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Abstract

The development of T helper cell subsets requires activated T cells that respond to a polarizing 

cytokine environment resulting in the activation and expression of transcription factors. The 

subset-specific transcription factors bind and induce the production of specific effector cytokines. 

Th9 cells express IL-9 and develop in the presence of TGFβ, IL-4, and IL-2. Each of these 

cytokines activates signaling pathways that are required for Th9 differentiation and IL-9 

production. In this review I summarize what is currently understood about the signaling pathways 

and transcription factors that promote the Th9 genetic program, providing some perspective for the 

integration of the signals in regulating the Il9 gene and dictating the expression of other Th9-

associated genes. I highlight how experiments in mouse cells have established a transcriptional 

network that is conserved in human T cells, and set the stage towards defining the next important 

questions for a more detailed understanding of Th9 cell development and function.

As described in this issue, the IL-9-secreting Th9 cell subset is still being defined at the 

molecular and functional level. In culture, Th9 cells develop in the presence of TGFβ, IL-4, 

and IL-2 (Fig. 1). Each of these cytokines provides indispensible signals for the 

differentiation of the Th9 subset, although parallel pathways can provide substitute 

differentiation signals. Th9 cells participate in a variety of immune responses including 

parasite and tumor immunity, and allergic and autoimmune inflammation as has been 

reviewed previously and is described in other articles in this issue [1]. In this review, I will 

summarize our current understanding of the transcription factors that promote IL-9 

production and the differentiation of the Th9 phenotype.

The process of differentiation

The differentiation of any T helper (Th) subset is not a simple matter of expressing a 

cytokine gene. By definition the differentiated subset is distinguished by preferential or 

enriched expression of a large number of genes. These genes, including the signature 

cytokine gene, are programmed by epigenetic changes that occur at the target loci and 

impact the ability of those genes to be induced following subsequent antigen receptor 

stimulation. This was first demonstrated in Th1 and Th2 cells where changes in DNase 

hypersensitivity, DNA methylation, and histone modifications occurred over 5–14 days of 

culture [2–5]. That length of time is required for lasting epigenetic modifications to occur. If 
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epigenetic changes are irreversible, the Th cell is thought to be committed to a particular 

phenotype. Conversely, if the epigenetic changes are reversible, the T cell is thought to be 

plastic and can acquire new Th subset phenotypes. The programming of loci in the 

differentiating T helper cell does not only positively affect loci that are specific for a Th 

subset; differentiation also involves active repression of cytokine, transcription factor, and 

surface receptor genes that are linked to other Th subsets.

During the first five days of culture, a period when in vitro derived Th subsets are most 

frequently analyzed, there are transient changes in gene expression that can be indicative of 

ongoing programming. There is an increase in cytokine expression during 48–72 hours of 

culture. This is seen in Th1 and Th2 cells as a transient induction of IFNγ and IL-4, 

respectively, that is modest compared to the antigen receptor stimulation after five days of 

culture [6]. In Th17 cells, the distinction is not as apparent, and in some studies the amount 

of IL-17 production at day three of culture is as great or greater than the amount of IL-17 

detected on day 5 or later [7–9]. However, this still represents transient expression and not 

programming, which requires epigenetic changes that take place over weeks.

In Th9 cells, the kinetics of Il9 expression are still not as clear. There is an initial peak of 

expression around 72 hours [10], and several reports have limited studies to this time point. 

However, amounts of IL-9 produced upon re-stimulation of differentiated cells are still 

greater than in this initial peak [10]. When 72-hour cultures are examined, it is not clear if 

results represent acute activation of the Il9 gene, or whether it truly represents genetic 

programming. Factors that mediate acute gene activation responses that occur within 

minutes to hours (such as NF-κB and STAT proteins) can transiently change histone 

modifications, such as acetylation. This may be indicative of gene activation, but not 

necessarily programming. Changes in DNA methylation and histone methylation are more 

indicative of stable and heritable changes in gene expression.

