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Abstract
In this dissertation a newly developed numerical method is presented, which is op-
timized for the time evolution of one-dimensional lattice systems with large local
Hilbert spaces. This method extends the time-evolving block-decimation (TEBD) to
include a local basis optimization (LBO), which has already been successfully com-
bined with ground state methods. The algorithm is based on matrix product states
(MPS), which can represent the quantum state of a one-dimensional chain in most
cases with a number of parameters, that is not exponentially increasing with the
chain length. The LBO causes a reduction of the simulation times that is linear
in the bond dimension of the MPS. To demonstrate the advantages of this method,
we apply the TEBD-LBO to electron-phonon (e-p) systems. In this thesis these are
described by the Holstein model, which goes beyond semi-classical approximations
and covers the full quantum statistics of the phonons. The understanding of the
nonequilibrium dynamics of charge carriers coupled to lattice vibrations is of great
importance for research areas like transport through quasi one-dimensional conduc-
tors, photo-generated phase transitions and time-resolved spectroscopy.
First, the energy transfer from a highly excited electron to the phononic degrees

of freedom on a small chain is studied. In the various parameter regimes different
types of relaxation occur. In any case, after a certain time the system reaches a state,
where on average no energy is exchanged between the electron and phonons. This
can either mean a constant kinetic energy or oscillations with a constant amplitude
and frequency.
Next, long perfectly conducting leads without coupling to phonons were attached

on both sides of the small chain. In the left lead an electron with density distribution
in the shape of a Gaussian wave packet is injected with momentum towards the e-p
coupled structure in the middle. This structure acts as an impurity in an otherwise
perfectly conducting chain. The investigation shows resonance effects in the trans-
mission and reflection at this impurity. Further, the electron can transfer a part of
its energy permanently to the phonons, which results in a reduction of the velocity.
Finally, two mechanisms are presented that lead to self-trapping of the electron on
the e-p coupled structure.

Keywords: time-evolving block-decimation, one-dimensional systems, electron-phonon
systems, Holstein model, scattering
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Zusammenfassung
In dieser Dissertation wird eine neu entwickelte numerische Methode vorgestellt,
die für die Zeitentwicklung von eindimensionalen Gittersystemen mit großen lokalen
Hilberträumen optimiert wurde. Die time-evolving block-decimation (TEBD) wird
dabei mit einer lokalen Basisoptimierung (LBO) erweitert, welche bereits erfolgre-
ich für Grundzustandsberechnungen verwendet werden konnte. Der Algorithmus
nutzt die Darstellung von Quantenzuständen durch Matrixproduktzustände (MPS),
welche eine eindimensionale Kette in den meisten Fällen ohne eine exponentiell mit
der Kettenlänge anwachsende Anzahl an Parametern beschreiben können. Durch
die LBO skaliert die Laufzeit der Simulationen nun mit einer um eins reduzierten
Potenz der Dimension der Matrizen des MPS. Um die Vorteile der Methode zu
demonstrieren, wird die TEBD-LBO auf Elektron-Phonon (e-p) Systeme angewen-
det. Diese werden in der vorliegenden Arbeit durch das Holstein Modell beschrie-
ben, welches über semi-klassische Näherungen hinaus geht und die volle Quanten-
statistik der Phononen berücksichtigt. Forschungsgebiete wie der Transport durch
quasi-eindimensionale Leiter, Photo-induzierte Phasenübergänge und zeitaufgelöste
Spektroskopie würden sehr von einem größeren Verständnis der Nichtgleichgewichts-
dynamik von Ladungsträgern, die an Gitterschwingungen gekoppelt sind, profitieren.
Zunächst wurde der Energietransfer von einem hoch angeregten Elektron zu den

phononischen Freiheitsgraden auf einer kurzen Kette untersucht. Dabei zeigen sich
in den unterschiedlichenn Parameterbereichen verschiedene Formen von Relaxation.
In jedem Fall wird nach einer gewissen Zeit ein Zustand angenommen, in dem es im
Mittel keinen Energieaustausch zwischen Elektron und Phononen mehr gibt. Dies
kann sowohl eine konstante kinetische Energie, als auch Oszillationen mit konstanter
Amplitude und Frequenz bedeuten.
Als Nächstes wurden jeweils eine lange Zu- und Ableitung, in denen es keine Kop-

plung an Phononen gibt, an die kurze Holstein-Kette angefügt. In die Zuleitung wird
dabei ein Elektron mit Dichteverteilung in Form eines Gaußschen Wellenpackets und
Impuls in Richtung der Elektron-Phonon-gekoppelten Struktur in der Mitte einge-
fügt. Diese wirkt als eine Störstelle in einem ansonsten perfekten Leiter. Die Unter-
suchung zeigt, dass es Resonanz-Effekte bei der Transmission und Reflexion an dieser
Störstelle gibt und dass das Elektron einen Teil seiner kinetischen Energie dauerhaft
an die Phononen abgeben kann, was zu einer Reduktion der Geschwindigkeit führt.
Außerdem werden zwei verschiedene Mechanismen vorgestellt, die ein Self-Trapping
des Elektrons auf der gekoppelten Struktur bewirken.

Schlagworte: time-evolving block-decimation, eindimensionale Systeme, Elektron-
Phonon Systeme, Holstein Modell, Streuung
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1. Introduction
In quantum mechanics a system composed of several particles is more than the mere
sum of these. The existence of entanglement between those particles causes the
Hilbert space of the composite system to be the product of the individual Hilbert
spaces, rather than their sum. While this property is interesting, in the sense that
it yields new physics that are not present in classical theories, it can also become an
obstacle, especially when considering many particles. Although the complete dynam-
ics of non-dissipative systems are determined by the Schrödinger equation, which can
easily be solved for time-independent Hamiltonians, the computational complexity of
the arising algebraic problem of applying a matrix exponential to a vector is so high
that even modern-day supercomputers can only handle a few dozens of particles. On
the other hand, people are nowadays quite confident that in the near future it will be
possible to use this entanglement and the consequential exponential increase of the
Hilbert space dimension with the number of particles to build a quantum computer
that outperforms any classical machine.

1.1. Condensed matter
To get analytical and numerical results for solids, that are composed of many par-
ticles, one has to make some assumptions and approximations. In some cases it is
justified to neglect one or even two spatial dimensions and just focus on the con-
strained lower-dimensional system. In fact some effects only emerge in theories that
are formulated in one spatial dimension, e.g. the Peierls transition [1], where the
interaction of electrons and lattice vibrations can lead to the formation of a charge
density wave leading to an insulating phase. This effect has been observed in ex-
periments [2], thereby verifying that the investigated system effectively behaves like
a one-dimensional system. Among the most prominent examples of low-dimensional
systems is graphene [3, 4], a layer of carbon atoms with an atomic-scale thickness.
Systems that are referred to as quasi-one-dimensional are carbon nanotubes, metallic
nanowires, molecular junctions and crystals where the electrons can only move in one
direction. As the technology of producing such structures with an extent of only a few
atomic diameters progresses, the need for theories describing low-dimensional solids
increases.
One of the main assumptions made for any conductor, regardless of the dimen-

sion, is that only the electrons in the conduction band are mobile, while the ions are
bound by inter-atomic forces, which is what constitutes a solid. This is usually mod-
eled by a lattice, where the lattice sites correspond to the ions and the conduction
electrons can move from on site to the next. The distance between the sites is called
the lattice constant, but the ions are not completely immobile. The inter-atomic
forces result from the electromagnetic interaction and build an elastic lattice, where
the sites can oscillate around their equilibrium position. These vibrations are also
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1. Introduction

quantized and exhibit particle-like behavior. They are called phonons and they can
interact with other particles like electrons and photons. In low-dimensional corre-
lated materials the emergence of phonons has a major effect on the nonequilibrium
dynamics. Therefore, the investigation of interacting electron-phonon systems is im-
portant for the understanding of transport through low-dimensional and molecular
junctions [5, 6, 7], time-resolved spectroscopy [8, 9] and also for relaxation dynamics
of photoinduced charge carriers [10, 11, 12].
In this thesis we study the Holstein model with one electron on the lattice. Without

electron-electron interaction, only the phonons can influence the electron dynamics
and provide a relaxation channel. For some limiting cases it is convenient to describe
the phonon system as a bath, but the numerical method that we use also covers the
full dynamics of the phonons. This can become an obstacle because they belong to the
(particle-) class of bosons, meaning they follow Bose-Einstein statistics. Therefore,
it is possible to have an arbitrary number of phonon excitations occupying the same
quantum state, which corresponds to a Hilbert space of arbitrary dimension if the
particle number is not conserved, which is the case in our studies. According to the
usual practice for many-particle systems we use second quantization to describe our
quantum states. This also implies the use of creation and annihilation operators,
rather than position and momentum operators.

1.2. Numerical methods
Using the second quantization the eigenvalue problem and time evolution get reduced
from differential equations to combinatorial problems. This is why theorists often turn
to numerical methods to study many-body problems. The development of algorithms
that can efficiently simulate quantum mechanical systems has become an independent
research area that not only physicists are interested in. Also chemists and biologists
use and develop or refine some of these methods, e.g. mean field theory [13, 14]. In
present-day many-body physics there is a large number of numerical methods that are
geared to the needs of their specific studies. Some of the major branches are quantum
Monte Carlo methods, cluster approximations and matrix product state (MPS) based
algorithms. The latter one is chosen for the studies presented in this thesis.
The matrix product states have been mentioned under different names for the

last three decades. In 1992 Fannes et al. [15] reported on finitely correlated states
for spin systems with periodic boundary conditions. Three years later Östlund and
Rommer [16] showed that in the thermodynamic limit ground states obtained with
the density matrix renormalization group (DMRG) can also be obtained by a vari-
ational ansatz using “matrix product ground states”. The DMRG was introduced
by White [17] in 1992 and quickly became the standard for ground state studies of
one-dimensional many-body systems. Originally formulated in terms of a bipartite
lattice it can naturally be written in the MPS language [18]. With this knowledge
the ideas behind the DMRG were generalized to cover a wider range of systems.
Additional work for developing a systematic understanding of the properties and pos-
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1.3. Outline

sible applications of MPS has been done by Vidal [19, 20]. Since then new classes
of states, related to MPS, have emerged, collectively referred to as tensor network
states. Examples include the projected entangled-pair states (PEPS) [21], the mul-
tiscale entanglement renormalization group ansatz (MERA) [22] and generalizations
to continuous systems [23, 24] describing quantum field theories.

