem for a general

class of longitudinal models, in a situation where the anchoring event times are cen-

sored by observable intervals. Given a sample of size n, we proposed to first obtain the

anchoring event distribution F̂n using a nonparametric maximum likelihood method,

and then estimate the model parameters as the value of a stochastic functional Qn at

F̂n. The stochastic functional Qn was constructed in two different situations, one with

a distribution-free model (Chapter 4) and the other with a linear mixed-effects model

(Chapter 5). In the distribution-free model, Qn is relative easy to compute since an

explicit formula is available. The method is also robust on the outcome distribution.

However, since the distribution-free model completely ignores the correlation between

repeated observations of the same subject, the estimation efficiency can be improved if

the within-subject correlations are appropriately modeled. Therefore, we considered

a likelihood based approach. Under a general setting, we focused on the properties

of the semiparametric maximum pseudo-likelihood estimators, in which an estimated

nonparametric distribution function F̂n was used to compute the pseudo-likelihood.

In this case, the stochastic functional Qn is only implicitly defined as sending F̂n
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to the maximizer of the corresponding pseudo-likelihood. Usually, the computation

of Qn(F̂n) can be complex. For linear mixed-effects model with interval censored

anchoring events, we developed an algorithmically efficient algorithm to compute the

model estimate. The statistic efficiency gain compared to the distribution-free model

was empirically evaluated using simulation study (Section 5.3).

Using the empirical process theory, we showed that under mild regularity con-

ditions, the proposed model estimates were consistent and asymptotically normally

distributed with n
1
2 -convergence rate (Theorems 4.2.2 and 5.1.2). A good finite-

sample performance was demonstrated through simulation studies (Sections 4.3 and

5.3). Applications of the proposed method were illustrated through real data anal-

ysis (Sections 4.4 and 5.4). Based on the rigorously developed large-sample theory

and good finite-sample performance, we recommend the application of our proposed

method for longitudinal data when the time scale is anchored by interval censored

events.

Considering the levels of maturity and variety of the existing longitudinal

models, our research is at best an initial attempt towards the goal of a more com-

plete solution. There are certainly important questions that remain to be addressed.

Among them are the incorporation of nonlinear modeling components and covariate-

dependent anchoring event distributions. With the extensions of the basic modeling

structure, new computational algorithms also need to be developed for model fitting.
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