These concepts are important for keeping the work summarized in this review in perspective. 

Some transcription factors might be mediating acute or transient increases in IL-9 

production. Others might be true programming factors and mediate the heritable changes at 

the cytokine loci that are required for establishing a differentiated state. A thorough kinetic 

analysis of the function of transcription factors that impact IL-9 production still needs to be 

performed, but the work described in this review have clearly delineated a transcription 

factor network that regulates gene expression in Th9 cells.

Regulatory elements of the Il9 gene

The Il9 gene has not been investigated to the same extent as many of the other Th cytokines. 

Based on conserved non-coding sequences (CNS), three elements have been identified that 

are close to the Il9 gene (Fig. 2); the promoter (Il9p, CNS1), a region 6 kb upstream of the 

transcriptional start site (CNS0, CNS-6), and a region 5.4 kb downstream of the 

transcriptional start (CNS2) [11, 12]. Although the CNS1 and CNS-6 are conserved across 

multiple species, this was not true for CNS2. The CNS2 element was clearly conserved 

between human and mouse genomes, but was more divergent in other species. Despite this 
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divergence, Th9 transcription factors are found associated with CNS2 as well as the CNS1 

and CNS-6 elements. These elements are depicted in Fig. 2.

Cytokine-activated STAT signals

Signal transducer and activator of transcription (STAT) protein activity is the common 

gateway to the programming of Th cell differentiation [13, 14]. STAT proteins, activated in 

response to cytokines in the environment, bind DNA, establish an enhancer landscape that is 

unique to a particular Th subset, and directly activate the expression of genes that are 

important for the development and function of the differentiated T cell. STAT protein 

activity includes recruiting histone acetylatransferases such as p300, initiating 

monomethylation of H3K4 at enhancers, and displacing DNA methyltransferases and 

histone methylases [4, 13, 15–22].

STAT6 is activated downstream of the Th9-inducing cytokine IL-4, and is critical for IL-9 

production [23–25]. In the absence of STAT6 there is increased expression of transcription 

factors that repress IL-9 including T-bet and Foxp3 [24]. STAT6 can also directly bind the 

Il9 CNS1 [24, 26](Fig. 2), although it is not clear that this is a critical function, as IL-4 

stimulation does not acutely activate IL-9 production [12]. However, STAT6 is required for 

the expression of additional activators of IL-9 production including BATF and IRF4 [24, 

27]. STAT6 is also required for a large number of additional genes that are preferentially 

expressed within Th9 cells [27].

STAT5 is a common nexus for multiple signals that induce IL-9 production. IL-2, one of the 

earliest cytokines identified to induce IL-9 [28], functions through STAT5. The IL-2-STAT5 

pathway is modulated by a number of other factors including nitric oxide, the TNF 

superfamily member TL1A, and Itk activation [29–31]. STAT5 might function through 

multiple mechanisms in promoting IL-9. It can directly bind to the Il9 promoter [32–34](Fig. 

2). STAT5 also activate other transcription factors that promote IL-9 production. IRF4 is 

downstream of STAT5 and is a critical regulator in several experimental systems [29, 30, 

34]. Additionally, IL-2 and STAT5 regulate cytokine receptors that are critical for 

differentiation, including IL-4Rα [35].

The IL-2-STAT5 pathway is also a target of negative regulators. BCL6 directly competes 

with STAT5 in binding to the Il9 promoter, and might also repress the Il9 gene directly [32, 

33]. In the absence of STAT3, Th9 cells have greater endogenous IL-2 production and 

STAT5 activation [36]. IL-6 and to a lesser extent IL-21 activate STAT3 to interfere with 

IL-2 production. Yet, other STAT3-activating cytokines do not have the same effect [36]. 

The exact mechanism of STAT3-mediated IL-2 repression is not yet clear, but it is 

independent of BCL6 [36].