1.3. Outline
In this thesis a modified time-evolving block-decimation (TEBD) algorithm is pre-
sented. The TEBD [20] is an MPS based scheme for the time evolution of one-
dimensional lattice systems and the modification is the use of a specific basis that
was found to represent ground states of systems with bosonic degrees of freedom very
efficiently [25, 26]. In the next chapter we introduce the MPS in Sec. 2.1 and give
their explicit form for a certain type of states. The subject of Sec. 2.2 is the TEBD
with detailed instructions how to implement particle number conservation. Finally,
the local basis optimization (LBO) is explained in Sec. 2.3, which completes Ch. 2.
The content of the third chapter is the study of a highly excited electron that is
coupled to phonons [27]. In Sec. 3.1 to Sec. 3.3 different limiting cases are discussed
with analytical results to compare with numerical results of the TEBD-LBO method
introduced in Ch. 2. In the crossover regime a smooth transition from one limit the
next, e.g. from adiabatic to anti-adiabatic, is found. The dynamics of this regime
are studied in Sec. 3.4 and the role of the optimal basis is investigated in Sec. 3.5.
Presented in Ch. 4 are the results of the study of an electronic wave packet that is
scattered by an electron-phonon (e-p) coupled structure [28]. The theory is explained
in Sec. 4.1 and Sec. 4.2, where a connection with scattering theory for plane waves
on a lattice is made. Three interesting phenomena are investigated thereafter. The
transmission and reflection coefficients show non-linear behavior as a function the
e-p coupling constant. A resonance mechanism related to the system of Sec. 3.1 is
found for this problem and the optimal basis states used in our method give valuable
insight into the physics of this system. All results regarding the transmission are
presented in Sec. 4.3. The electron can transfer a part of its excess energy to the
phonons, where some of this transfered energy might be reabsorbed by the electron,
but a finite amount of phonon energy may persist permanently. In Sec. 4.4 we study
this dissipated energy, but stress that, despite the name, the phonon system is not
treated as a bath, but the full dynamics are captured by the TEBD-LBO. The time
of transient self-trapping of the electron on the e-p coupled structure is investigated
in Sec. 4.5, where different mechanisms that can bind the electron are found. Finally,
all results and the performance of the TEBD-LBO method are summarized in Ch. 5.
This work was supported by the Deutsche Forschungsgemeinschaft and is part of
the Forschergruppe 1807: Advanced Computational Methods for Strongly Correlated
Quantum Systems.
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2. Time-evolving block-decimation
with local basis optimization

One of the main goals in modern solid states physics is the development of numeri-
cal algorithms for large lattice systems of strongly correlated materials. Usually the
Hilbert space dimension increases exponentially with the system size, but for bosonic
excitations also the local Hilbert space dimension can be a limiting factor for numer-
ical simulations. In principle a bosonic site is infinite dimensional, but a convenient
cutoff for the number of states can usually be chosen. Among the most common
numerical methods in this area are quantum Monte Carlo methods [29] and matrix
product state (MPS) based algorithms, including the density matrix renormalization
group method [17]. We are studying the time evolution of one-dimensional lattice
systems with a specific number of fermions and a fluctuating number of bosons and,
hence, turn to the time-evolving block-decimation (TEBD), which is a wave function
based method suitable to address long chains. This algorithm is especially easy to
parallelize because of its use of the Trotter-Suzuki decomposition as will be shown in
Sec. 2.2. Another, mathematically equivalent, method for real-time evolution is the
time-dependent DMRG (tDMRG) [30, 31, 18], that uses a different representation of
the MPS. The problem of large local Hilbert spaces has already been addressed in
ground state methods, where a local basis optimization [25, 26] and a splitting of one
big site into to several pseudo-sites [32] were combined with DMRG methods. The
local basis optimization seems more promising for a combination with TEBD as it
does not introduce long range interactions.
The algorithm we describe in this chapter has recently been introduced in Ref. [33].

It combines the advantages of matrix product state based methods, such as TEBD,
and a local basis optimization. First, we give an introduction to matrix product
states in Sec. 2.1 and then show how to implement time evolution using these states
in Sec. 2.2, including a detailed description of a scheme to conserve the particle
number. Finally, the local basis optimization and its implementation in the TEBD is
explained in Sec. 2.3.

2.1. Matrix product states
In this subsection we give a short introduction to matrix product states. The possi-
bility to represent a quantum state with a number of coefficients that is much smaller
than the dimension of the full Hilbert space is crucial when dealing with strongly
correlated lattice systems. The class of MPS provides such a representation and its
versatility makes it applicable to a wide range of one-dimensional physical systems.
The density matrix renormalization group method [17] was one of the major break-
throughs in one-dimensional solid state physics and, although not known at the time
it was invented, the success of this algorithm relies on the properties of MPS. Nowa-
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2. Time-evolving block-decimation with local basis optimization

days there are generalizations of this class to also cover two-dimensional lattices [21]
and continuous systems [23].
For the derivation of the matrix product state representation we follow the formu-

lations of Vidal [19]. For a one-dimensional lattice of L sites a generic pure quantum
state is given by

|ψ〉 =
∑

k1,...,kL

ck1,...,kL |k1, k2, ..., kL〉 , (2.1)

where the kj label the states of site j in some standard basis, e.g. kj = {↑, ↓} for
spin-1

2 systems or kj = {0, 1, ...} for bosons. The local Hilbert space dimensions dj for
each site j can be different and also arbitrarily large. This means the total Hilbert
space has dimension dim(H) =

L∏
j=1

dj or simply dim(H) = dL for a homogeneous
chain with d1 = d2 = ... = dL = d. The exponential growth in the system size is
a real limiting factor, even for spin chains. Any change of the state leads to O

(
dL
)

basic operations for updating the rank L tensor c that contains all coefficients of the
state |ψ〉. The idea is now to find a representation that can approximate the state
with less coefficients and may be updated efficiently in the case of local changes.
With a Schmidt decomposition the state (2.1) can be written as

|ψ〉 =
D1∑
α1=1

λ1
α1

∣∣∣φ[1]
α1

〉 ∣∣∣φ[2,...,L]
α1

〉
, (2.2)

where the non-negative scalars λ1
α1 are the Schmidt coefficients and

∣∣∣φ[1]
α1

〉
and

∣∣∣φ[2,...,L]
α1

〉
are the Schmidt vectors for the first site and the rest of the lattice, respectively.1 With
the Schmidt vector

∣∣∣φ[1]
α1

〉
represented in the standard basis the state (2.2) becomes

|ψ〉 =
D1∑
α1=1

d1∑
k1=1

Γ1,k1
α1 λ1

α1 |k1〉
∣∣∣φ[2,...,L]
α1

〉
, (2.3)

which, in the usual pictorial language of tensor network states [18], corresponds to

ck1,...,kL =
Γ1

k1

λ1

k2 k3

c̃L−1
···

kL
. (2.4)

The right Schmidt vector can also be rewritten as

∣∣∣φ[2,...,L]
α1

〉
=

d2∑
k2=1
|k2〉

∣∣∣ϕ[3,...,L]
α1,k2

〉
=

d2∑
k2=1
|k2〉

D2∑
α2=1

Γ2,k2
α1,α2λ

2
α2

∣∣∣φ[3,...,L]
α2

〉
, (2.5)

where λ2
α2 and

∣∣∣φ[3,...,L]
α2

〉
are the coefficients and vectors of the Schmidt decomposition

1The range of the index α1 is in general the smaller of the Hilbert space dimensions dim(H[1]) and
dim(H[2,...,L]).
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2.1. Matrix product states

corresponding to the split [1, 2] : [3, ..., L], that need to be known for this step.
Inserting (2.5) into (2.3) leads to

|ψ〉 =
d1∑
k1=1

d2∑
k2=1

D1∑
α1=1

D2∑
α2=1

Γ1,k1
α1 λ1

α1Γ2,k2
α1,α2λ

2
α2 |k1, k2〉

∣∣∣φ[3,...,L]
α2

〉
, (2.6)

or alternatively

ck1,...,kL =
Γ1

k1

λ1 Γ2

k2

λ2

k3 k4

c̃L−2
···

kL
. (2.7)

The procedure of rewriting
∣∣∣φ[j,...,L]

〉
in terms of

∣∣∣φ[j+1,...,L]
〉
can now be iterated to

get

|ψ〉 =
∑

k1,...,kL

∑
α1,...,αL−1

Γ1,k1
α1 λ1

α1Γ2,k2
α1,α2λ

2
α2 ...λ

L−1
αL−1

ΓL,kLαL−1
|k1, k2, ..., kL〉 (2.8)

for a system with open boundary conditions and

|ψ〉 =
∑

k1,...,kL

∑
α1,...,αL

Γ1,k1
αLα1λ

1
α1Γ2,k2

α1α2λ
2
α2 ...λ

L−1
αL−1

ΓL,kLαL−1αL
|k1, k2, ..., kL〉 (2.9)

for periodic boundary conditions, respectively. If we imply standard matrix multipli-
cation, we can omit the matrix indices αj and take

|ψ〉 =
∑

k1,...,kL

tr
[
Γ1,k1λ1Γ2,k2λ2...λL−1ΓL,kL

]
|k1, k2, ..., kL〉 (2.10)

as the general form of an MPS, which is now represented by the tensor network

ck1,...,kL = Γ1

k1

λ1 Γ2

k2

λ2 · · · ΓL
kL

, (2.11)

where the line from ΓL to Γ1 can be omitted for OBC’s.2 Every coefficient of this
state is given by the trace of a product of matrices, hence the name. The λj are
diagonal Dj × Dj-matrices and the Γj are Dj−1 × Dj-matrices for fixed kj, where
Dj = min{dim(H[1,...,j]), dim(H[j+1,...,L])} are called the bond dimensions and we call
D = max

j
{Dj} the bond dimension of the MPS. To obtain the final representation of

|ψ〉 all Schmidt decompositions |ψ〉 =
Dj∑
αj=1

λjαj

∣∣∣φ[1,...,j]
αj

〉 ∣∣∣φ[j+1,...,L]
αj

〉
need to be known

2The picture is also correct for OBC’s. In this case the redundant contracted index can only take
one value, i.e. DL ≡ D0 = 1.
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2. Time-evolving block-decimation with local basis optimization

and in return all Schmidt decompositions are given by (2.8) or (2.9), respectively.
This is an exact representation of the generic state |ψ〉, which has the same number

of coefficients as (2.1), but in (2.10) it is easy to see how to reduce this number
preferably. If we drop the smallest λjαj the bond dimensions decrease, while the
error remains as small as possible. This is very effective in many physical systems,
because the Schmidt coefficients are exponentially decaying for ground states. This is
connected to the issue of the entropy area law [34, 35], which states in one dimension
that often the entanglement entropy of any region is bounded by a constant. We
are more interested in time evolution, rather than ground states, but still the MPS
representation provides a good approximation to all states in our simulations with a
convenient bond dimension. If D scales at most polynomially in L, the reduction of
the total number of parameters from ∏

j
dj to

∑
j
dj ·Dj−1 ·Dj can be tremendous.

