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Abstract In vivo imaging of the tau protein has the potential
to aid in quantitative diagnosis of Alzheimer’s disease, cor-
roborate or dispute the amyloid hypothesis, and demonstrate
biomarker engagement in clinical drug trials. A host of tau
positron emission tomography agents have been designed,
validated, and tested in humans. Several agents have charac-
teristics approaching the ideal imaging tracer with some lim-
itations, primarily regarding off-target binding. Dozens of
clinical trials evaluating imaging techniques and several phar-
maceutical trials have begun to integrate tau imaging into their
protocols.
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Introduction

In 1991, Braak and Braak [1] published a proposed neu-
ropathological staging for Alzheimer’s disease (AD). This
work detailed the progression of both extraneuronal amy-
loid plaques and intraneuronal neurofibrillary tau inclu-
sions throughout the cortex. To date, research has focused
primarily on the amyloid cascade hypothesis and had an
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amyloid-centric approach to AD [2, 3]. Amyloid therapeu-
tic approaches, particularly monoclonal antibodies against
both soluble and fibrillary forms of amyloid beta, have
failed in preventing clinical progression of AD, despite a
reduction in the amyloid plaque burden [4]. However,
there is some hope that these drugs modify disease pro-
gression if given early enough in the disease course, but
long-term efficacy data in patients with prodromal AD are
only starting to emerge [5, 6].

A recurring argument against the amyloid hypothesis is
that despite the prominence of amyloid plaques, tau-
associated pathologic changes are more closely correlated
with disease severity [7]. Thus, tau may be an important pro-
tein in early detection and staging of AD. However, tau pa-
thology is nonspecific and is a marker of neurodegeneration
beyond AD in diseases such as frontotemporal lobar
degeneration (FTD), traumatic brain injury, progressive
supranuclear palsy (PSP), corticobasal degeneration (CBD),
and chronic traumatic encephalopathy.

Regarding AD, one potential advantage to evaluating tau
in vivo is the superior identification of a clinically relevant neu-
rodegenerative process over amyloid positron emission tomog-
raphy (PET) imaging. Amyloid has been shown to accumulate in
the normal aging population with the percentage of cognitively
normal adults who are amyloid PET-positive being 24 %, 35 %,
and 49 % at the ages of 70 years, 80 years, and 90 years, respec-
tively [8]. Therefore, older individuals are more likely to have
amyloid PET positivity when they may not actually have AD
dementia. Tau imaging, used alone or in conjunction with amy-
loid imaging, may therefore improve diagnostic certainty of AD
by documenting the presence of neurodegeneration. Tau imaging
may also be beneficial in evaluating the rate of disease progres-
sion, which has been unattainable with amyloid imaging alone,
and measuring the efficacy of disease interventions, particularly
in AD clinical trials.
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Tau Biology

Microtubule-associated protein tau is an intracellular protein
that plays a major role in cell structure. Tau is critical to the
formation of microtubules that transport nutrients, waste, and
chemical transmitters throughout neurons. The tau protein has
6 isoforms that have either 3 or 4 binding domain repeats (3R
or 4R). These isoforms are hypothesized to have potentially
distinct roles within the neuron, as well as differential distri-
bution and different roles in various regions of the brain [9].

In disease, the equilibrium of bound and unbound tau pro-
teins changes with an increase in the amount of unbound tau
protein. The detachment of tau from microtubules is likely
secondary to abnormal phosphorylation that is modulated by
a homeostasis between phosphatase and kinase enzymatic ac-
tivity. Unbound tau, particularly the hyperphosphorylated un-
bound tau seen in AD, then often forms insoluble fibers. The
insoluble fibers form morphologically different aggregates,
typically the paired helical filaments (PHFs) characteristically
found in AD, straight filaments, or irregularly twisted filaments
[10]. All 6 isoforms of tau are found to be abnormally phos-
phorylated in AD [11]. There is also evidence that a shift from
3R to 4R isoforms of the tau protein in the basal forebrain and
hippocampus may be associated with formation of neurofibril-
lary tangles (NFTs) [12]. PHFs are typically composed of both
3R and 4R isoforms of tau, while other tauopathies are more
associated with one specific isoform [13].