As mentioned above, STAT5 seems to be a common transcription factor for multiple ligands 

to induce IL-9 production. TSLP activates STAT5 to promote IL-9 production and increased 

STAT5 bound to the Il9 promoter, as well as IRF4 expression [34]. DR3, the receptor for 

TL1A, also induces IL-9 production [31] that is independent of TRAF6 or STAT6, although 

induction was slightly less efficient in the absence of STAT6 [31]. TL1A activity did not 
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require PU.1, although stimulation with TL1A resulted in increased binding of PU.1 and 

IRF4 to Il9 regulatory elements [31]. TL1A activity did require IL-2 and STAT5, and TL1A 

stimulation increased intracellular phospho-STAT5 and STAT5 bound to the Il9 promoter 

[31].

Finally, STAT1 appears to have very context-dependent effects on IL-9 production. Previous 

reports have indicated that STAT1 impairs IL-9 production downstream of IFNγ and IL-27 

[28, 37]. However, a more recent report identified a STAT1-IRF1 module as being required 

for the ability of Th9 cells to respond to IL-1β and amplify both IL-9 and IL-21 production 

from Th9 cells [38]. STAT1 activation by IL-1β relied on Myd88 and Fyn [38]. IRF1 bound 

directly to the Il9 promoter and IRF1 was required for IL-1β-induced Il9 expression [38]

(Fig. 2).

The Smad/RBP-Jκ/Notch-ICD module

The Smad proteins Smad2, Smad3, and Smad4 function downstream of the TGFβ receptor 

and are necessary component of the development of Th9 cells. Published studies have 

utilized a number of models, and I have tried to stipulate the specifics for each with the 

results. IL-9 production is partially diminished in T cells that lack Smad2, Smad3 or Smad4 

(using Smad2fl/fl CD4-Cre or Lck-Cre T cells, Smad3−/− T cells or Smad4fl/fl CD4-Cre T 

cells) [39, 40]. IL-9 production is more severely compromised in T cells that lack Smad2 

and either one or two alleles of Smad3 (using Smad2fl/fl Lck-Cre, Smad3+/− or Smad2fl/fl, 

Smad3fl/fl CD4-Cre T cells) [40, 41]. Il9 mRNA was also decreased in vivo in the lungs of 

Smad2fl/fl Lck-Cre, Smad3+/− mice subjected to the OVA-alum model of airway 

inflammation [40].

The mechanisms of Smad function are still not entirely elucidated. Each of the Smads 2, 3, 

and 4 can bind to the Il9 promoter and to CNS regions [39, 40](Fig. 2). One study identified 

diminished histone acetylation and H3K4 trimethylation in Th9 cells from Smad2fl/fl Lck-

Cre, Smad3+/− mice [40]. Another study identified modest increases in H3K27me3 at the Il9 
locus coincident with increased EZH2 association in the absence of Smad2 or Smad4 [39]. 

This conflicted with the first study that showed no change in H3K27me3 [40]. Although 

both mechanisms might contribute to regulation of the Il9 gene, the decreased histone 

acetylation observed in the Smad2/Smad3 compound mutant mice was associated with a 

greater loss of IL-9 production [40]. In addition to direct affects on the Il9 locus, deficiency 

in Smad2/Smad3 resulted in increased expression of T-bet and Rorγ, both of which can 

repress IL-9 production [24, 40].

Smad3 was also observed binding to a region about -4kb from the Il9 transcriptional start 

site [42](Fig. 2). This was observed in a system where Notch ligands were stimulating IL-9 

production, and Smad3 association at this site was dependent on the cooperative binding of 

recombination-signal-binding protein for immunoglobulin-κ J region (RBP-Jκ) and the 

Notch intracellular domain (NICD)[42]. It is not yet clear if the RBP-Jκ/NICD factor are 

required for Smad binding to other sites in the Il9 locus including the promoter, nor if this is 

the only effector of Notch signaling in the production of IL-9.
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Downstream of the TGFβ activated kinase TAK1

The TGFβ activated kinase TAK1 mediates Smad-independent TGFβ signaling. TAK1 

activates MAPK signaling pathways, although it is not clear whether MAPK pathways are 

important for IL-9 production. However, TAK1 can impact other pathways that regulate 

IL-9.