There are several reasons why the MPS are such a successful class of states. As
we have already argued, any pure state of a one-dimensional lattice system can be
represented by an MPS with sufficiently large bond dimension and the number of
parameters to describe a certain state with finite entanglement entropy can be reduced
in a very controlled manner. Furthermore, local updates can be done efficiently in
the sense that, for example, an operator Xj,j+1, that acts only on sites j and j + 1,
will only effect Γj, λj and Γj+1. Also the norm 〈ψ|ψ〉 as well as expectation values of
local observables can be obtained with an effort that is linear in L, for a fixed bond
dimension, or even independent of it. If one uses the canonical form, the MPS fulfills
the orthonormalization conditions

dj∑
kj=1

Γj,kj(λj)2(Γj,kj)† = 1 (2.12)

and
dj∑
kj=1

(Γj,kj)†(λj−1)2Γj,kj = 1 , (2.13)

which imply the normalization of the state and reduce obtaining expectation values
to a contraction3

〈ψ|Xj|ψ〉 =

λj−1 Γj λj

Xj

λj−1 Γj λj

(2.14)

for an operator Xj acting only on site j. The diagonal matrices λj carry the informa-
tion about the entanglement between blocks [0, ..., j] and [j + 1, ..., L] and fulfill the

3In this pictorial language hermitian conjugation is expressed through the shift of the physical
index from outgoing line to the top to outgoing line to the bottom.
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2.1. Matrix product states

condition
tr
[
(λj)2

]
= 1 . (2.15)

The Γ’s on the other hand have no physical meaning, so one can make the transfor-
mation Γj → g−1

j−1 Γj λjgj(λj)−1 for any set of invertible matrices g without affecting
the state |ψ〉. This gauge freedom is useful to bring an MPS in a desired form, e.g. the
canonical one.

In the next section we introduce an algorithm for time evolution with MPS. To
get a suitable initial state for a numerical simulation it is possible to first store the
state in the form of (2.1) and then do the Schmidt decompositions as described
above. However, for simple states there is an easier way. We focus on a state with
one electron on an otherwise empty lattice with OBC’s, which is equivalent to a
spin system where all but one spin are pointing in the same direction or any other
state with one excitation. Therefore, the physical indices can be restricted to kj ∈
{0, 1}, ∀j ∈ {1, ..., L}, where kj = 1 corresponds to the electron occupying the site
j. For an electronic wave function ψ : [1, ..., L] → C we define P (j) =

j∑
l=1
|ψ(l)|2

as the probability to find the electron in the left block [1, ..., j] and, hence, for a
normalized state P (L) = 1. We impose a block structure on the matrices to ensure
that the particle number is correct. In this simple case a bond dimension of D = 2 is
sufficient, so that the blocks are just numbers. For the outer vectors we choose

Γ1,0 =
(
1, 0

)
, Γ1,1 =

(
0, ψ(1)

|ψ(1)|

)
(2.16)

and

ΓL,0 =
(

0
1

)
, ΓL,1 =

(
ψ(L)
|ψ(L)|

0

)
(2.17)

and the other Γ’s are given by

Γj,0 =

 1√
1−P (j−1)

0
0 1√

P (j)

 , Γj,1 =
0 ψ(j)√

P (j)(1−P (j−1))
0 0

 . (2.18)

Together with

λj =
√1− P (j) 0

0
√
P (j)

 (2.19)

these tensors have a non-vanishing contraction only if there is exactly one index
kj = 1. It is easy to check that this MPS fulfills the orthonormalization conditions
(2.12) and (2.13), as well as (2.15) (see Appendix A). We start all our numerical
simulations with an initial state of this form. In the standard representation this
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2. Time-evolving block-decimation with local basis optimization

state can be written with

ck1,...,kL =
L∑
j=1

ψ(j)δ1kj
∏
l 6=j
δ0kl . (2.20)

In practice it may be convenient to start simulations with an electronic wave func-
tion that is non-zero only on a small part jl < j < jr of the lattice (see Ch. 4).
In this case we have P (j) = 0, ∀j < jl and 1 − P (j) = 0, ∀j > jr, respectively,
which seems to contradict the representation (2.18). If this is considered as a limit
P (j) → 0 one can check that all contractions of the MPS remain finite or vanish
due to the finite product of Γj and either λj or λj−1. To store this state in its exact
form and spare some computational time one can set Γj,0 = λj = 1 and Γj,1 = 0,
∀j /∈ {jl, ..., jr} and use the definitions (2.16) to (2.19), with the appropriately shifted
first and last lattice index, for j ∈ {jl, ..., jr}.4 This is the natural representation of
an MPS for a piecewise empty lattice and the matrix dimension increases normally
in time evolution schemes.
The structure of the tensors (2.16) to (2.19) can be kept in the algorithm presented

in the next section. With growing entanglement entropy the numbers will become
blocks, such that

Γj,0 =
(
A 0
0 B

)
, Γj,1 =

(
0 C
0 0

)
, (2.21)

where blocks A and C have the same number of rows, while B and C have the
same number of columns. The outer vectors are changing accordingly and the λ’s
are bipartite in the same way as the columns of the Γ with the same lattice index.
The same method also works for more particles if the number of blocks is adjusted
appropriately. Alternatively, one can introduce an additional index that undertakes
the part of the blocks. The particle number conservation induced by this block
structure is an important example of a symmetry that can be used to achieve a
higher efficiency in a simulation with MPS.

2.2. Time-evolving block-decimation
The class of MPS is particularly suited for representing ground states, but its prop-
erties also allow for efficient simulations of time evolution. The following scheme is
called the time-evolving block-decimation algorithm [20] (TEBD). We consider non-
dissipative Hamiltonians, that do not depend explicitly on time, which leads to the
explicit form U(t) = e−iHt for the time evolution operator in natural units with ~ = 1.
Additionally, we restrict ourselves to nearest neighbor interaction. In this case we can
split the Hamiltonian into even and odd part

H =
L−1∑
j=0

Hj,j+1 = He +Ho =
L/2−1∑
j=0

H2j,2j+1 +
L/2−1∑
j=0

H2j+1,2j+2 , (2.22)

4One must also set λjr = 1 due to the fact that Γjr is a column vector.
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2.2. Time-evolving block-decimation

where all terms in He commute, as do all terms in Ho. With this splitting we can
apply a second order Trotter-Suzuki decomposition [36, 37] to the time evolution
operator

U(t) = e−iHe
τ
2 e−iHoτ

(
e−iHeτ e−iHoτ

) t
τ
−1
e−iHe

τ
2 +O(τ 2t) , (2.23)

introducing an error that is quadratic in the sufficiently small chosen size τ of the
time steps if the system evolves for a finite time t. In our simulations we usually have
τ = 5·10−4 and 10 < t < 100. The further decomposition e−iHe(o)τ = ∏

j
e−iH2j(+1),2j+1(2)τ

does not introduce any additional error. All of these local updates can be done
simultaneously, which yields a simple and effective way of parallelizing the algorithm.
Ideally, the computational time can be reduced by a factor of 2/L. Even without
parallelization, acting with the time evolution operator is reduced to a sequence of
local unitary operations, acting only on two adjacent lattice sites. For a state in
the MPS representation, as introduced in Sec. 2.1, this means a sequence of updates
involving only two Γ’s each. One of these updates consists of the following steps. We
build the matrix φ with components

φx,y =[
λj−1ΓjλjΓj+1λj+1

]
x,y

=
•
x

•
y

λj−1

α1

Γj
kj

λj Γj+1

kj+1

λj+1

α2 , (2.24)

where x = {α1, kj} and y = {α2, kj+1} are composite indices. Then the time evolution
operator is applied to obtain

φ̃x′,y′ =∑
kj ,kj+1

U
kj ,kj+1
k′j ,k

′
j+1

φx,y =

•
x′

•
y′

k′j

U

k′j+1

λj−1

α1

Γj
kj

λj Γj+1

kj+1

λj+1

α2

. (2.25)

The Hamiltonians that we use are naturally, i.e. in the standard boson number basis,
represented by a sparse matrix, so that the above contraction can be done efficiently
with a sufficiently precise approximation. By using a Taylor expansion of U up to
O(τ 3) the computational cost of (2.25) is reduced from O(D2d4) to O(D2d2), while
the additional error is negligible compared to the Trotter error. One way to proceed
would be to make a singular value decomposition (SVD) φ̃ = uλv, where λ is a
diagonal matrix and u and v fulfill the orthonormality conditions u†u = vv† = 1.
The components of the updated MPS tensors are then

λ̃jα3 = λα3 , Γ̃j,k
′
j

α1,α3 = 1
λj−1
α1

ux′,α3 and Γ̃j+1,k′j+1
α3,α2 = vα3,y′

1
λj+1
α2

. (2.26)
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2. Time-evolving block-decimation with local basis optimization

This is one of two equivalent approaches, where we chose the one described in the
following. Instead of an SVD one can make a diagonalization of the density matrix
for the left or right block corresponding to a cut of the system at bond j. We get the
reduced density matrix of one block by tracing out the other one. With the matrix φ̃
this is achieved by

ρL = φ̃ φ̃† =

• λj−1 Γj λj Γj+1 λj+1

U

U

• λj−1 Γj λj Γj+1 λj+1

= uλ2u† (2.27)

and

ρR = φ̃† φ̃ =

λj−1 Γj λj Γj+1 λj+1 •

U

U

λj−1 Γj λj Γj+1 λj+1 •

= v†λ2v . (2.28)

Thus the diagonalization yields λ2 and either u or v. For the density matrix of the
left block ρL the eigenvectors are the columns of u and we obtain v by the additional
step vα3,y′ = (ux′,α3)†φ̃x′,y′/λα3 . Likewise the eigenvectors of ρR are the columns of v†
and the components of u are ux′,α3 = φ̃x′,y′(vα3,y′)†/λα3 . The λ̃ and Γ̃’s are then given
by (2.26).
In this formulation one can spare some computational time with the right choice

of either using ρL or ρR. Building the former scales as O
(
D2
j−1Dj+1d

2
jdj+1

)
, while

building the latter scales as O
(
Dj−1D

2
j+1djd

2
j+1

)
. Additionally, the diagonalization

scales as O
(
D3
j−1d

3
j

)
and O

(
D3
j+1d

3
j+1

)
, respectively. Finally, obtaining v and u has

the same scaling. In unsymmetrical systems, where the bond dimensions and local
Hilbert spaces can differ significantly even on neighboring sites, choosing one block
density matrix over the other reduces the scaling from cubic to linear in the higher
dimensions.
The new MPS already fulfills all orthonormalization conditions. Since λ̃j is com-

posed of the eigenvalues of a density matrix, (2.15) is naturally fulfilled. Also (2.13)
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2.2. Time-evolving block-decimation

for Γj and (2.12) for Γj+1 follow directly from the properties of u and v, respec-
tively. The remaining two conditions can be checked by inserting (2.24) to (2.27) and
applying the orthonormality conditions for the original MPS tensors:
∑
kj

Γ̃j,kj
(
λj
)2(

Γ̃j,kj
)†

=
∑
kj

1
λj−1ukj

(
λj
)2
u†kj

1
λj−1 =

∑
kj

1
λj−1ρ

L
kj ,kj

1
λj−1

=
∑

kj ,kj+1

∑
nj ,nj+1

∑
mj ,mj+1

[
Γj,njλjΓj+1,nj+1

(
λj+1

)2

(
Γj+1,mj+1

)†
λj
(
Γj,mj

)†
Ukj ,kj+1
nj ,nj+1

(Umj ,mj+1
kj ,kj+1

)†
]

=
∑

nj ,nj+1

Γj,njλjΓj+1,nj+1
(
λj+1

)2(
Γj+1,nj+1

)†
λj
(
Γj,nj

)†
=

∑
nj

Γj,njλj1λj
(
Γj,nj

)†
= 1

(2.29)

The same can be done for ∑
kj+1

(
Γ̃j+1,kj+1

)†
(λj)2Γ̃j+1,kj+1 . Therefore the local update

is complete at this point.
For these orthonormality conditions to be exact we would have to use all eigenvalues

of the reduced density matrix.5 In this case the bond dimension of the MPS would
grow exponentially with the number of time steps t

τ
. The most effective truncation

of the Hilbert space is to keep only those eigenvalues of the block density matrices
with the highest weights, which is the same idea as in DMRG. There are two ways
of implementing such a truncation. Either one chooses a maximal bond dimension
Dmax, keeps only the Dmax highest weighted eigenstates and, therefore, controls the
computational time needed or one discards only those eigenvalues with a weight below
a certain cutoff and, thereby, controls the error. Making the right choice for either
kind of cutoff is more involved for time evolution than it is for ground state methods.
Maybe a certain cutoff for the weights is sufficient to approximate the state at time
t to a satisfying precision, but one might discard states, which would have a high
weight at later times, during the process. For the same reason the discarded weight
is not a good measure for the total error made in a simulation of a system evolving
in time. Also choosing a maximal bond dimension requires some knowledge of the
physics of the system, especially the entanglement. For open boundary conditions the
bond dimensions vary significantly from the edges to the middle of the system, hence
a different Dmax for each lattice site, or at least for different regions on the lattice,
would be convenient, but even more involved.
There is another cutoff one has to choose conditioned by bosonic degrees of freedom.

