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Abstract

We propose a robust two-stage design to identify the optimal biological dose for phase I/11 clinical
trials evaluating both toxicity and efficacy outcomes. In the first stage of dose finding, we use the
Bayesian model averaging continual reassessment method to monitor the toxicity outcomes and
adopt an isotonic regression method based on the efficacy outcomes to guide dose escalation.
When the first stage ends, we use the Dirichlet-multinomial distribution to jointly model the
toxicity and efficacy outcomes and pick the candidate doses based on a three-dimensional volume
ratio. The selected candidate doses are then seamlessly advanced to the second stage for dose
validation. Both toxicity and efficacy outcomes are continuously monitored so that any overly
toxic and/or less efficacious dose can be dropped from the study as the trial continues. When the
phase I/11 trial ends, we select the optimal biological dose as the dose obtaining the minimal value
of the volume ratio within the candidate set. An advantage of the proposed design is that it does
not impose a monotonically increasing assumption on the shape of the dose-efficacy curve. We
conduct extensive simulation studies to examine the operating characteristics of the proposed
design. The simulation results show that the proposed design has desirable operating
characteristics across different shapes of the underlying true dose-toxicity and dose-efficacy
curves. The software to implement the proposed design is available upon request.
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1. Introduction

The primary goal of a phase | clinical trial for cytotoxic agents is typically to identify the
maximum tolerated dose (MTD) based on the toxicity outcomes. Then, a phase Il trial often
follows to examine the efficacy of the drug at the identified MTD or the recommended dose
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level. Conventionally, phase | and phase 11 trials are carried out separately. However, for the
purpose of streamlining the drug development process and reducing the associated time and
cost, there is a growing trend to integrate phase I and phase Il trials into one trial. Several
seamless phase I/11 trial designs that jointly model the efficacy and toxicity outcomes of
cytotoxic agents are available in the literature [1, 2, 3, 4, 5, 6].

Traditional dose-finding designs for cytotoxic agents, including the commonly used 3+3
design [7] and continual reassessment method (CRM) [8], assume that both efficacy and
toxicity outcomes increase monotonically with the dose. However, the recent development
of novel molecularly targeted agents (MTAS) challenges the traditional paradigm of dose-
finding designs because the assumption of a monotonically increasing dose-efficacy
relationship may not hold for MTAs. Many of the MTAs block the division of cancer cells
by identifying and attacking specific pathways involved in tumor growth. As a result, the
toxicity of MTAs can be minimal within the therapeutic dose range, and the dose-efficacy
curves of MTAs may not follow monotonic patterns [9, 10, 11, 12]. For example, Friedman
et al.[13] conducted a phase | trial for patients undergoing craniotomy for malignant glioma
who received an MTA, GP-benzylguanine (CP-BG). In that trial, the efficacy of the agent
was measured by the activity of the target enzyme (P-alkylguanine-DNA alkyltransferase
(AGT). The goal of the trial was to find the dose required to deplete tumor AGT activity in
five CP-BG dose levels ranging from 40 mg/m? to 120 mg/m2. The agent demonstrated
minimal toxicity and a non-monotonic dose-response relationship. A total of 30 patients
were enrolled in the trial and only one observation of toxicity was reported. At the end of the
trial, dose level 4 at 100 mg/m?2 was selected as the most efficacious dose.

Hence, a more reasonable goal of dose-finding trial designs for MTAs is finding the optimal
biological dose (OBD), which is defined as the dose that has a desirable efficacy
performance while still safeguarding patients with an acceptable toxicity profile [3, 14]. The
OBD of an MTA is not always the highest dose and may appear in the middle of the
investigational dose range. In practice, the dose-efficacy curves for MTAs are often expected
to be unimodal or to plateau within the therapeutic dose range. Several dose-finding clinical
trial designs that identify the OBD for MTAs have been proposed. For example, Braun [15]
developed the bivariate CRM (bCRM) model by extending the traditional CRM with a
flexible bivariate distribution that jointly models both the toxicity and efficacy outcomes.
Hunsberger et al. [16] proposed the slope-sign design to guide dose finding based on the
sign of the estimated local dose-efficacy curve. Zhang et al. [17] proposed the trinomial
CRM to find the OBD; this method was further extended by Mandrekar et al. [18] for drug
combination trials. Recently, Zang et al. [19] proposed three adaptive dose-finding designs
for trials that evaluate MTAs.