The E box transcription factor inhibitor Id3 represses IL-9 production [43]. Th9 cells that are 

deficient in Id3, or are treated with Id3 siRNA, have increased IL-9 [43]. Chemical or siRNA 

inhibitors of TAK1, or genetic deletion of TAK1, decrease IL-9 production and increase 

expression of Id3. Id3-deficiency increased binding of E2A and GATA3 at the Il9 promoter, 

suggesting a potential mechanism of activity [43](Fig. 2). Twist1 also inhibits E2A activity, 

but Th9 differentiation appeared normal in Twist1-deficient T cell cultures [44], suggesting 

that there is specificity in the ability of Id3 to inhibit IL-9 production.

Similar to the ability of TAK1 to inhibit Id3, it also inhibits the expression of SIRT1 [45]. A 

recent report identified SIRT1, a histone deacetylase that is metabolic sensor in multiple 

tissues, as a modulator of Th9 differentiation by functioning as a repressor of mTOR and 

Hypoxia Inducible Factor 1a (HIF1α) [45]. IL-9 production was greater in SIRT1-deficient 

T cells that had greater expression of glycolytic enzymes, and blocking the glycolytic 

pathway in SIRT1-deficient Th9 cells reduced IL-9 production to amounts near those 

detected in wild type cells [45]. The regulation of IL-9 production by SIRT1 was linked to 

HIF1α, which bound to a site in the Il9 promoter 1.2 kb upstream of the transcriptional start 

site, and activated the Il9 promoter [45]. Double deficiency in SIRT1 and HIF1α resulted in 

IL-9 production that was similar to amounts in wild type cells [45]. Whether HIF2α, which 

also regulates IL-9 [46], is also in this pathway is not clear. How metabolism contributes to 

the development of Th9 cells, as it clearly plays a role in other Th subsets [47], still needs to 

be further defined.

The ETS family: PU.1 and ETV5

PU.1 is an ETS family member that was the first transcription factor found to play a role in 

IL-9 production in Th9 cells. T cells that lacked PU.1 expression had diminished IL-9 

production, and ectopic expression of PU.1 increased IL-9 production as it decreased Th2 

cytokine production, suggesting that it might be a switch factor between the subsets [12]. 

PU.1 bound directly to the Il9 promoter and regulated chromatin remodeling at the Il9 locus, 

being responsible for recruitment of histone acetyltransferases (HAT) and histone 

acetylation [12, 48, 49](Fig. 2). PU.1 directly interacted with the HAT Gcn5 [48]. In the 

absence of PU.1, Gcn5 was no longer associated with the Il9 locus, and ectopic expression 

of full length PU.1 in PU.1-deficient cells, but not PU.1 lacking a transactivation domain, 

was able to rescue Gcn5 association [48]. The PU.1-dependent IL-9 production in T cells is 

linked to pathology in models of allergic airway inflammation and inflammatory bowel 

disease [12, 50, 51], each discussed in more detail in other articles in this issue.

However, PU.1 function is not strictly limited to Th9 cells. As mentioned above, PU.1 

represses Th2 cytokines and affects heterogeneity of cytokine expression in Th2 cells by 
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interfering with GATA3 and IRF4 activity in subpopulations of cells [52–54]. As a 

consequence of greater GATA3 activity, even in naïve cells, PU.1-deficient T cells have 

increased TCR expression and increased IL-2 production compared to wild type cells when 

antigen receptor stimulation is limiting [53]. PU.1 also represses genes that are important for 

the function of T follicular helper (Tfh) cells including IL-21, PD-1 and CD40L [55]. Thus 

mice with PU.1-deficient T cells have increased numbers of Tfh and germinal center B cells, 

and increased serum immunoglobulin concentrations, compared to wild type mice. Thus, 

PU.1 might also indirectly promote Treg differentiation by limiting other differentiation 

programs.