The local Hilbert space dimension is infinite if there is no particle conservation for the
bosons. When working in the boson number basis, the common choice is to use only
the lowest eigenstates of the number operator up to some well chosen number M .

5Also the time evolution operator must not be approximated to a finite order, but this error is
again negligible for small enough time steps.
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2. Time-evolving block-decimation with local basis optimization

Again some insight into the physics of the system is required to find an appropriate
cutoff for the size of the boson basis. In our simulations we do not use a specific
size for all local Hilbert space dimensions, but instead dynamically increase each one
individually, when needed. Our initial state is always the tensor product of some
electronic state and the phonon vacuum, hence M = 4 is sufficient to apply the
Taylor expanded time evolution operator.6 If, after a time step τ , the probability
to find an occupation of the highest phonon state is larger than a certain cutoff, the
dimension M for this site is increased by one. This dynamical increase is particularly
efficient in our implementation as we avoid the costly step of computing e−iHj,j+1 τ

exactly, which would now have to be redone for every size of the local Hilbert space
dimension. For larger time steps one may to have to start with a larger dimension
and also enlarge it by more than one at each step. If the cutoff is well chosen, this
method provides an accurate simulation without waste of computational time due to
unnecessarily large dimensions.

To illustrate the particle number conservation during the TEBD, we focus on the
special case of M = 2 and dj = 4, ∀j ∈ {1, ..., L}, which corresponds, for the system
studied in the next chapter, to a lattice with one electron and a non-conserved number
of phonons that can take the values {0, 1} at each site. The Γ’s have the same block
structure as in (2.21)

Γj,0(1) =
(
A 0
0 B

)
, Γj,2(3) =

(
0 C
0 0

)
, (2.30)

where the matrices have the same structure for the first M and last M values of kj,
respectively. We denote blocks with equal dimensions with the same letter, which
does not mean that all entries are equal. The matrix φ then inherits the form

φ =



a 0 a 0 0 c 0 c
0 b 0 b 0 0 0 0
a 0 a 0 0 c 0 c
0 b 0 b 0 0 0 0
0 c 0 c 0 0 0 0
0 0 0 0 0 0 0 0
0 c 0 c 0 0 0 0
0 0 0 0 0 0 0 0


. (2.31)

The application of the time evolution operator U does not change the shape so that

6The Hamiltonians used in this thesis include no higher order terms in the phonon creation oper-
ators.
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2.2. Time-evolving block-decimation

φ̃ looks just like φ.7 For the left block density matrix we then obtain

ρL =



f 0 f 0 0 0 0 0
0 g 0 g h 0 h 0
f 0 f 0 0 0 0 0
0 g 0 g h 0 h 0
0 h† 0 h† i 0 i 0
0 0 0 0 0 0 0 0
0 h† 0 h† i 0 i 0
0 0 0 0 0 0 0 0


→



f f 0 0 0 0 0 0
f f 0 0 0 0 0 0
0 0 g g h h 0 0
0 0 g g h h 0 0
0 0 h† h† i i 0 0
0 0 h† h† i i 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


, (2.32)

where we reordered the rows and columns of ρL to make it block diagonal. The
eigenvalues and entries of the eigenvectors are not affected by this reordering, since
there are two proper subspaces present. The blocks can be diagonalized separately,
where the big block in the middle has in general dimension Dj−1Mj × Dj−1Mj and
the small block in the upper left corner has dimension Dbl

j−1Mj ×Dbl
j−1Mj, with Dbl

j−1
being the number of rows of block A in (2.30). Finally, the Γ̃’s and λ̃ have to be build
with respect to this structure. We rewrite (2.32) as

ρL =

ρ1 0 0
0 ρ2 0
0 0 0

 (2.33)

and find
ρ1 = u1λ1u

†
1 and ρ2 = u2λ2u

†
2 . (2.34)

Then the eigenvectors, i.e. the columns of u1 and u2, are split into M and 2M parts,
respectively, where

u1 =


u0

1
u1

1
...

uM−1
1

 and u2 =



u0,0
2
...

u0,M−1
2
u1,0

2
...

u1,M−1
2


, (2.35)

such that the matrices

Γ̃j,k =
(
uk1 0
0 u0,k

2

)
and Γ̃j,M+k =

(
0 u1,k

2
0 0

)
, (2.36)

have the proper dimension. The number of columns of each block is given by the

7Some of the blocks in (2.30) and (2.31) could also be zero if the probability to find the electron
or a phonon, respectively, on a certain site is zero. In this case the application of U may yield
new non-zero entries.
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2. Time-evolving block-decimation with local basis optimization

amount of kept eigenvalues of either ρ1 or ρ2. Consequently, the diagonal matrix λj is
bipartite, where the upper entries are the eigenvalues of ρ1 and the lower entries are
the eigenvalues of ρ2, each in descending order. To obtain Γ̃j+1 we have to multiply
u1 and u2 with φ̃ in a proper way. As we have argued φ̃ has the same structure
as φ in (2.31), but we can make row and column permutations similar to the ones
performed in (2.32) and call the result again φ̃. Then we may write

φ̃ =


φ̃00 0 0 φ̃03
0 φ̃11 0 0
0 φ̃21 0 0
0 0 0 0

 , (2.37)

where all entries are blocks, each composed of four blocks from (2.31). With this we
can conclude

Γ̃j+1,k =

 1
λj,0

[
(u1)† φ̃00

]k 1
λj+1,0 0

0 1
λj,1

[
(u0

2)† φ̃11 + (u1
2)† φ̃21

]k 1
λj+1,1

 (2.38)

and

Γ̃j+1,M+k =
0 1

λj,0

[
(u1)† φ̃03

]k 1
λj+1,1

0 0

 , (2.39)

where we have adopted the notation from the split of u1 and u2 for the λ’s and the
products of u and φ̃. Alternatively, one could also use the density matrix for right
block in the same way. This block structure ensures particle number conservation for
one particle type throughout the simulation and also reduces the computational effort
due to the smaller matrix dimensions dim(ρ1) < dim(ρ2) = 1

4dim(ρL). One has to be
careful when choosing the cutoff for the density matrix eigenvalues, or alternatively
the maximal bond dimension, because one of the blocks may have eigenvalues orders
of magnitude larger than the other, but both need to be taken into account. A
possible solution is to use a fixed cutoff multiplied with the trace of the respective
density matrix.

2.3. The optimal basis
The TEBD is an efficient algorithm for slightly entangled systems, where the MPS
representation with a small bond dimensionD is sufficient for a good approximation of
the state |ψ(t)〉. But for bosonic degrees of freedom also the cubic scaling in the local
Hilbert space dimension d has to be considered. Therefore, we combine the TEBD
with a local basis optimization (LBO), which was already successfully combined with
ground state methods [25, 26] and, recently, also with a time-dependent variational
principle for MPS to study the spin-boson model [38]. The basic idea is to use the
eigenbases of the single-site reduced density matrices instead of the bare bases, which
is similar to DMRG, with the difference that we are not looking at bonds, but at
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(a)

Γ1 λ1 Γ2 ΓL

d✛ ✲ d ✲

(b)

Γ1
O λ1 Γ2

O ΓL
O

R1 R2 RL

d✛ ✲ d ✲

dO✛ ✲ dO ✲

FIG. 2.1.: Graphical representation of the MPS (a) in the original TEBD algorithm and in
the TEBD-LBO algorithm. From Ref. [33].

sites. We call this the optimal basis as it allows us to reduce the dimension of a site
efficiently by discarding those eigenstates with the lowest weights. To implement the
local basis optimization in our TEBD algorithm we have to add a few more steps
to the local updates, since the optimal states and their weights can both change
significantly during time evolution [27], which makes it necessary to compute them
in every time step.
Assume that you know the MPS in the optimal basis8 and build the matrix φO

analogously to (2.24) with components

(φO)r,s =
[
λj−1ΓjOλjΓ

j+1
O λj+1

]
r,s
, (2.40)

where r = {α1, fj} and s = {α2, fj+1} are the composite indices for the optimal
basis. In the next step we go back to the bare basis, because applying the time
evolution operator in the optimal basis has some disadvantages. The Hamiltonian
would have to be recalculated in every time step for every bond and also loose its
sparseness, leading to O(d4dO) basic operations to transform the Hamiltonian into the
optimal representation and O(D2d4

O) operations to act with H on φO. Furthermore,
the occupied and unoccupied site do not have the same optimal basis, which makes a
mixing of their phonon states, caused by the hopping term of the Hamiltonian, more
involved and doubles the size of the optimal basis during these steps. Therefore, a
change of the basis is more efficient at this point.
As can be seen in Fig. 2.1, the relation between optimal and bare basis is

Γj,kj =
∑
fj

Rj
kj ,fj

Γj,fjO , (2.41)

where the R matrices contain the optimal modes represented in the bare basis. Hence,
φ is given by

φx,y =
∑

fj ,fj+1

Rj
kj ,fj

Rj+1
kj+1,fj+1

(φO)r,s , (2.42)

where we need O(D3d2
O) basic operations for φO and O(D2d2dO) for φ. Applying

8This is usually the case at the start of the simulation when using a simple initial state like the
phonon vacuum.
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2. Time-evolving block-decimation with local basis optimization

the time evolution operator to obtain φ̃ can then be done exactly as in the unmodi-
fied TEBD algorithm. The new optimal modes are the eigenstates of the single-site
reduced density matrices

ρjkj ,k′j
=∑

α1,y

φ̃x,y(φ̃x′,y)† =

λj−1

α1

Γj λj Γj+1 λj+1

α2

k′j

U

kj+1

kj

U

λj−1 Γj λj Γj+1 λj+1

(2.43)

and

ρj+1
kj+1,k′j+1

=∑
α2,x

(φ̃x,y′)†φ̃x,y =

λj−1

α1

Γj λj Γj+1 λj+1

α2kj

U

k′j+1

U

kj+1

λj−1 Γj λj Γj+1 λj+1

, (2.44)

which take O(D2d3) basic operations to be determined and additional O(d3) opera-
tions to be diagonalized. The modes are stored in the matrices R̃j and R̃j+1 and are
then used to transfer to the new optimal basis with

(φ̃O)r,s =
∑

kj ,kj+1

φ̃x,y(R̃j)†kj ,fj(R̃
j+1)†kj+1,fj+1

. (2.45)

The remaining steps of the local update can be done efficiently in the optimal basis.
In particular the calculation and diagonalization of the block density matrix now scale
as O(D3d3

O), which is much faster than in the original algorithm, given that dO < d.
At the end of the update we obtain the Γ’s in the optimal representation. Hence,
they can directly be used in the next update.