Due to the non-monotonic dose-efficacy curve for MTAs and relatively small sample size of
phase | trials, the toxicity-efficacy profiles of the candidate doses identified from phase |
trials often retain a high level of uncertainty. Hence, a phase Il dose-validation trial should
follow to further validate the response profiles of the candidate doses and select the optimal
dose. However, in spite of the rich body of literature on phase | dose-finding trial designs for
MTAs [15, 16, 17, 18, 19], limited research has been conducted on seamless phase I/11
designs integrating both dose-finding and dose-validation schemes for MTAs. Recently,
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Hoering et al. [14, 20] proposed an integrated phase I/11 trial design to assess the toxicity
and efficacy outcomes for targeted agents. They used a conventional dose-finding algorithm
to identify the MTD in the first stage, followed by a dose-validation stage that examines the
toxicity and efficacy profiles for the dose levels around the identified MTD. Simulation
results show that this design performs well under the restrictive condition that the OBD is in
the neighborhood of the MTD. However, if the OBD is far away from the MTD, the
performance of this design remains unclear.

Our study is motivated by a phase | clinical trial conducted at the University of California at
Los Angeles Medical Center [21]. The purpose of the trial is to find the OBD of the MTA
celecoxib combined with erlotinib in patients diagnosed with advanced non-small cell lung
cancer. Celecoxib is an inhibitor that targets the rate-limiting enzyme Cox-2, which can
regulate cellular proliferation, migration and invasion. Twenty-two patients were enrolled
and treated with celecoxib at dose levels ranging from 200 mg to 800 mg, combined with a
fixed dose of erlotinib. Both toxicity and efficacy endpoints were measured during the trial.
Toxicity was determined by the dose-limiting toxicity and efficacy was measured by the
biological acticity of the urinary prostaglandin E-M (PGE-M). No patients experienced
toxicity and the dosage of 600 mg of celecoxib was selected as the OBD because it was
associated with the maximal decrease in PGE-M. As reported by the author, “a phase Il trial
of celecoxib at 600 mg bid and erlotinib versus erlotinib plus placebo is planned”[21], p.
3387.

In this article, motivated by the celecoxib trial, we propose a Bayesian two-stage seamless
phase I/11 design to identify the OBD by jointly monitoring the toxicity and efficacy
outcomes. This design comprises a dose-finding stage and a dose-validation stage. In the
first stage, we use the Bayesian model averaging continual reassessment method (BMA-
CRM) [22] to monitor toxicity outcomes, and use an isotonic regression method for dose
escalation based on efficacy outcomes. When the dose escalation ends, we employ a
Dirichlet-multinomial distribution to jointly model the toxicity and efficacy outcomes and
select the candidate set based on a toxicity-efficacy volume ratio. The candidate set is then
advanced to the second stage of dose validation, where more patients are randomized to
validate the candidate dose set and identify the OBD. We note that although the proposed
design is inspired by a phase I trial evaluating MTAs, the application of the proposed design
is not restricted to MTAs. Indeed, because we use the nonparametric isotonic regression
method, which makes little assumption on the dose-efficacy curve, the proposed design is
applicable to both MTASs and cytotoxic agents.

The remainder of the article is organized as follows. In Section 2, we propose the seamless
phase I/11 design. In Section 3, we present a simulation study to investigate the operating
characteristics of the proposed design and compare it with other existing designs. We
conclude with a discussion in Section 4.
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2. Seamless phase I/ll design

2.1. The dose-finding stage

The proposed seamless design starts with a dose-finding stage to find the candidate doses
with acceptable toxicity-efficacy profiles. Specifically, we use the BMA-CRM ([22]) to
monitor the toxicity outcomes. This method initializes multiple parallel CRM models and
then averages the estimates of toxicity probabilities using the BMA method to enhance the
robustness of the conventional CRM. Let (¢}, ..., d) denote a set of Jpre-specified
increasing doses for the agent under investigation and define 7£/-Tas the BMA estimate of the
toxicity rate at dose aj. Then, with the highest acceptable toxicity rate ¢7, we construct

A=)k < 6r}

as the admissible set of doses based on toxicity in the first stage.