More recently, another ETS family member, ETV5, was shown to have parallel effects on 

IL-9 as observed in PU.1-deficient T cells. IL-9 production was decreased in the absence of 

ETV5, and ectopic expression of ETV5 increased IL-9 production [56]. ETV5, which also 

promotes IL-17A/F production in Th17 cells [57], significantly bound to the Il9 gene at 

regions distinct from the promoter that bound PU.1 [56](Fig. 2). Binding of the HAT p300 

was dependent on ETV5, but Gcn5 binding was normal in the absence of ETV5 [56]. Th9 

cells that were doubly deficient in PU.1 and ETV5 had less IL-9 production than Th9 cells 

from either single deficient strain. Interestingly, the effects on repression of IL-4 were not 

cumulative in double-deficient T cells [56]. In vivo, PU.1 and ETV5 seemed to have 

significant effects on some overlapping but also some distinct parameters of allergic 

inflammation. Notably, PU.1 seemed to have the dominant effect on IL-9 production from 

cells isolated ex vivo [56].

Despite parallel function, the expression of each factor appeared to be regulated by separate 

pathways. PU.1 expression in Th9 cells was induced by TGFβ but was independent of IL-4/

STAT6 signaling [12, 24, 27]. However, PU.1 expression did not rely upon Smad2 or 3 [40]. 

ETV5 expression was dependent on IL-4/STAT6 signaling and IRF4 expression [56]. PU.1 

and ETV5 had reciprocal inhibitory effects on each other’s expression [56].

The finding that PU.1 and ETV5 had parallel functions in Th9 cells raised the possibility 

that ETS factors in general might have the ability to regulate IL-9. Based on microarray data 

[27], two additional ETS family factors, Elk3 and Etv6, were identified as being expressed 

in Th9 cells. However, transduction of either Elk3 or Etv6 into Th9 cells did not alter IL-9 

production [56]. This suggested that even though PU.1 and ETV5 belong to distinct parts of 

the ETS family [58], there is specificity in the ETS family proteins that are involved in IL-9 

regulation.

The BATF/IRF4 module

Both BATF and IRF4 are potent activators of IL-9 production and Th9 cells that are deficient 

in either factor are defective in their ability to produce IL-9 and to promote the development 

of allergic inflammation [27, 59, 60]. Both factors bind to the Il9 promoter and activate IL9 

reporter plasmids and are downstream of the IL-4/STAT6 signal during differentiation [24, 

27](Fig. 2). IRF4 is also a target of STAT5 in Th9 cells when cells are stimulated with IL-2 

or TSLP [29, 30, 34], but it is not yet determined if BATF is similarly induced.
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BATF and IRF4 expression is not restricted to Th9 cells, though both seem to be expressed 

in higher amounts in Th9 cells than in other T helper subsets [27, 59]. The expression of 

both factors in additional Th subsets contributes to differentiation programs distinct from 

Th9 differentiation, and mice with T cells deficient in either factor have defects in Th2 cell, 

Th17 cell, and Tfh cell development [61–66]. This overlap in function is linked to the 

cooperative binding of BATF and IRF4, which has been demonstrated extensively in Th17 

cells [67–69]. Cooperative binding is also seen in Th9 cells where deficiency in either factor 

results in decreased binding of the reciprocal factor to the Il9 promoter, and ectopic 

expression of BATF also increased binding or IRF4 to the Il9 promoter [27]. Consistent with 

the requirement for cooperation between these factors, transduction of BATF or IRF4 into 

cells deficient for the reciprocal factor have less of an effect than transduction into wild type 

cells [27].