In addition to the above mentioned extra steps in the local updates we also made
a further separation of the Hamiltonian into H = He + Ho + Hs−s, where Hs−s
contains all the terms that act only on a single site. The second order Trotter-Suzuki
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step
O

TEBD TEBD-LBO
φ D3d2 D3d2

O +D2d2dO

φ̃ D2d2 D2d2

ρL,R D3d3 D3d3
O

Γ’s D3d2 D3d2
O

ρj,j+1 0 D2d3

φ̃O 0 D2d2dO

total D3d3 D2d3 or D3d3
O

Table 2.1.: A comparison of the TEBD with and without local basis optimization. The
scaling for the most important steps for a homogeneous system with Dj = D, dj = d,
∀j ∈ {1, ..., L} is given. For ρL,R and ρj,j+1 this means the overall scaling of the computation
of the matrix and the diagonalization.

decomposition of U then reads

U(t) = e−iHe
τ
2 e−iHs−s

τ
2 e−iHoτ e−iHs−s

τ
2[

e−iHeτ e−iHs−s
τ
2 e−iHoτ e−iHs−s

τ
2
] t
τ
−1
e−iHe

τ
2 +O

(
τ 2t
)
.

(2.46)

The time evolution operator of a single site acts directly on the R matrices, which,
together with our Taylor expansion of U , results in a scaling of O(d dO) for a local
update. This is negligible compared to the cost for a two site update.
Using the optimal basis implies choosing another two cutoffs. The number of opti-

mal states cannot exceed the number of bare states, but it can be further constrained.
Also a cutoff for the magnitude of the single-site reduced density matrix eigenvalues
may be chosen. For the purpose of testing this method and compare it to other results
we use the following cutoffs: all block density matrix eigenvalues with λi < 10−15 and
optimal modes with weight smaller than 10−13 are discarded. The local Hilbert space
dimension of site j is increased if the probability to find the current maximal number
of phonons on that site is wj > 10−7. The dimensions D, d and dO usually converge
at some point and we do not use an additional restriction to the maximal number of
kept states. For time steps τ = 5·10−4 these cutoffs provide accurate results, but they
can be adapted to achieve better performance. Especially the bond dimension is usu-
ally larger than needed and can be reasonably restricted without loosing noteworthy
precision if one has some intuition about the entanglement in the system.
The TEBD-LBO yields a better scaling than the original TEBD algorithm if dO � d

and D � 1. In this case we gain an overall factor of D, i.e. we reduce the scaling from
O(D3d3) to O(D2d3) as can be seen in table 2.1. As a first example Fig. 2.2 shows
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2. Time-evolving block-decimation with local basis optimization
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FIG. 2.2.: The relative error in the phonon number of TEBD-LBO with various optimal
basis sizes and bare basis TEBD as reference for a large tight-binding lattice with one site
coupled to Holstein phonons. The large errors for t < 20 arise from the fact that the total
phonon number there is still smaller than the accuracy of the algorithm. For the red and
blue curve we find no significant deviation from the bare basis results, although dO is an
order of magnitude smaller than d.

that for the kind of system studied in Ch. 4 the difference in size between the optimal
basis and the bare basis can be an order of magnitude, while both simulations show
the same precision.
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3. Relaxation of a highly excited
electron in the Holstein model

The first application for the TEBD-LBO method is the relaxation of a highly excited
electron by interaction with phonons in the one-dimensional Holstein model. The
interaction of electrons and lattice vibrations (phonons) is a complex issue, which
is studied for many decades. One interesting aspect is the polaron formation, that
was first mentioned by Landau [39], where the presence of a valence electron causes a
displacement of the neighboring ionic crystal particles from their equilibrium position,
which induces a potential that binds the electron [40]. These phonon excitations will
then follow the electron (if it escapes the potential) as it moves through the crystal
and together they form a quasi-particle called the polaron. While keeping the polaron
formation in mind, our main focus lies on the distinct dynamics of the electron and
phonon degrees of freedom, respectively.
This investigation was a joint project with Florian Dorfner, Lev Vidmar and Fabian

Heidrich-Meisner from the Ludwig-Maximilians-Universität München and some of the
presented results were published in Ref. [27]. For our studies we use the Holstein
model, where tight-binding electrons are linearly coupled to phonons with frequency
ω0. The Holstein Hamiltonian [41] for open boundary conditions in second quantiza-
tion reads

H = Hkin +Hph +Hcoup ,

= −t0
L−1∑
j=1

(
c†jcj+1 + c†j+1cj

)
+ ~ω0

L∑
j=1

b†jbj − γ
L∑
j=1

(
b†j + bj

)
nj ,

(3.1)

where c†j(b
†
j) and cj(bj) are the creation and annihilation operators for spinless elec-

trons (phonons) on lattice site j, respectively, and nj = c†jcj is the electron number
operator. The hopping integral t0 serves as the energy unit throughout this thesis and
we use natural units, i.e. we set ~ = 1, so that the phonon frequency ω0 has also the
dimension of an energy. The lattice sites are assumed to be equidistant with lattice
constant a = 1. The strength of the interaction between electrons and phonons is
given by the coupling constant γ, but in some cases it is more appropriate to use
g = γ

ω0
or εb = γ2

ω0
as the model parameter (see Sec. 3.1).

The electronic termHkin describes a tight-binding model, which can be diagonalized
analytically with a discrete Fourier transform for PBC’s. Also for OBC’s we get the
result Hkin = −2t0

L∑
n=1

cos(kn)d†kndkn with kn = nπ
L+1 , n ∈ {1, 2, ..., L} with a similar

transformation [42] (see Sec. B). Thus the kinetic energy of an electron always lies in
the band −2t0 < Ekin < 2t0. The single-particle eigenstate of Hkin with the highest
eigenenergy is a convenient choice as the initial state of a time evolution which we
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3. Relaxation of a highly excited electron in the Holstein model

FIG. 3.1.: Sketch of the decay of a highly excited electron, caused by the interaction with
phonons. The electron kinetic energy starts at the top of the tight-binding band and is then
reduced every time a phonon gets excited. From Ref. [27].

use throughout this chapter if not otherwise specified. Therefore, we have

|ψ(t = 0)〉 = d†kL |∅〉e⊗|∅〉p =
√

2
L+ 1

L∑
j=1

sin
(

L

L+ 1πj
)
c†j |∅〉e⊗|∅〉p (3.2)

with the maximal electronic kinetic energy Ekin(t = 0) = 〈ψ(t = 0)|Hkin|ψ(t = 0)〉 =
−2t0 cos

(
L
L+1π

)
and phonon vacuum |∅〉p. This state can be initialized with the

scheme presented in Sec. 2.1 and is well suited for studying the energy transfer from a
highly excited electron to phonons and possibly resulting relaxations [27]. A sketch of
this process is shown in Fig. 3.1. Adding more electrons to the system would also yield
interesting new results, but for the purpose of studying electron-phonon interaction
one electron is sufficient. For an appropriate choice of the Hamiltonian parameters,
also the local Hilbert space dimension can be large enough to have d � dO, where
the advantages of the TEBD-LBO method are apparent.
The Holstein model is very complex and the behaviour of the system can change

greatly for different parameter regimes. Therefore, limiting cases are studied in the
next sections and analytical results are given if possible to compare with the numerical
outcomes. In Sec. 3.4 we study the crossover of the different parameter regimes.
One example of this can be seen in Fig. 3.2, where the TEBD is checked against
another numerical method, namely the diagonalization in a limited functional space
(LFS) [43]. The perfect agreement of both methods can be considered as a strong
argument for the accuracy of both methods even for long time simulations. This allows
us to use TEBD results obtained with the bare basis as a reference for comparisons
with TEBD-LBO results. However, the main results of [27] were obtained with the
LFS method, as the local basis optimization was not fully operational at that time.
The LFS is a very efficient method for these systems because it builds up the number
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3.1. Single-site system
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FIG. 3.2.: The phonon energy for γ = ω0 = t0 calculated with the LFS method and TEBD
without local basis optimization. Even for long times both algorithms show good agreement.
From Ref. [27].

of states to the needed extent, depending on the Hamiltonian parameters, during the
time evolution while maintaining the advantages of an ED method. The TEBD-LBO
results presented in Sec. 3.4 are in good agreement with the LFS studies of Ref. [27]
and show how to adapt them to open boundary conditions. Finally, in the last section
of this chapter the weights of the optimal modes for ground states and time evolved
states are analyzed.

3.1. Single-site system
The special case of a Holstein Hamiltonian for a lattice with just one site is exactly
solvable by diagonalization, which brings the Hamiltonian into the form of a harmonic
oscillator. For one lattice site there is no hopping term and the Hamiltonian is simply

H = ω0b
†b − γ(b† + b), (3.3)

assuming one electron on the site. By introducing the operators

a = b− γ

ω0
, a† = b† − γ

ω0
(3.4)

we can rewrite the Hamiltonian as

H = ω0 a
†a− εb, (3.5)

with εb = γ2

ω0
. Thus the eigenenergies are En = nω0 − εb, for n ∈ {0, 1, 2, ...}. The

ground state is defined by a |0〉a = 0, where we use the subscript to distinguish the
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3. Relaxation of a highly excited electron in the Holstein model
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FIG. 3.3.: (a) The ground state and two lowest lying excited states for ω0 = 10 and γ = 10.
(b) The ground state, first and ninety-fifth excited state for ω0 = 0.2 and γ = 1.9.

two different bases for the phonon system. The phonon number states are defined
by b†b |n〉b = n |n〉b, whereas the Hamiltonian eigenstates fulfill a†a |n〉a = n |n〉a for
n ∈ {0, 1, 2, ...}. To express the Hamiltonian ground state in the phonon number
basis we insert the definitions (3.4) into the defining equation, which reads

a |0〉a = (b− g) |0〉a = 0, (3.6)

with g = γ

ω0
. This means the ground state of the Hamiltonian is the eigenstate of the

phonon annihilation operator with eigenvalue g. Hence,

|0〉a = e−
g2
2 egb

† |0〉b , (3.7)

which is known as a coherent state. The excited states can be calculated by repeatedly
acting with (b† − g) on the ground state (3.7). Figure 3.3 shows some examples of
eigenstates expressed in the phonon number basis for the anti-adiabatic and adiabatic
strong-coupling regime.
The initial state for our numerical simulations is the tensor product of a highly

excited electronic state and the phonon vacuum. In the single-site system the time
evolution of this state is given by

|ψ(t)〉 = e−it(ω0a
†a−ε

b
) |0〉b = e−

g2
2 +iε

b
t
∞∑
n=0

(−g)ne−iω0tn

√
n!

|n〉a , (3.8)
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3.2. Short-time dynamics

where we have inverted Eq. (3.7) to write the phonon vacuum state in the Hamiltonian
eigenbasis

|0〉b = e−
g2
2 e−ga

† |0〉a = e−
g2
2

∞∑
n=0

(−g)n√
n!
|n〉a . (3.9)

With Eq. (3.8) we can easily compute time dependent expectation values such as the
phonon energy Eph(t) = ω0 〈ψ(t)|b†b|ψ(t)〉. The phonon number operator is

b†b = a†a+ g(a† + a) + g2 (3.10)

and by using the orthonormality relation for the Hamiltonian eigenstates 〈m|n〉a a =
δmn one obtains

Eph(t) = ω0e
−g2

∞∑
n,m=0

(−g)n+me−iω0t(n−m)
√
n!m!