The pattern of PHF deposition in the cortex has been de-
scribed and is hypothesized to spread in a sterotyped fashion
in AD [1, 14]. In general, the transentorhinal and entorhinal
areas are affected first, followed by the hippocampus, with an
orderly progression through the subiculum and CA1, followed
by CA2, CA3, and CA4, and then the inferior temporal lobe
[1, 15-17] (see Fig. 1). After this, the middle and superior
temporal lobes are next affected, followed by the inferior pa-
rietal and anterior frontal lobes (see Fig. 1). Finally, the PHFs
spread to the remainder of the frontal and parietal cortices [1].
Both cognitively normal and impaired elderly individuals may
have some degree of PHFs in the transentorhinal, entorhinal,
and hippocampal areas [14]. However, if PHFs are found be-
yond these regions, there is a higher likelihood of having
clinical symptoms.

Tau Imaging Approaches

Historically, visualization of the neurodegenerative changes
thought to be inflicted, in large part, by tau
hyperphosphorylation and deposition was achieved through
advanced magnetic resonance imaging methodologies that
proved capable of depicting the earliest AD-associated chang-
es in hippocampal structure. Many of these approaches
modeled the hippocampal shape using computational

anatomy deformation techniques [18, 19]. This enabled re-
searchers to map the progression of AD pathology through
the hippocampal structure in vivo [18, 20-24]. Yet, these ap-
proaches provided only inferential knowledge about tau-
related pathology, and newer methods have since evolved.

The first agent designed for imaging tau, ['*FJFDDNP, has
been shown to be relatively nonselective as it binds to both
intracellular NFTs and extracellular amyloid (3 [13]. Another
nonselective tau tracer, [''CJPBB3 binds both NFTs and am-
yloid plaques in patients with AD and in patients with other
tauopathies [25]. Thus, ['*FJFDDNP and [''C]PBB3 have far
inferior selectivity in binding to tau than more modern tracers.
Additional disadvantages of [ 11C]PBB3 also include the short
half-life of the C-11 radioisotope (approximately 20 min), as
well as the presence of a radiometabolite than could potential-
ly cross the blood-brain barrier and confound results [26].

Characteristics of successful tau imaging agents have been
proposed and include the following: high binding affinity to
PHF-tau with low nonspecific binding, high level of selectivity
for PHF-tau (perhaps > 20-fold) over amyloid (3, long half-life,
good blood-brain barrier permeability, and very low metabo-
lism [27, 28]. More recently, selective tau tracers that approach
the theoretical ideal have been designed. The most used tracer
to date is ['®F]T807, which was renamed ['*F]AV-1451 (also
known as flortaucipir) after Avid Radiopharmaceuticals (a sub-
sidiary of Eli Lilly and Company) acquired the tracer from
Siemens Medical Solutions in April 2013 [29]. This
benzimidazole-pyrimidine derivative has an approximately 29
times greater selectivity for PHF-tau over amyloid (3 and
showed uptake in a pattern similar to that predicted by Braak
staging in patients with AD [30]. The tracer also does not
appear to bind with high affinity to the straight tau filaments
seen in other tauopathies [31]. Being an F-18 compound, its
half-life is approximately 110 min.

One of the major issues raised with this tracer is the “off-
target” binding. The tracer has been reported to bind to
neuromelanin and melanin containing cells (substantia nigra,
pigmented cells in the eye, leptomeninges), as well as to areas
of acute and subacute hemorrhage [31, 32]. There have also
been reports of the tracer binding to the choroid plexus leading
to a linear signal intensity along the perimeter of the hippo-
campus which could confound interpretation in this crucial
region [33]. Choroid plexus binding of tau tracers may be
related to normal pathologic changes in this area and may
simply be a characteristic that should be accounted for in
image interpretation [34].