IRF4 also provides a link between IL-4 and TGFβ signaling in the generation of IL-9-

secreting T cells. TGFβ enhances IRF4 binding to the Il9 gene [40]. Smad2/Smad3 and 

IRF4 bind to the Il9 regulatory elements cooperatively, providing at least one link between 

the two differentiating cytokine signals [40]. Smad3 and IRF4 also physically interact and 

can be co-precipitated. Importantly, IRF4 cannot induce IL-9 in Th9 lacking expression of 

Smad2/Smad3, and Smad3 cannot induce IL-9 production in IRF4-deficient T cells [40]. 

Thus, there is a considerable degree of cross-talk among IL-9-inducing transcription factors.

NF-κB in T cell receptor and TNF superfamily signaling

The outcome of the Th differentiation process is that loci encoding lineage-specific 

cytokines are programmed for rapid induction following antigen receptor signaling. Antigen 

receptor signaling pathways function cooperatively and include induction of NFAT proteins 

and the NF-κB pathway. At the Il9 locus, NFAT1 is required for chromatin accessibility and 

the ability of NF-κB p65 to bind the Il9 promoter [70]. IL-9 was also decreased in mice that 

lacked NFATc1/NFAT2 in T cells following sensitization and challenge in an OVA/alum 

model [71]. Each of these factors contributes to rapid induction of IL-9 when Th9 cells are 

activated after differentiation.

The NF-κB pathway is also induced by TNFR superfamily members and this pathway is 

remarkably potent in the induction of IL-9. However, the mechanisms and transcription 

factors that are activated by TNFRSF members are quite different. The first TNFRSF 

member identified with this function was OX40. Antigen presenting cells expressing 

OX40L, or antibodies to OX40 are potent inducers of IL-9 production in Th9 cultures that 

are differentiated from naïve T cells [72]. OX40 functions by activating a TRAF6/NF-κB 

RelB-p52 pathway [72] where a RelB-p52 heterodimer binds directly to the Il9 promoter. 

OX40 activated IL-9 production was also dependent on STAT6 but independent of PU.1 

[72].

GITR induces IL-9 production from Treg cells by repressing Foxp3 expression as it induces 

IL-9 through a TRAF6/NF-κB-dependent pathway [73, 74]. Repression of Foxp3 requires 

NF-κB p50 through recruitment of histone deacetylases [74]. GITR induces phospho-

STAT6, BATF, PU.1 and IRF4. However, repression of Foxp3 did not require any of these 
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factors. Induction of IL-9 required STAT6 and was partially dependent on IRF4, but 

independent of BATF and PU.1 [74]. Because GITR induced IL-9 even in cells lacking 

IL-4R, it is possible that GITR is activating STAT6 through a pathway that is independent of 

the usual cytokines [73]. The STAT6-dependent activation of the Il9 locus was linked to 

recruitment of the HAT p300 to the gene [74]. Interestingly, the ability of GITR to induce 

STAT6 activation was dependent on NF-κB p50 [74]. Since Foxp3 inhibits IL-9 production 

[24, 74] it is important to note that the repression of Foxp3 and the induction of IL-9 were 

separable events because STAT6-deficient T cells were able to repress Foxp3 following 

GITR stimulation, but not induce IL-9 [74].

Together, these reports indicate that multiple components of the NF-κB pathway are 

involved in the induction of IL-9. This pathway is functioning on multiple levels that include 

direct binding and activation of the Il9 gene, repression of repressors such as Foxp3, and 

activation of STAT6, though mechanisms that are still not entirely clear [70, 72–74]. It is 

interesting that mechanisms are so distinct, and it is noteworthy that as detailed above, 

another TNFSF/TNFRSF pair, TL1A/DR3, requires neither NF-κB or STAT6, but instead 

functions through a IL-2/STAT5 amplification pathway [31]. This suggests that responses to 

each of these ligands might be specialized to specific conditions in vivo.

Stability and transitioning to an IL-9-secreting phenotype

The stability and plasticity of Th subsets has been the focus of considerable work [75, 76]. 