After establishing @4(1), the next step is to implement dose escalation within the admissible
set. We propose an isotonic regression method for dose escalation based on the efficacy
outcomes. The purpose of the dose escalation procedure is to accumulate information for
identifying the OBD, treat patients with doses that achieve a high therapeutic effect, and
safeguard patients at the same time. We consider a unimodal or plateaued dose-efficacy
curve. We define pje as the efficacy rate at dose level jand denote K'as the highest dose level

within the admissible set ;yt(l). Our dose-escalation goal is to find the most efficacious dose

with the admissible set 7", the dose level /" such that

We use the isotonic regression method to find dose /*. However, the original isotonic
regression requires a pre-specified location of the mode /*, which is unknown in our setting.
To overcome this limitation, we enumerate all K possible locations of ;. Then, at each
specified location j* = /for /=1, ..., K, we take the double-sided isotonic regression [19,
23] to fit the accumulated efficacy outcomes that satisfy the order constraint (1) and obtain

the corresponding set of estimates ﬁ;g for j=1, ..., K. Then, we select j* with the least
goodness-of-fit mean squared error

where g is the proportion estimate of p;z With the identified /" in hand, our dose-
escalation procedure can be described as follows:
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1 Treat the first cohort of patients at the lowest dose level or at the
physician-specified dose.
2. At the current dose level j, based on the toxicity outcomes, using the

BMA-CRM to identify the admissible set c7,".

3. Identify the dose level ; within the admissible set ;yt(l) as the dose with
the highest therapeutic effect while still safeguarding patients.

4, If /° > J, escalate the dose level to j+ 1; if j* < j, de-escalate the dose level
to j/~1. If /* = j identify /7 as the highest tried dose. Then, retain dose level
Jif /* < /" otherwise, escalate to j + 1 to explore more dose levels.

5. Repeat steps 2 to 4 until the maximum sample size for the dose-finding

stage is reached.

Note that the proposed dose-escalation approach models the toxicity and efficacy outcomes
separately. Theoretically, these two endpoints can also be modeled jointly. However,
considering that the number of patients treated at each dose is small at the beginning of the
trial, empirical experience from recent studies indicates that the joint modeling approach
adds computational complexity but does not improve the performance of the dose-finding
study [24, 25 ]. However, when dose escalation ends, we have already accumulated certain
information about both the toxicity and efficacy outcomes. Hence, to precisely evaluate the
toxicity-efficacy profiles, a joint modeling approach is implemented hereafter to borrow
strength across these two endpoints for the purpose of identifying the candidate set of doses
and selecting the OBD.

We use the Dirichlet-multinomial distribution to jointly model the toxicity and efficacy
outcomes [26]. In particular, let 7=0, 1 and £= 0, 1 denote the binary toxicity and efficacy
outcomes. We define that among a total of 77; patients treated at dose level dj;, 7z Of them
have experienced the event (7= ¢ £= €) with the associated probability pj=Pr(7=1¢ £=
e/a)) for £, =0, 1. Denoting 7;= (/jo, /jp1. /10, fj11) and P = (Ppo, Lp1. Ppo, P1), We
jointly model the toxicity and efficacy outcomes using the Dirichlet-multinomial distribution
as

rjlpj ~ multinomial(n;,p;)
P~ Dirichlet (), 2

where a;= (apo, ap1, ajo, aj1) is the hyperparameter and represents the prior information
at dose level /. Then, after setting pj7= ppo + pp1 and pje= pp1 + Pp1 as the marginal
toxicity and efficacy rates, the posterior distributions of p;, pjrand pjzare
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pjlr; ~ Dirichlet(a;+7;),
1