〈m|a†a+ g(a† + a) + g2|n〉a a

= γe−g
2

 ∞∑
n=1

g−1g2n

(n− 1)! +
∞∑
n=0

(−g)2n+1eiω0t

n! +
∞∑
n=1

(−g)2n−1e−iω0t

(n− 1)!

+ εb

= γe−g
2
[
geg

2 + (−g)eg2
e−iω0t + (−g)eg2

eiω0t
]

+ εb

= 2εb
[
1− cos

(
ω0t

)]
.

(3.11)

For other initial states |ψ(0)〉 = |n〉b the phonon energy is just increased by nω0.
The results in this section can also be used as a zero order expansion for the anti-
adiabatic limit t0 � ω0. When there is no electron hopping, the system behaves like
L uncoupled sites, each with a constant expectation value of the electron number
operator.

3.2. Short-time dynamics
The dynamics for arbitrary chain lengths L are much more involved than for a single
site. Nevertheless, we can estimate time-dependent expectation values for arbitrary
L for short times tη � 1, where η is the largest of t0, ω0, γ , which are all of the same
order of magnitude in the numerically most challenging cases. The expectation value
〈ψ(t)|X|ψ(t)〉 of the operator X can be expanded into a power series in t. We use
the Baker-Campbell-Hausdorff formula in the Heisenberg picture to obtain

〈ψ(t)|X|ψ(t)〉 =
〈
eiHtXe−iHt

〉
=

〈 ∞∑
n=0

1
n! [iHt,X]n

〉

= 〈X〉+ it 〈[H,X]〉 − t2

2
〈[
H, [H,X]

]〉
+O

(
t3
)
,

(3.12)

where 〈...〉 denotes the expectation value in the initial state. We study the energy
transfer from the electron to the phononic degrees of freedom and, thus, we compute
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3. Relaxation of a highly excited electron in the Holstein model

the expectation values (3.12) for X being Hkin, Hph and Hcoup, respectively. Starting
with the kinetic energy, we compute the first order commutator

[H,Hkin] = [Hcoup, Hkin] = γ
L−2∑
j=0

(b†j + bj − b
†
j+1 − bj+1)(c†jcj+1 − h.c.). (3.13)

This term has obviously a vanishing expectation value for an initial state that con-
tains no phonons. Furthermore, we can neglect Hkin and Hph for the second order
commutator for the same reason, as both terms conserve the phonon number. Thus,
only

[
Hcoup, [Hcoup, Hkin]

]
= −γ2

L−2∑
j=0

(b†j + bj − b
†
j+1 − bj+1)2(c†jcj+1 + h.c.) (3.14)

yields a non-vanishing contribution to the expectation value. We conclude

Ekin(t) = 〈Hkin〉 −
t2

2
〈[
Hcoup, [Hcoup, Hkin]

]〉
+O

(
t3
)

= Ekin(0)
[
1− γ2t2

]
+O

(
t3
) (3.15)

as the short-time approximation for the kinetic energy. This means that at the
beginning of the interaction the electron transfers energy to the phononic degrees of
freedom if the kinetic energy is positive. For Ekin(0) < 0 the electron gains energy,
although there are no phonons that could be absorbed, which means that the coupling
energy has to fall off rapidly to compensate for the increases in both the kinetic and
phonon energy. Right in the middle of the tight-binding band the kinetic energy
vanishes and so does the leading term of its time derivative.
We repeat the above procedure for X = Hph, where again the first order commutator

[H,Hph] = [Hcoup, Hph] = −γω0

L−1∑
j=0

c†jcj
(
bj − b

†
j

)
(3.16)

and all second order terms except

[
Hcoup, [Hcoup, Hph]

]
= −2γ2ω0

L−1∑
j=0

c†jcj (3.17)

have vanishing expectation values and, thus, the phonon energy is

Eph(t) = ω0γ
2t2 +O

(
t3
)

(3.18)
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FIG. 3.4.: The energies on a small time scale calculated with TEBD-LBO compared to the
analytic results of perturbation theory. On a chain of length L = 7 with t0 = γ = 1 the
electron is initially in an eigenstate with Ekin(0) = ω0 =

√
2.

with our choice of |ψ(0)〉. The coupling energy is completely determined by commu-
tators, that we have already used above and can thus be written as

Ecoup(t) = −t
2

2
〈[
Hcoup, [Hkin, Hcoup]

]
+
[
Hcoup, [Hph, Hcoup]

]〉
=

(
Ekin(0)− ω0

)
γ2t2 +O

(
t3
) (3.19)

without further calculations. Like the kinetic energy, this function can be either
positive or negative depending on the phonon frequency ω0 and the initial conditions.
Also for Ekin(0) = ω0 the coupling energy is constantly zero in leading order, which
corresponds to a direct energy transfer from the electron to the phonon system1. This
can be seen in Fig. 3.4, where the increase of Eph(t) and decrease of Ekin(t) are orders
of magnitude larger than the growth of the coupling energy.
The total energy E(t) = Ekin(t) +Eph(t) +Ecoup(t) = Ekin(0) is conserved and the

second order approximation of (3.11) coincides with (3.18), which means that these
results are also consistent with the exact formula for the single-site system.

3.3. Perturbation theory
For limiting cases, where one parameter η ∈ {t0, ω0, γ} of the Holstein Hamiltonian
is much smaller than the other two, we can use perturbation theory to get analytical

1Since the phonon frequency ω0 is always positive, Ekin(0) = ω0 can only hold for Ekin > 0, where
the electronic energy decreases at the beginning of the interaction.
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3. Relaxation of a highly excited electron in the Holstein model

results for the different energies in the system. The general scheme obtained in this
section is applied to the case of the kinetic energy in the anti-adiabatic limit. The
Hamiltonian may be written as H = H0 + ηH1. If η is small enough it is convenient
to expand the time evolution operator

U(t) = e−i(H0+ηH1)t = U0(t) + ηU1(t) + η2U2(t) +O
(
η3
)

(3.20)

in powers of η and determine U0, U1 and U2 by taking the limit of infinitely many
small time slices

e−i(H0+ηH1)t = lim
τ→0

t/τ∏
m=1

e−i(H0+ηH1)τ = lim
τ→0

t/τ∏
m=1

[1− i(H0 + ηH1)τ ]

= lim
τ→0

t/τ∏
m=1

[
e−iH0τ − iηH1τ

]
.

(3.21)

Inserting Eq. (3.21) into the definition (3.20) and equating the coefficients, we can
identify

U0(t) = e−iH0t, (3.22)

U1(t) = −i
t∫

0

dt1 e−iH0(t−t1)H1e
−iH0t1 , (3.23)

U2(t) = −
t∫

0

dt1
t−t1∫
0

dt2 e−iH0(t−t1−t2)H1e
−iH0t1H1e

−iH0t2 , (3.24)

which yields the leading orders in η of the time evolution. The time-dependent
expectation value X(t) of an operator X is given by

X(t) =
〈
U †0 X U0

〉
+ η

〈
U †1 X U0 + U †0 X U1

〉
+ η2

〈
U †1 X U1 + U †2 X U0 + U †0 X U2

〉
+O

(
η3
)
,

(3.25)

where we have omitted the t for the time evolution operators and 〈...〉 is again the
expectation value in the initial state. Of course X can also depend on η, as can be
seen in the following example.
In the case of finite t0 � ω0, γ we can use the zeroth-order term of (3.25) to get

the first-order result for the time evolution of the kinetic energy. Our initial state
is again the tensor product of the phonon vacuum and an electronic eigenstate with
eigenvalue −2t0 cos(K). Thus the kinetic energy is

Ekin(t) = 〈ψ(0)|eiH0tHkine
−iH0t|ψ(0)〉 , (3.26)

where H0 = Hph + Hcoup and the time evolution of the phononic degrees of freedom
is given by Eq. (3.8). The term e−iH0t |ψ(0)〉 is a superposition of states with one
completely localized electron and the single-site phonon state on the same site. The
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3.3. Perturbation theory
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FIG. 3.5.: The kinetic energy calculated with TEBD-LBO compared to Eq. (3.29) (black
solid). Both simulations were carried out with L = 8 and ω0 = γ = 1. While there is
perfect agreement for t0 = 0.001 (red dotted), we see only qualitatively the same behaviour
for t0 = 0.05 (blue dashed).

single electron hopping terms in Hkin separate the localized electrons from the time
evolved phonon states. Therefore, the kinetic energy is given by

Ekin(t) = −2t0 cos(K)
∣∣∣ 〈0|b e−it(ω0a

†a−ε
b
) |0〉b

∣∣∣2 , (3.27)

where −2t0 cos(K) = 〈ψ(0)|Hkin|ψ(0)〉 is the initial kinetic energy. To evaluate the
scalar product we have to write (3.8) in the boson number basis. By inserting (3.4)
and (3.9) we get

e−it(ω0a
†a−ε

b
) |0〉b = e−

1
2g

2+itε
b e−g(t)a† |0〉a

= e−
g2
2 +itε

b e−g(t)(b†−g) e−
g2
2 egb

† |0〉b
= e−g[g−g(t)]+itε

be[g−g(t)]b† |0〉b ,

(3.28)

with g(t) = ge−iω0t. In this form the vacuum part of the state is easily identified and
the kinetic energy can be concluded to

Ekin(t) = −2t0 cos(K)e−2g2[1−cos(ω0t)] . (3.29)

Figure 3.5 shows the good agreement of this formula with the TEBD results. Even for
large times (in terms of the phonon frequency) the analytic first order approximation
is very accurate if the hopping integral t0 is three orders of magnitude smaller than
the other energy scales. As can also be seen in Fig. 3.5, the validity of (3.29) is
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3. Relaxation of a highly excited electron in the Holstein model

really restricted to this limit and Ekin(t) is more involved in general. Other solutions
of (3.25) can be obtained for periodic boundary conditions using momentum space,
as done in [27].