Plasticity requires that T cells maintain cytokine receptor expression to facilitate responses 

to an altered cytokine environment and genes required for the acquisition of separate 

phenotypes having a poised chromatin configuration. Th9 cells appear to be less stable than 

other subsets and tend to lose IL-9 expression when maintained in culture [10], although 

Th9 cultures can acquire other cytokine-secreting phenotypes when they are switched to 

polarizing conditions after three days in vitro [10]. This lack of stability in vitro has made it 

challenging to define the transcription factors that might be important for maintaining the 

phenotype. It is possible that some of the negative regulatory factors (STAT3, BCL6, Foxp3) 

might promote instability and that is an active area of investigation. However, it is important 

to consider that in vitro derived Th9 cells can be adoptively transferred and retain IL-9-

dependent functions in vivo [34, 59], suggesting that the IL-9-secreting effector phenotype 

can be maintained in vivo. It is still possible that there is an evolutionary rationale for IL-9 

production being more transient to avoid the potential harmful effects of chronic IL-9 

production.

Several other Th subsets can become IL-9-secreting T cells, though whether these are bona 

fide Th9 cells or rather represent Th cells that are transiently producing IL-9 is not clear. 

Th2 cells can become Th9 cells when they are exposed to TGFβ [25]. Both Smad proteins 

and PU.1 are important in repressing the Th2 cytokine program, as they activate Il9 and 

other Th9 genes [12, 27, 39, 40]. STAT3 might be another switch factor in the Th2/Th9 

balance, promoting Th2 cytokine production as it inhibits IL-9 production [36, 77]. GITR 

signals T regulatory cells to become IL-9 secreting T cells [74]. This transition requires both 

p50 and STAT6 [74]. Finally, Th17 cells can acquire an IL-9-secreting or mixed phenotype 

on culture with TGFβ, IL-4, and IL-2, a process that is enhanced by the action of OX40 [72, 
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78, 79]. This relies on STAT6 and likely the IL-2/STAT5 pathway that both represses Th17 

and induces Th9 differentiation [80]. These additional pathways to the Th9 phenotype are 

indicated in Fig. 1.

Transcriptional regulation of genes in Th9 cells other than IL-9

As with most analysis of Th subset gene expression, much of the transcription factor 

network in Th9 cells has been defined by an ability to regulate the hallmark cytokine IL-9. 

However, differentiated Th subsets have enriched expression of a broad range of genes that 

contribute to the ability of a Th subset to survive, migrate to a site of inflammation, respond 

to particular cytokine milieus, and control the function of other cells during immune 

responses. In Th9 cells this subset of genes has been defined using a microarray approach 

and includes transcription factors, chemokines and chemokine receptors, cytokines and 

cytokine receptors, and genes with still undefined functions [27]. The requirement for 

transcription factors to regulate Th9 genes is distinct from the factors that are strictly 

required for Il9 gene expression.

In gene expression analysis of in vitro differentiated Th subsets, there was a hierarchy of 

transcription factor dependence for expression in Th9 cells. STAT6 and BATF were required 

for a large portion of the genes examined, with IRF4 only impacting a subset of the STAT6 

and BATF-dependent genes [27]. In contrast, PU.1 regulated only a small subset of the genes 

examined [27]. These initial analyses were performed on fewer than 20 genes, and larger 

scale analyses that could more thoroughly define the effects of each transcription factor still 

remain. Moreover, the effects of other critical factors including Smad2/3/4 and STAT5 have 

not been examined beyond effects on Il9.

The human Th9 transcription factor network

Most of the studies summarized in this review have focused on murine cells for their ease of 

manipulation, access to gene-deficient cells, and because cell numbers are not limiting. 

However, the important research questions remain focused on human health, and as such it is 

important to test whether transcription factor function based on observations in mouse cells 

are conserved in human cells. Treatment of primary human T cells with siRNA for PU.1, 

BATF and IRF4 each decrease the amount of IL-9 produced in Th9 cultures [12, 27, 49, 59]. 