pirlry ~ beta( (j1etTjte), Zo(aj06+7'j06)>7
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The Dirichlet-multinomial model is used to estimate the joint toxicity-efficacy probabilities
and build a measure to evaluate the OBD. Following Yin et al., [3], we use a three-
dimensional toxicity-efficacy volume ratio as the tradeoff measure that jointly evaluates the
toxicity and efficacy outcomes. Specifically, at dose level j after denoting y;= pp1/(1-pj7)
as the probability of efficacy conditional on no toxicity, we define the three-dimensional
volume ratio as

w 4:p]T (17p]E)(177]')
e S TR

Based on this expression, wjdecreases when either pjzor y;increases. In addition, a
decreased p;rcan result in a decreased wj. Therefore, a smaller w is always preferred when
identifying the OBD. By introducing y;, the volume ratio «jincorporates the correlation
between toxicity and efficacy into the consideration. Figure (1) illustrates how the value of
wjvaries with the correlation between the efficacy and toxicity outcomes. We specify p;r=
0.3, pje=0.2,0.15 and let the correlation increase from —0.25 to 0.25. As shown in Figure
(1), the correlation between efficacy and toxicity can significantly affect the value of w;. In
particular, the volume ratio increased when the correlation increased. In other words, given
that there is no toxicity, a lower correlation is preferred rather than a higher correlation. That
is because, as the correlation increases, the same pje can result in a higher p;7 which
indicates a lower y;and increases w;. Based on Figure (1), we claim that w;is an appropriate
statistic for jointly measuring the OBD and a lower wjindicates a better dose level.
Specifically, the dose that yields the minimum estimate of «w;within the admissible set is
declared as the OBD. Figure (2) expresses the contour plot of the volume ratio with different
toxicity and efficacy probabilities. Figure (2) indicates that the volume ratio is a trade-off
measure to establish a compromise between the efficacy and toxicity outcomes. For
example, when the toxicity rate increases from 0.1 to 0.2 and further to 0.3, to keep the
volume ratio at 1, the corresponding requirements for the efficacy rates are 0.26, 0.35 and
0.41, respectively, when the correlation coefficient is fixed at 0.1.

At the end of the dose-finding stage, we identify the admissible set 434(1)- Then, for each
dose level J€ (1, -+, K) within the admissible set, we obtain the estimate of w; (denoted as
a3/). Given zas the highest acceptable value of w;, we build the candidate set of doses as

#={j €, ,K):(®; <71)N(n;>0)}.
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By adding 777> 0, we tighten the safety evaluation of the trial by requiring that all the doses
in the candidate set & are tested by at least one cohort of patients during the dose-finding
stage. We select =8, which is calculated based on equation (4) with a highest acceptable
toxicity rate p;7= 0.3, a lowest acceptable efficacy rate pjz= 0.2 and a speculated
correlation coefficient of 0.1. Alternatively, if the correlation between the efficacy and
toxicity is unknown, then we can use the data accumulated at the end of the dose-finding
stage to estimate. Simulation studies indicate that the proposed design is not sensitive to the
way that the correlation coefficient is determined (results not shown). Also, if the objective
of the phase I/11 trial is to compare a control treatment to the identified OBD, then we need
to add the control arm to the candidate set 8. When the dose-finding stage ends, we
seamlessly advance & and trigger the dose-validation stage.

2.2. The dose-validation stage

Once the candidate set 8 has been constructed, we seamlessly trigger the second stage of the
trial for dose validation. The purpose of the dose-validation stage is to further validate the
toxicity-efficacy profile of the candidate set and finally identify the OBD. To allocate
patients during the second stage, we can use either approach: adaptive randomization or
equal randomization. Adaptive randomization can shift the allocation of patients to more
efficacious dose levels. However, the sample size in the phase I/11 study typically is not
large, which can yield less than the desired precision in estimating the treatment effect.
Given this reason, we equally randomize the patients enrolled in the dose-selection stage to
the candidate set. However, we note that the proposed design is not restricted to equal
randomization and can easily accommodate adaptive randomization.