From a safety standpoint, ['*F]AV-1451 was evaluated for
the potential risk of QT prolongation (slowing of the interval
between the Q wave and T wave in the electrocardiogram).
The potential risk of QT prolongation was determined with an
in vitro hERG (human ether-a-gogo-related gene) assay,
though in vivo canine studies failed to show any risk of QT
interval changes at clinical doses [35]. Patients with known
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Low Tau

Cognitively
Normal MCI

Fig.1 Tau positron emission tomography images from cognitively normal
controls, patients with mild cognitive impairment (MCI) with either
virtually normal appearing tau imaging or those with high amount of tau,
and patients with Alzheimer’s disease. Note the very low binding of tau
ligand in the cortex of both patients with cognitively normal and low-tau

risk factors for QT prolongation or who are taking medica-
tions that are known to prolong the QT interval are excluded
from receiving ['®*FJAV-1451 until more human data are
available.

Another series of tau tracers has been developed by Tohoku
University in Japan and has been given the abbreviation THK.
Several quinolone and benzimidazole derivatives have been
created, the first of which was ['®*F-THK523] which had sev-
eral limitations, including high white matter retention and only
12-fold selectivity of tau over amyloid, preventing its clinical
utility [36]. The next-generation derivatives (['*F]THK5105,
['"*F]THK5117, ['"®*F]THK5351) have shown superior binding
and improved signal to noise ratio than ["®F]THK523 [36, 37].
Several novel tau tracers (['' CJR06924963, [''CJRO6931643,
and ['*FJRO6958948) have been used successfully in a small
Phase I study from F. Hoffman-La Roche Ltd (Roche) [38].

To date, tau radiotracers have been designed to bind with
high affinity to PHF-tau. This is potentially useful in identifying
patterns associated with AD and other conditions associated
with both 3R and 4R isoforms of tau. However, other neurode-
generative conditions which are more specific to a single iso-
form, or conditions specific to certain post-translational modifi-
cations to tau may not be identified with current tracers [13].
Additionally, if shifts in populations of isoforms are related to
AD initiation, a variety of tracers may be necessary for earliest
disease identification. Autoradiography work on autopsy data
has shown that ['®*F]JAV-1451 has a higher affinity for 3R/4R
neurofibrillary tangles than pure 3R or 4R tangles as seen in
other neurodegenerative diseases [32]. Additionally, it was re-
ported that there is a much lower affinity for TDP-43 (TAR-
DNA binding protein 43) pathologies and the “ghost” tangles
associated with tangle predominant dementia [32].
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High Tau
MCI

mild cognitive impairment. In the high-tau MCI, stage I commonly
observes binding in the anterior, inferior, and lateral temporal lobes. In
the dementia stages the tau deposition in the previously involved areas
becomes denser and tau binding is also observed in the other associations
fields like the parietal and frontal lobes as seen in the figure