Inhibitors of Itk also diminish IL-9 production in Th9 cultures, similar to the effects of 

inhibitors and Itk-deficiency in murine cells [29]. A SNP of ITK is also associated with 

asthma [81]. SIRT1 inhibition by siRNA also increased IL-9 in human T cells in parallel to 

effects on glycolytic enzymes and similar to the effects of rapamycin and glycolytic 

inhibitors [45]. TAK1 inhibition decreases and Id3 siRNA increases IL-9, similar to the 

effects of these approaches in the murine system [43]. T cells from patients with mutations 

in STAT1 (Chronic Mucocutaneous Candidiasis) and STAT3 (Hyper-IgE Syndrome) have 

diminished IL-9 production, compared to healthy controls, suggesting somewhat distinct 

effects of these pathways between murine and patient systems [82].

There are also changes in expression of Th9 transcription factors that are linked to disease. 

NFATc1 and IRF4 expression are increased in asthmatic children [71]. Expression of PU.1 
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and BATF are increased in Th9 cultures derived from atopic infants, compared to non-atopic 

infants [27, 49, 83]. Thus, much of the framework of the Th9 transcriptional network that 

has been established in murine cells has been verified in human cells as well. This suggests 

that the knowledge gained in the murine studies will be helpful in guiding the development 

of potential Th9-targeted therapies.

Together, these studies suggest that there is broad conservation of IL9 regulation between 

mice and humans. Moreover, there is evidence of conservation of function of Th9 cells in 

human and mice. Th9 cells are observed in asthma, ulcerative colitis, and in tumors, parallel 

to function that has been demonstrated in mouse models of these diseases [1]. However, 

many of the pathways established in the murine system, including Smads, the Notch 

signaling pathway, and TNFSF-TNFRSF signaling have not been as thoroughly examined in 

human cells. These will be critical to define in the future.

Concluding remarks and future directions

IL-9-secreting T cells were first described over 20 years ago [28] and were rediscovered in 

2008 as a subset separable from other established Th subsets [23, 25]. In almost ten years 

since that finding, we have discovered a multitude of signaling pathways and transcription 

factors that promote expression of Il9 and a Th9 cell genetic program. Still, there are many 

questions left unanswered. The first is whether there is a lineage-defining factor associated 

with IL-9 expression in the same way that T-bet is linked to Th1 cells, GATA3 to Th2 cells, 

and RORγt to Th17 cells. Most of the transcription factors discussed, including BATF, 

IRF4, Smad2/3/4, and STATs, have functions in multiple T helper subsets. PU.1 and ETV5 

are expressed in other subsets, and respectively have effects on T cell activation and Tfh 

cells, and in Th17 cells. Thus a truly specific factor remains elusive. The question of Th9 

stability is also not entirely settled. Although Th9 cells appear unstable in vitro, there is 

evidence that there are Th9 cell memory responses in vivo, and in patients, suggesting that 

stability can occur under some circumstances. Defining the signals and transcription factors 

that control the maintenance of the Th9 phenotype will be an important milestone in 

defining the role Th9 cells in immune responses.
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Figure 1. 
Pathways to Th9. The diagram indicates the T cell types that are known to acquire an IL-9-

secreting T cell phenotype. The cytokines and transcription factors that are downstream of 

those cytokines and critical for differentiation are indicated for each pathway.
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Figure 2. 
Regulation of the Il9 gene. Schematic of the Il9 locus indicating the three conserved non-

coding sequences (CNS) that have been characterized thus far. The Il9 promoter/CNS1 is 

shown at a higher magnifications to allow visualization of factors known to bind the region. 

The approximate binding sites (not to scale) for transcription factors are based on published 

studies described in this review. The binding sites for some factors has not been strictly 

defined. For example, STAT5 and STAT6 clearly bind the promoter, and there is at least one 

consensus STAT site in the promoter, but binding to that site has not clearly been 

demonstrated.
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