We continuously monitor the toxicity and efficacy outcomes during the dose-validation stage
to update the candidate set & by excluding any overly toxic or less efficacious dose. The
same Dirichlet-multinomial distribution, (2) and (3), is used with 7;to denote the patient
data accumulating from the dose-finding stage until the current cohort of patients in the
dose-validation stage. Hence, under the Bayesian framework, the Dirichlet-multinomial
distribution seamlessly utilizes the accruing data in a “learn-as-we-go” fashion and thereby
provides more precise estimates than single phase | and phase 11 trials conducted separately.
The dose-validation procedure is summarized as follows:

1. Equally randomize a cohort of patients to the candidate set 8.
2. Update the posterior estimates of g;rand chwithin 8.
3. Drop any dose jwith either g;r> ¢ror a3j> zfrom 8. If all the doses have

been dropped from the trial, terminate the trial early.

4. Repeat steps 1 to 3 until the maximum sample size for the dose-validation
stage is reached.

Then, at the end of the dose-validation stage, the dose level with the minimum c&jis selected
as the OBD. As the proposed design targets the OBD, we refer to it as the OBD-based
design.
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In the dose-validation stage, we only drop doses from the trial due to toxicity and/or futility
and do not terminate the trial for superiority. That is because when a dose is promising, for
the purpose of enhancing the individual ethics of the trial, it is often preferred to enroll more
patients into the trial. However, if desired, the proposed design can accommaodate an early
stopping rule for superiority. Specifically, let p be the criteria of the volume ratio for
stopping early for superiority. Then, during the dose-validation stage, the trial is terminated
early if any a3j< p, and that dose level jis then declared as the OBD.

In addition, to handle the control arm in the dose-validation stage, we need to keep the
candidate set 8 updated but not alter the control arm during the trial. We define § > 0 as the
marginal meaningful difference for w; Then, when the trial ends and the OBD is identified,
we estimate the volume ratios for the OBD and the control treatment respectively (denoted

as d}]' and (50). We conclude that the OBD is promising if Cuj <wo—0; otherwise, we conclude
that the OBD is unpromising.

3. Simulation studies

3.1. Operating characteristics

We conducted comprehensive simulation studies to investigate the operating characteristics
of the proposed OBD-based design under 6 scenarios with different toxicity and efficacy
profiles. We compared the OBD-based design with an MTD-based design and the bCRM
[15]. The MTD-based design mimics the seamless phase I/11 design proposed by Hoering et
al. [14, 20] and is a two-stage design that targets the MTD at the first stage. Specifically, the
first stage of the MTD-based design uses the BMA-CRM to identify the MTD based solely
on the toxicity outcomes. Then, at the second stage, the same dose-validation scheme is
applied for 2 doses at and below the MTD to determine the OBD by jointly modeling and
evaluating the toxicity and efficacy outcomes. The bCRM jointly models the toxicity-
efficacy outcomes through a flexible bivariate binomial distribution and adaptively allocates
patients to the identified OBD throughout the phase I/11 trial.

The maximum sample size in the simulation was 30 for the first stage and 120 for the second
stage. The sample size was calibrated to maintain certain requirements for the dose selection
percentages. In particular, we required at most 5% probability of selecting the incorrect
doses if none dose was promising, and at least 50% probability of selecting the true OBD.
We are aware that the conventional phase I/11 trial typically requires a higher MTD selection
percentage than 50%. However, considering that finding the OBD is generally more difficult
due to the non-monotonic dose-efficacy relationship [19], we believe that 50% is an
appropriate choice for the minimal requirement for identifying the OBD. Patients were
enrolled into the trial in cohorts of size 3. We used the global cross-ratio model [27] to
simulate the association between the toxicity and efficacy outcomes with the ratio fixed at
1.5, which corresponds to a weak positive correlation coefficient of about 0.1 as suggested
by Dienstmann et al.[28]. Notice that this cross-ratio model has been used in other phase I/11
designs [3]. We fixed the ratio for the purpose of simplifying the simulation setting.
However, we note that the proposed design can handle a varying ratio as well as no
modification. We specified the highest acceptable toxicity rate as ¢7= 0.3 and the highest
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acceptable volume ratio as w; = 8 throughout the simulation. We also set the prior parameter
a;=(0.25, 0.25, 0.25, 0.25) for the Dirichlet distribution at any dose level /. In addition, we
used 5 skeletons in the BMA-CRM, with the following values:

(0.01,0.05,0.09,0.15,0.20), skeleton 1;
(0.20,0.30. 0.40,0.50, 0.60), skeleton 2;
(PyrsPorsPap s Par s Dsr )= 14 (0.10,0.20,0.30,0.40, 0.50), skeleton 3;
(0.02,0.06,0.12,0.30, 0.50), skeleton 4;
(0.10,0.08, 0.15, 0.20, 0.30), skeleton 5

Table 1 summarizes the simulation results based on 5,000 replicates, including the dose
selection percentage, percentage of patients treated at each dose level, percentage of patients
experiencing toxicity and efficacy, and average sample size of the whole trial (dose-finding
stage + dose-validation stage). In Table 1, in addition to the toxicity and efficacy rates, we
list the volume ratios for all the dose levels. The OBD, which obtains the minimum volume
ratio while still safeguarding the patients, is emphasized by a boldface font. Notice that there
can be 2 OBDs under some scenarios because the difference between the minimum volume
ratio and the secondary minimum is negligible (within 0.1) in those scenarios.

Scenario 1 represents the circumstance in which there is no OBD. The OBD-based, MTD-
based and bCRM designs obtained 2.6%, 3.5% and 4.5% false positive rates, respectively.
We also notice that the OBD-based design obtained the smallest average sample size of 30.4,
suggesting that most of the trials were terminated at the end of the first stage.

Scenarios 2 and 3 simulated the unimodal dose-efficacy curve. All the doses are safe in
scenario 2; whereas dose 5 is overly toxic in scenario 3. The OBD is located at doses 2 and 3
in scenario 2 and at doses 1 and 2 in scenario 3. The OBD-based design outperformed the
other designs in these scenarios. For example, in scenario 2, the OBD-based design had a
satisfactory OBD selection percentage of 83.9% and allocated 68.5% of the patients to the
OBD levels. Contrarily, the MTD-based and bCRM designs performed poorly, with
respective OBD selection percentages of 6.7% and 20.5%, and respectively allocated only
17.2% and 34.6% patients to the OBD levels. The OBD-based design enrolled as many as
114.8 patients into the trial on average, which was 43.7 more patients than in the MTD-
based design and 28.9 more than in the bCRM design. Also, the OBD-based design reported
the lowest toxicity rate of 7.9% and the highest efficacy rate of 28.4%. In other words, the
OBD-based design obtained the best operating characteristics under that setting. The
simulation results in scenario 3 were similar.

Scenarios 4 and 5 simulate the cases in which the efficacy rate initially increases with the
dose level and then plateaus. The OBD is located at dose 2 for scenario 4 and at doses 2 and
3 for scenario 5. The OBD-based design performed best in scenario 4. It yielded the highest
OBD selection percentage of 52.8%; whereas the MTD-based design and bCRM design
respectively achieved selection percentages of only 9.2% and 14.5%. For the allocation of
patients, the OBD-based design allocated 37.0% of the patients to the OBD, which was
27.3% higher than in the MTD-based design and 15.8% higher than in the bCRM design. In
scenario 5, all the designs had approximately the same OBD selection percentage, and the
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MTD-based design allocated around 15% more patients to the OBD than the other two
designs. Scenario 6 mimics the traditional monotonically increasing dose-efficacy curve.
According to the simulation results, the OBD-based design was still the best design in terms
of OBD selection and patient allocation. In addition, the MTD-based design also obtained
good performance in this scenario with an OBD selection percentage of 55.2% and
allocating 63.6% of the patients to the OBD, which is only 3.7% less than the percentage of
patients allocated to the OBD in the OBD-based design. A reasonable explanation for the
plausible performances of the MTD-based design under the last two scenarios is that the
MTD and the OBD are close to each other in these two scenarios. Specifically, dose 3 is not
only the OBD but also the MTD under both scenario 5 and scenario 6. Consequently, the
MTD-based design allocated more patients to dose level 3 and resulted in good
performances in OBD (MTD) identification and patient allocation.