3.4. Relaxation dynamics
Away from the limiting cases we observe smooth transitions between the different
regimes. While in the anti-adiabatic regime the electron can only transfer a part
of its energy for a finite time to phonons before reabsorbing it, the energy transfer
becomes permanent in the adiabatic regime. Also from weak to strong coupling
we find different energy transfers between the electron and phonon sector. In the
crossover regimes the dynamics are composed of the individual cases.
To analyze the influence of the adiabaticity ratio ω0

t0
it is convenient to choose

intermediate e-p coupling, so that the dynamics are noticeably influenced by the e-
p interaction but not dominated by strong coupling effects. Figure 3.6 shows how
the time evolution of the electron kinetic energy changes with deceasing ω0

t0
smoothly

from oscillation dominated to relaxation dominated for different coupling strengths
γ and chain lengths L. The reason for this crossover is that in the anti-adiabatic
case the electronic excess energy is insufficient to create a phonon excitation, because
ω0 > 4t0 cos(kL) and, therefore, the dynamics are dominated by the single-site e-p
interaction, while in the adiabatic case phonons can be created permanently. The
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FIG. 3.6.: The electron kinetic energy as a function of time calculated with TEBD-LBO
is shown for different chain lengths and coupling strengths. The phonon frequencies are
ω0 = 1.0 (purple solid), ω0 = 1.5 (black dashed), ω0 = 2.0 (blue dotted), ω0 = 5.0 (red
dashed-dotted).
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3.4. Relaxation dynamics

time t = τrel of the first local minimum of the kinetic energy can be viewed as
the relaxation time. During this period energy is transferred from the electron to
the phononic degrees of freedom, while afterwards there is no net energy transfer
averaged over long times. This is called the steady state regime. The relaxation
time increases for decreasing ω0

t0
, which is partly due to the greater loss of kinetic

energy and as Fig. 3.6 implies, also because the kinetic energy falls off more rapidly
in the anti-adiabatic case. Furthermore the relaxation time increases with the number
lattice sites (compare Fig. 3.6(a) and (d)), but decreases with the coupling strength
(compare Fig. 3.6(a), (b) and (c)).
A similar crossover can be found for the phonon energy. In Fig. 3.7 the time

evolution of Eph
γ

is shown for the same system parameters as the kinetic energy in
Fig. 3.6. For given ω0 the maximal phonon energy is mainly determined by the
coupling strength γ, which is why all curves in Fig. 3.7 that correspond to the same
phonon frequency and system length L have similar height. The time evolution
mirrors that of the kinetic energy qualitatively, but the oscillation amplitudes in the
steady state regime are larger, because there is still an exchange between phonon
and coupling energy. However in the adiabatic regime these amplitudes are small
compared to the mean phonon energy of the steady state. In [27] it was shown that for
stronger coupling the phonon and coupling energy oscillate with a higher amplitude
in the stationary regime, but in Fig. 3.7(c) one can see that some amplitudes are
smaller, in relation to the mean value, than for weaker coupling. These results are,
however, not contradicting, because what is studied here is not the strong coupling
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FIG. 3.7.: The phonon energy divided by the respective coupling γ as a function of time
calculated with TEBD-LBO is shown for the same system parameters as in Fig. 3.6. The
phonon frequencies are ω0 = 1.0 (purple solid), ω0 = 1.5 (black dashed), ω0 = 2.0 (blue
dotted), ω0 = 5.0 (red dashed-dotted).
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3. Relaxation of a highly excited electron in the Holstein model

regime in the sense of λ > 1. The largest γ appearing in Fig. 3.7 is γ = 1.0, which
corresponds to λ = 0.5, i.e. the weakest coupling considered in the crossover study
in [27]. The results of Fig. 3.6 and Fig. 3.7 show that weak e-p coupling can also
lead to larger oscillation amplitudes in the steady state regime, when the adiabaticity
ratio ω0

t0
is too large for a full relaxation (ω0 > t0 in our case).

The time unit is ~/t0, which depends on the material. To compare the relaxation
time scale to time-resolved spectroscopy experiments we can assume t0 ≈ 0.3 eV as
used in Ref. [44] as a typical value for cuprates. This leads to ~/t0 ≈ 2.2 fs and
relaxation times 15 fs < τrel < 45 fs, which is comparable to measured time scales of
relaxation experiments [44, 45, 46].

3.5. Optimal modes
The TEBD-LBO algorithm outperforms the TEBD with bare basis only if dO � d,
but this is not true in general. For many of the above calculations we find relations
like d ≈ 2dO. As a matter of fact the optimal basis is not as effective for time evolution
algorithms as it is for ground state methods. The reason is that the entanglement
entropy, which is usually small for ground states and also for our initial states, can
grow rapidly with time, depending on the parameters. Figure 3.8 compares the
weights of the optimal modes for time evolved states and ground states for the same
set of parameters. Although the weights are decaying exponentially in all cases (at
least for a great part of the spectrum), the decay is much slower for the time evolved
state. This means a much larger number of optimal modes is needed for a good
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FIG. 3.8.: Comparison of the weights w̃α, where α numbers the optimal states, of ground
state calculations and time evolution. These results were obtained by Florian Dorfner with
LFS for ω0 = t0 and L = 12 for λ = 0.5 and L = 8 for λ = 2, 4.5. The weights from the time
evolution are taken where the phonon energy has its first local maximum in the stationary
regime. From Ref. [27].
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3.5. Optimal modes

approximation of the state. This effect is not unexpected and should not be taken as
an argument against the TEBD-LBO but rather as a guideline to find systems where
the optimal basis is much more efficient than the bare basis. An interesting example
is discussed in the next chapter and a general discussion of the performance is given
in Ch. 5.
The optimal modes can not only be used to speed up numerical simulations, but

also to gain insight into the physics of the system. In the next chapter the results
from Sec. 3.1 can be used to explain transmission resonances of an electronic wave
packet which gets scattered by an e-p coupled structure.
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4. Scattering of an electronic wave
packet by a one-dimensional
electron-phonon-coupled structure

In this chapter we investigate how an electronic wave packet with Gaussian shape is
scattered by an impurity with electron-phonon (e-p) interaction within the Holstein
model. Most of these results were published in Ref. [28] and Ref. [33]. In contrast
to the last chapter we now consider the case of a tripartite one-dimensional lattice.
A small e-p coupled structure of LH sites in the middle of the lattice with two non-
interacting tight-binding leads of length LTB � LH attached at both sides. The
Hamiltonian for the whole lattice reads

H = −t0
L−1∑
j=1

(
c†jcj+1 + c†j+1cj

)
+

LTB+LH∑
j=LTB+1

[
~ω0 b

†
jbj − γ

(
b†j + bj

)
nj
]
, (4.1)

with L = LH + 2LTB and otherwise the same notation as in the last chapter. The
length of LH varies between a single-site (impurity) and up to 100 sites (wire). Unlike
in previous studies [47, 48] we do not insert the electronic wave packet directly into the
e-p coupled structure. Instead it is inserted in the left lead in the form of a Gaussian
distribution with momentum towards the e-p coupled structure. Depending on the
system parameters the wave packet can be scattered into several smaller, transmitted
or reflected, wave packets with various velocities. One example of this setup and
resulting electron density distributions for later times are shown in Fig.4.1. The
initial state

|ψ(t = 0)〉 =
L∑
j=1

ψjc
†
j |∅〉e⊗|∅〉p , (4.2)

is the tensor product of the phonon vacuum and the electronic wave function

ψj =
√

a

σ
√

2π
e−

a2(j−j0)2

4σ2 +iKja , (4.3)

which is a Gaussian wave packet with width σ, mean value j0 and momentum K.
The variance σ2 = 25a2, which is much larger than the lattice constant a, provides
a stable wave packet even for long simulations. The initial center of the electronic
wave packet is always at j0 = LTB − 10σ

a
, which is in the left lead with a sufficient

distance to the e-p coupled structure. The momentum is chosen as K = π
2a , such that

the initial velocity v ≈ 2 t0a~ sin(Ka) takes its maximal value vmax ≈ 2 a
~/t0 . The total

energy is

E = Ekin(t) + Eph(t) + Ecoup(t) = Ekin(0) = −2t0 cos(Ka) ≈ 0, (4.4)
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electron-phonon-coupled structure

 0

 0.1

 0.2

 0  80  160  240  320  400  480  560

n
j(
t)

j

 t·t0 = 0
 t·t0 = 28
 t·t0 = 150  0.1

 0.2

270 280 285 295

FIG. 4.1.: The electronic density distribution calculated with TEBD-LBO for a 6-site e-p
coupled wire with phonon frequency ω0 = 2.25t0/~ and electron-phonon coupling γ = t0 at
three instances of time: before (red solid line), during (black dots), and after (blue dashed
line) the main scattering processes. The index 1 ≤ j ≤ L = 560 numbers the lattice sites.
The red solid and blue dashed curves are multiplied by factors 2 and 10, respectively. The
inset shows an enlarged view of the region around the e-p coupled wire. Thin vertical lines
show the position of the first and last e-p coupled sites. From Ref. [28].

which corresponds to the middle of the electronic tight-binding band −2t0 ≤ E ≤ 2t0.
All of these initial values were used for all numerical simulations presented in this
chapter. They provide a fast moving and stable initial wave packet.
For the simulations in this chapter we have used up to d = 2∗386 bare boson states

and dO = 21 optimal states, while using a cutoff of 10−13 for the eigenvalues of the
single-site reduced matrices, which guarantees precise results at the cost of sometimes
unnecessarily large optimal bases. For the case of one e-p coupled impurity site, there
is always only one optimal boson state for the occupied impurity, because the tight-
binding leads are in the vacuum state. Also the bond dimension fulfills D ≈ dO
after the electron has left the impurity. For simulations with more than one e-p
coupled site bond dimensions up to D = 84 were reached with a cutoff of 10−15 for
the eigenvalues of the bipartite reduced density matrices. The bond dimension of the
initial state 4.2 is D = 2. We know from the last chapter that the ratio g = γ/(~ω0)
and the length of the chain LH

1 are the crucial parameters for the computational
time of a simulation. While they naturally determine the number d of bare boson
states and the number of sites with large local Hilbert space, respectively, they both
also influence the amount of bipartite entanglement in the system and thus the bond
dimension D. Therefore, we are limited to a few e-p coupled sites (LH ≤ 6) for
general couplings or the weak-coupling regime for long e-p coupled structures. The
total number of sites 180 ≤ L ≤ 580 and the maximal time 60~/t0 ≤ tmax ≤ 150~/t0
are chosen such that the electronic density on the e-p coupled structure is negligibly