AD

Tau Imaging Research Findings

The first studies with tau PET imaging in research popula-
tions are emerging and findings are generally supportive of
the important role of tau in AD and other dementias, as well
as the Braak and Braak staging of tau pathology. On tau
PET imaging, both patients with mild cognitive impairment
(MCI) and AD show increased binding relative to cognitive-
ly normal (CN) older adults (see Fig. 1). Specifically, pa-
tients with AD show significant tau PET tracer uptake in the
temporal, parietal, and frontal lobes, while the primary
sensory/motor cortices are relatively spared [30, 39—44].
Tau in the inferior temporal lobe is associated with increased
amyloid deposition on PET, as well as greater cognitive
impairment and disease severity in AD [41, 44]. Tau PET
can also be used for Braak staging of participants. Data
suggest that most amyloid-positive patients with AD are in
Braak stage VI, while the majority of amyloid-negative pa-
tients with AD had Braak stages of Il or lower [41, 44].
Across AD and CN participants, tau PET measures also
significantly correlate with cerebrospinal fluid (CSF) levels
of amyloid and tau [39]. A comparison between CSF bio-
marker levels and ['®F]AV-1451 imaging has shown a direct
correlation between phosphorylated tau levels in CSF and
uptake in temporal limbic and neocortical regions [45]. A
longitudinal tau PET study showed an increase in tracer
signal of approximately 5 % in the inferior temporal and
fusiform gyri in mild AD, and an increase of 5 % to
8.6 % in tracer retention in the fusiform, parahippocampal,
and inferior temporal gyri in moderately impaired patients
with AD [46]. Patients with MCI also show greater uptake
than CN adults in the inferior temporal lobe, posterior
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cingulate, and fusiform, entorhinal, and parahippocampal
gyri [30, 40, 41, 44]. As the MCI stage is quite heteroge-
neous, patients can demonstrate a full range of Braak stages,
from I to VI [44]. Notably, patients with MCI who are
amyloid positive on PET showed much greater tau binding
than those who were amyloid negative on PET, who rarely
showed a Braak stage >0 [44]. Finally, in CN adults only,
amyloid positivity on PET is associated with increased tau
tracer uptake in the medial and lateral temporal and parietal
lobes [39, 43]. A potential limiting factor for tau PET imag-
ing is that Braak staging does not correlate perfectly with
clinical symptomatology. In the oldest old NTFs in the hip-
pocampus and neocortical regions are often found in the
absence of amyloid deposition [47]. Future studies are need-
ed to determine whether tau PET measurements will be pre-
dictive of future cognitive decline in MCI and CN.

Other neurodegenerative diseases and dementias have also
been investigated with tau PET imaging. A case study of a
symptomatic carrier of an autosomal dominant AD mutation
in presenilin 1 (PSENI) showed significant tau deposition in
the posterior cingulate, precuneus, and parietal and occipital
cortices [48]. Patients with posterior cortical atrophy, an atyp-
ical form of AD, showed increased tau in the primary visual
cortex, the medial and lateral parietal, the occipital, and the
posterior temporal lobes (temporo-parieto-occipital regions)
[42, 49]. Another atypical form of AD, logopenic aphasia,
demonstrated as-expected asymmetric tau deposition (left
greater than right) in the majority of patients, in
temporoparietal, occipital, and anterior temporal lobe regions,
with more severely affected patients showing the more uptake
in anterior temporal regions than less affected individuals [42,
49]. Studies have also investigated various forms of
frontotemporal dementia with tau PET techniques. Recent
tau studies have shown increased tau binding in frontal and
temporal cortices in behavioral variant FTD that is correlated
with increased clinical symptoms [50, 51]. Studies in forms of
FTD with motor symptoms, including CBD and PSP, have
shown deposition of tau in the supplementary motor area,
midbrain, subthalamus, perirolandic area, basal ganglia, and
cerebral and cerebellar white matter regions in the former and
significant uptake in the brainstem, basal ganglia, globus
pallidum, thalamus, subthalamic nucleus, midbrain,
perirolandic areas, cerebellum, and frontal cortex in the latter
[40, 50-52].

Overall, to date, the expected distribution of tau deposition
across tauopathies has generally been observed using tau PET
techniques. Future studies investigating the timing of initial
tau deposition, the sensitivity of the available tau tracers to the
earliest tau deposits, the variables associated with tau spread,
and the implications of increased tau deposition on clinical
outcomes and symptoms, as well as other AD biomarkers,
are needed to understand fully tau in AD and other neurode-
generative diseases.