In summary, the OBD-based design is a robust design that performs well, regardless of the
shape of the dose-efficacy curve. In contrast, the MTD-based and bCRM designs are
sensitive to the shape of the dose-efficacy curve and the locations of the OBD and MTD. In
particular, the MTD-based design obtains good performance when the OBD is in the
neighborhood of the MTD, and the bCRM design performs well when a monotonically
increasing dose-efficacy curve holds. If the dose-efficacy curve is unimodal and the OBD is
not close to the MTD (e.g., scenarios 2 and 3), neither of the two alternative designs work
well. As we typically know little about the dose-efficacy curve, we recommend the use of
the OBD-based design in practice, especially for MTAs with possibly non-monotonic dose-
efficacy curves.

We stated that the OBD-based design can incorporate a control arm. To investigate this
setting, we also conducted simulation studies of the OBD-based design when incorporating a
control arm. As the bCRM cannot accommodate a control arm, the comparison was
restricted to the OBD-based and MTD-based designs. Table 2 summarizes the simulation
results. The same scenarios used in Table 1 appear in Table 2, except that we added a control
arm with a toxicity rate of 0.25 and an efficacy rate of 0.2 in each scenario of Table 2. The
simulation results were similar to the results shown in Table 1. When there was no
promising dose (scenario 1), both designs selected the control arm with overwhelming
percentages (over 95%). When the MTD and the OBD were different (scenarios 2, 3 and 4),
the OBD-based design outperformed the MTD-based design. Otherwise, these two designs
were comparable. In general, we still recommend the OBD-based design when a control arm
is added.

3.2. Sensitivity analysis

We conducted a sensitivity analysis to investigate the performances of the OBD-based
design with different criteria of early stopping for superiority, o and hyperparameter a;.
Notice that all the simulated trials in Tables 1 and 2 did not stop for superiority (e.g., o = 0).
However, as we mentioned earlier, by adding a positive value for p, the trial can stop early
for superiority to reduce the sample size if any volume ratio w; < p. Hence, it is of interest to
study the performance of the OBD-based design under various values of p other than 0.
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Table 3 and Table 4 summarize the simulation results, with the former studying the original
OBD-based design and the latter investigating the OBD-based design that incorporates a
control arm. The results from these two tables are similar, so we focus on Table 3 hereafter.
We take scenario 2 as an example. When there was no early stopping rule for superiority (o
= 0), according to Table 1, the OBD-selection percentage was 89.3%, and 68.5% of the
patients were allocated to the OBD levels. The average sample size was 114.8. This number
dropped substantially to 49.0 when p = 0.25, according to the results in Table 3. Also, the
OBBD selection percentage and the proportion of patients treated at the OBD level decreased
to 77.6% and 62.9% given p = 0.25. When p further increased from 0.25 to 1, the operating
characteristics changed slightly, except that the average sample size decreased from 49.0 to
33.5. This result shows a trade-off for adding the early stopping rule for superiority. On one
hand, adding this rule can result in substantial saving related to the number of patients
enrolled in the trial and the associated resources. On the other hand, the OBD selection
percentage and the proportion of patients treated at the OBD decrease when this rule is
added.

We use the Dirichlet-multinomial distribution to jointly model the toxicity-efficacy
outcomes. We adopt the non-informative prior by selecting a;= (0.25, 0.25, 0.25, 0.25) for
each dose level /. Conventionally, the non-informative prior is used when we lack
information about a drug in advance of the trial. However, as a Bayesian design, it is also of
interest to investigate the performance of the trial design with different prior information. To
simplify the presentation, we use the prior parameters

pR= (PP g =1, ), P2 =(pP, j=1,--- ,.J)and rP"l to represent the hyperparameter

a;. The values of 1%}’ and p”;' can be viewed as the initial guesses of the toxicity and
efficacy response rates at dose j and /P"i can be viewed as the number of patients treated at

each dose level before the trial begins. Therefore, at dose level /, given pf;i, pf;i and /"M and
assuming that the toxicity and efficacy outcomes are initially independent, the
hyperparameter a;can be represented as

oz]:np“ ((1_p§);1)(1_p§);1). (1—275);)1)17);7PI7);(1—]3§);)-pf);lp?g) )

Hence, as 7P" increases, the prior distribution becomes more informative. Notice that the

conventional prior a;= (0.25, 0.25, 0.25, 0.25) is equal to pf;i=pf5=0-5 and 71 = 1, which
corresponds to a non-informative prior.