Tau Imaging in AD Clinical Trials

With the more widespread availability of tau tracers for PET
imaging, clinical trials are beginning to include this modality
as a secondary outcome. Tau PET imaging in AD trials could
have several important implications. First, in trials of the cur-
rently used amyloid monoclonal antibodies, showing a down-
stream indirect effect of reduced amyloid 3 on the rate of
deposition of PHFs would further bolster the amyloid hypoth-
esis and lend credence to the presumptive disease-modifying
impact of these drugs. Certainly as tau monoclonal antibodies
are designed and trialed, tau PET imaging will be helpful in
demonstrating and quantifying desired target engagement.
Many current trials use CSF biomarkers of tau and phospho-
tau to detect target engagement with little existing data on how
spinal fluid biomarkers and tau PET imaging correlate.
Further, tau PET imaging may help to confirm that changes
in tau deposition are correlated with clinical disease
progression.

Owing to tau PET tracers being labeled radiopharmaceuti-
cals a complete listing of all active trials can be found on
ClinicalTrials.gov. Observational studies make up the majori-
ty of the listed AD clinical trials using tau imaging. Many
studies use ['®F]T807 (AV-1451), including studies from
Washington University [53, 54], Mayo Clinic [55],
University of Pennsylvania [56], University of Southern
California [57], Alzheimer’s Disease Cooperative Study
[58], Molecular Neuroimaging (division in Invicro LLC)
[59], Avid Radiopharamaceuticals [60—63], and St. Joseph’s
Hospital [64], and others. A single study using ['*F]THK-
5351 from Asan Medical Center is being used to investigate
findings in many patients ranging from normal subjects to
those with AD [65]. A collaboration between Molecular
Neuroimaging and Genentech (division of Roche) is under-
way to investigate the novel tau agent ['*FJMNI-798 in nor-
mal controls and patients with AD [66]. Two other novel
agents (['"*F]MNI-777, ['®F]MNI-815) are being investigated
by Molecular Neuroimaging in a host of tauopathies including
AD [67, 68].

There are relatively few AD clinical trials involving active
treatment arms that are using tau imaging, though many are
expected to use this modality in the near future. The
Dominantly Inherited Alzheimer’s Network (DIAN) is an in-
ternational clinical trial with observation and treatment arms.
The treatment arm of the DIAN trial uses either solanezumab
(Eli Lilly and Co.) or gantenerumab (Roche) monoclonal an-
tibodies targeting amyloid 3. The trial is an early adopter of
tau imaging using ['*F]T807 (AV-1451), which is available to
enrolled participants [69, 70]. The goals of adding tau imaging
to the DIAN trial are hypothesized to include the following:
demonstrate binding in presymptomatic stages of AD, corre-
late with CSF tau biomarkers, correlate with symptoms, and
predict the conversion from presymptomatic to symptomatic

@ Springer



66

Brosch et al.

patients [69]. ExpeditionPRO, a subsequent phase III trial of
Eli Lilly’s antiamyloid monoclonal antibody solanezumab,
will evaluate tau imaging as a secondary outcome measure.
This trial, which began enrolling in June 2016, will enroll >
2000 patients with prodromal AD and use ['*F]T807 (AV-
1451) at baseline and at 24 months to look at the change in
neocortical tau deposits [71]. NAVIGATE-AD, another trial
using an agent named LY3202626, will be using ['*F]T807
(AV-1451) as a primary outcome measure of change in stan-
dardized uptake value ratio from baseline to week 52 [72].

Conclusions

Tau imaging agents have evolved from nonspecific agents to
ligands with very high selectivity for PHF-tau over the last
5 years. Several promising agents are currently available and
will help broaden the understanding of AD progression/
screening, help support/disprove the amyloid hypothesis,
and aid in our understanding of downstream biomarker en-
gagement using existing and future treatments for AD.
Further development in understanding off-target binding, ra-
diotracer metabolites, and clinicopathologic correlations of
tau imaging agents will clarify their utility in research and
potential clinical utility, as well as lead to even the develop-
ment of more useful agents in the future.
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