We examined the operating characteristics of the OBD-based design with different prior

distributions. In particular, we fixed p?"'=(0.1,0.2,0.3,0.4,0.5) and varied the values of p>"
and 77", Table 5 summarizes these results. We adopted scenario 2 from Table 1 to simulate
the trial. Although the true dose-efficacy shape is unimodal, to better investigate the prior
sensitivity, we considered a wide range of the prior dose-efficacy shapes such as
monotonically increasing, unimodal and plateaued. Also, we considered different prior
sample sizes with 71,y varying from 0.5 to 5. Therefore, /7,i = 0.5 corresponds to an
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extremely non-informative prior and /7,i = 5 corresponds to a relatively informative prior.
Based on Table 5, we found the results to be rather stable across different priors, suggesting
that the OBD-based design is not sensitive to the specification of the prior.

4. Discussion

In this article, we propose a two-stage seamless design for phase I/11 clinical trials in which
we jointly model the toxicity and efficacy outcomes and use a toxicity-efficacy trade-off
measure to identify the optimal biological dose. An important advantage of the proposed
design is that it imposes little shape assumption on the dose-efficacy curve. Consequently,
the proposed design is robust and yields plausible performances across different shapes of
the underlying true dose-efficacy curves. In addition, the proposed design is flexible in the
sense that it can easily incorporate a control arm. The simulation results show that the
proposed design has good performances for identifying the optimal biological dose. The R
code to implement the proposed OBD-based design is available by contacting the first author
of this article.

We select /= 30 and 7, = 120 as the maximum sample sizes for the first and second stages.
These sample sizes were determined through calibration studies to maintain the desirable
operating characteristics of the proposed design such as having a high chances of sending
promising doses to the second stage and identifying the optimal biological dose at the end of
the trial. We notice that this sample size is generally larger than the total sample size of two
separate phase | and phase 1l trials. However, according to the simulation results in Table 1,
when there is no promising dose, most trials that use the proposed design will terminate at
the end of the first stage, which will result in a reduced sample size. On the other hand,
when the optimal biological dose exists, we believe that a slightly larger trial can still be
desirable because more patients can benefit within the trial. Nevertheless, if a small-scale
trial is preferred, the proposed design can be easily extended by adding an early stopping
rule for superiority. According to the simulations, the maximum sample size for the second
stage can be substantially reduced by adding an early stopping rule.

The proposed design is appropriate for trials in which the toxicity and efficacy outcomes are
both binary. It is worth studying how to extend the proposed designs to handle other types of
response outcomes, such as multiple-grade toxicity or time to disease progression. We focus
on phase I/11 trials that evaluate a single agent. It is also of interest to extend the proposed
design to drug combination trials. In this article, we fix the sample size at 30 for the dose-
finding stage; however, the proposed design can use various methods to adaptively alter the
sample size of the first stage. One practical option is to specify a cut-off value such as ¢ =
0.8 for the candidate dose set 8. Next, we need to update & after each step of the dose-
escalation procedure. Then, if for every dose level jin 8 we have the posterior probability
Awj< 14%) > ¢, we can terminate the dose-finding stage early and forward & to the dose-
validation stage. In contrast, if the maximum sample size is reached but there are still certain
dose levels in & that do not meet the above condition, we can expand the cohorts for the
dose-finding stage. This adaptive scheme enhances the flexibility of the phase I/11 trial but
also increases the computational burden. Further research in this area is warranted.
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Figure 1.

Volume ratio with different correlation coefficient between efficacy and toxicity outcomes.
The toxicity rate is fixed at p7=0.3.
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