1Note that the length LTB of the tight-binding leads is irrelevant for the computational time of
the simulation, because the updates for non-interacting sites take an amount of time negligible
compared to the time for interacting sites.
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4.1. Scattering theory

small at t = tmax and neither the reflected nor the transmitted waves are influenced
by the outer edges of the tight-binding leads. The required memory is below 2 Gb,
and therefore negligible, in all simulations presented in this chapter but the CPU time
is a real limiting factor as it goes up to 150 hours for a single simulation in the most
demanding regime.
We investigate time dependent expectation values such as the phonon energy Eph(t)

and the electronic density distribution nj(t) = 〈ψ(t)|nj|ψ(t)〉 as well as asymptotic
expectation values like the transmission coefficient and dissipated energy, i.e. energy
that is permanently transferred from the electron to the phonon system. The param-
eters which vary throughout the next sections are (i) the length of the e-p coupled
structure LH . We provide an extensive analysis of the special case of a single impu-
rity, including an analytically solvable scattering theory that correctly reproduces all
asymptotic expectation values. Additionally, results for wire lengths up to LH = 100
are discussed. (ii) The phonon frequency ω0 varies from the adiabatic (~ω0 � t0)
to the anti-adiabatic (~ω0 � t0) regime. In the latter case, the phonon system re-
acts instantaneously to the presence of the electron. For small enough frequencies
permanent energy transfer from the electron to the phonon system, dissipation, can
occur. With the chosen parameters the frequency has to fulfill ~ω0 . 2t0, so that the
initial electronic kinetic energy is greater than the energy of one phonon. (iii) The
e-p coupling γ is the last system parameter to investigate. We look at the asymp-
totic expectation values as functions of γ for specific LH and ω0. We find resonance
conditions with sharp peaks in the anti-adiabatic regime, which blur with decreasing
phonon frequency and vanish in the adiabatic limit.
In the remainder of this chapter we use the energy scale t0 = 1, lattice spacing

a = 1 and ~ = 1. Therefore, the time unit is again ~
t0

= 1, but we write t·t0 at
the time axes in the the figures as a reminder. We give a detailed description of the
scattering theory for a single e-p coupled site in Sec. 4.1 and the method to generalize
this theory to incident Gaussian wave packets is presented in Sec. 4.2. The results of
the numerical simulations are discussed in Sec. 4.3 for the transmission and reflection
coefficients, in Sec. 4.4 for the dissipated energy, and in Sec. 4.5 for the transient
self-trapping of the electron on the e-p coupled structure.

4.1. Scattering theory
In the case of a single-site impurity it is possible to gain analytical results by the use
of scattering theory. From the stationary scattering states we obtain the asymptotic
expectation values, which should coincide with our TEBD results if the following
conditions hold: (i) LTB − j0, j0 � σ. The initial position of the wave packet should
be sufficiently far away from the e-p coupled structure and the outer edge of the left
tight-binding lead. (ii) σ > π/K. The width has to to be large enough to provide
a wave packet that resembles a Gaussian distribution (in real space) with negligible
dispersion. (iii) nj(tmax)� 1, ∀ j ∈ {LTB+1, ..., LTB+LH}. The probability that the
electron is still on the e-p coupled structure has to vanish before the final expectation
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4. Scattering of an electronic wave packet by a one-dimensional
electron-phonon-coupled structure

values are measured.

We want to solve the time-independent Schrödinger equation for the Hamilto-
nian (4.1) with LH = 1. We shift the lattice site index such that the e-p coupled
impurity corresponds to j = 0 and j ∈ {−L/2, ..., L/2}. The stationary scattering
state can be written as

|ψ〉S =
∑
j,n

ψ(j, n) |j〉e⊗|n〉p , (4.5)

with n = 0, 1, ...,∞ being the (bare) phonon mode index. Inserting (4.5) into the
time-independent Schrödinger equation E |ψ〉 = H |ψ〉 we obtain

for |j| ≥ 1 : Eψ(j, n) = nω0ψ(j, n)− t0ψ(j − 1, n)− t0ψ(j + 1, n) (4.6)

and

for j = 0 : Eψ(0, n) = nω0ψ(0, n)− t0ψ(−1, n)− t0ψ(1, n)
− γ
√
nψ(0, n− 1)− γ

√
n+ 1ψ(0, n+ 1) .

(4.7)

For an incident plane wave coming from the left with wave number π > K > 0 and
no initial phonon excitations the stationary scattering state can be written as

ψ(j, n) =

AeiKjδn0 +Bne
−iknj, j ≤ 0

Cne
iknj, j ≥ 0 ,

(4.8)

with k0 = K. The amplitudes Bn and Cn correspond to the reflected and transmitted
plane waves for a given phonon number n. Energy conservation implies

E = −2t0 cos(K) = nω0 − 2t0 cos(kn) , (4.9)

which can be inverted to obtain the wave numbers

kn =


arccos

(
nω0−E

2t0

)
, n < nB

iarcosh
(
nω0−E

2t0

)
, n ≥ nB ,

(4.10)

where nB is defined as the smallest number n for which nω0 > 2t0[1 − cos(K)].
Outgoing scattering states exist only for nB > n ≥ 0 while states with n ≥ nB are
bound around the impurity. Using the uniqueness of the wave function at j = 0 we
get the conditions

A+B0 = C0

Bn = Cn, ∀ n ≥ 1.
(4.11)

This means that the amplitudes for reflected and transmitted plane waves are equal
for a given number of phonon excitations n ≥ 1. This result is also supported by the
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4.1. Scattering theory

TEBD-LBO simulations for the Gaussian wave packet. Using (4.8) in (4.7) we obtain

E (A+B0) = − t0 (Ae−ik0 +B0e
ik0)− t0 C0e

ik0 − γC1 , for n = 0 (4.12)
E C1 = nω0Cn − t0 Cne

ikn

− t0 Bne
ikn − γ

√
nCn−1 − γ

√
n+ 1Cn+1 , for n ≥ 1

(4.13)

where we can substitute E and Bn with (4.9) and (4.11), respectively, to get an
infinite system of recursive linear equations

0 = 2i t0 (C0 − A) sin(k0) + γ C1 (4.14)
0 = 2i t0 Cn sin(kn) + γ

√
nCn−1 + γ

√
n+ 1Cn+1 , (4.15)

which can be solved recursively using a computer algebra system, e.g. Mathematica.
The normalization of the quantum state requires Cn → 0 for n → ∞, which we
implement by choosing a cutoff nc with an exponentially small value for Cnc and
Cn = 0 for all n > nc. If nc is large enough, the solution neither depends on nc
nor the choice of Cnc . With this we can calculate stationary properties like the
transmission coefficient

T (K) =
nB−1∑
n=0

vn
v0

∣∣∣∣CnA
∣∣∣∣2 =

nB−1∑
n=0

sin(kn)
sin(k0)

∣∣∣∣CnA
∣∣∣∣2 , (4.16)

where vn = 2t0 sin(kn) is the velocity of a wave packet with wave number kn, which
corresponds to an electron that has excited n phonons permanently, and K = k0 is
the incident wave number.
In the anti-adiabatic limit ω0 � t0 the large phonon energy implies nB = 1, hence

the transmission coefficient is just T (K) =
∣∣∣C0
A

∣∣∣2. In this case an analytical solution
for the transmission coefficient can be found for an electronic energy

E = Em = −εb +mω0 , (4.17)

that coincides with an eigenenergy of the single-site Holstein model. In the anti-
adiabatic limit equation (4.10) can be rearranged to get

2t0 sin(k0) =
√

4t0 − E2
m (4.18)

2it0 sin(kn) = −
√

(Em − nω0)2 − 4t20 ≈ −nω0 + Em, ∀n ≥ 1 . (4.19)

With this the equation system (4.14) and (4.15) reduces to

0 = i
√

4t20 − E2
m(C0 − A) + γ C1 (4.20)

0 = (Em − nω0)Cn + γ
√
nCn−1 + γ

√
n+ 1Cn+1, ∀n ≥ 1 , (4.21)

where we identify Eq. (4.21) as the eigenvalue equation of the shifted harmonic os-
cillator in Sec. 3.1 with the difference that n ≥ 1. If we follow this analogy and
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assume this equation also to hold for n = 0, i.e. 0 = EmC0 + γC1, and insert this into
Eq. (4.20), we get

0 = i
√

4t20 − E2
m

(
C0

A
− 1

)
− Em

C0

A
⇔ C0

A
= 1

1− Em

i
√

4t20−E2
m

, (4.22)

which implies

T (K) =
∣∣∣∣C0

A

∣∣∣∣2 = 4t20 − E2
m

4t20
. (4.23)

This corresponds to a high transmission rate, because our incident wave packet is
centered around E = 0. The energy Em is also the eigenenergy of the e-p coupled
site occupied by an electron and disconnected from the leads. For this reason we call
(4.17) the resonance condition.

4.2. Wave packet averaging

The results of the last section, such as equation (4.16), are valid for a plane wave
with a sharp wave number K. The initial state of our numerical simulations is an
electronic wave packet with a Gaussian distribution of finite width in Fourier space.
With a discrete Fourier transform of (4.3) we get

F [ψ](k) =

√√√√
σ

√
2
π
e−σ

2(k−K)2−ij0(k−K) , (4.24)

where the prefactor is chosen so that F [ψ](k − K) is normalized if we treat k as a
continuous variable. This is justified by the fact that we consider the limit of infinitely
long tight-binding leads L → ∞. The distribution (4.24) provides the weights to
properly average results like (4.16) for comparison with our TEBD-LBO simulations.
Although we consider it as a continuous variable we cannot integrate over k, since
T (k) has to be calculated through the costly solution of the equation system for every
k. Therefore, we approximate the integral by a Riemann sum

T av(K) = ∆k
∑
m

|F [ψ] (m∆k)|2T (m∆k) , (4.25)

with intervals of length ∆k = π
2 · 10−2. The number and size of steps are chosen such

that
∆k

30∑
m=−30

|F [ψ] (m∆k)|2 = 1−O(10−6) , (4.26)

which is sufficient for a very good agreement with TEBD results for different param-
eter regimes, as can be seen in the next sections.
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FIG. 4.2.: Time evolution of the numerical transmission coefficient (4.27) calculated with
TEBD-LBO for various cases: free particle (red solid line), e-p coupled impurity (LH = 1)
in the adiabatic strong-coupling regime with ω0 = 0.2 and γ = 1.9 (blue dotted line) as
well as with ω0 = 0.6 and γ = 3.9 (purple dashed line), and e-p coupled structure in the
intermediate regime (ω0 = 1.6 and γ = 1.85) with one site (black dashed-dotted line) and
three sites (grey double-dashed line), respectively. The center of the wave packet reaches
the first e-p coupled site at time t ≈ (LTB − j0)/v ≈ 25 in all cases. From Ref. [28].

4.3. Transmission

One expectation value that we can determine both within the scattering theory and
in the TEBD-LBO simulations is the transmission probability of the electron. In
this section we discuss our results for this quantity for all parameter regimes. For
our TEBD-LBO simulations of Gaussian wave packets we define the transmission
coefficient as the asymptotic value of the total electronic density in the right lead

TN(t) =
∑

j>LTB+LH
nj(t) . (4.27)

Figure 4.2 shows how TN(t) converges in different parameter regimes. The expectation
values at the maximal time t = tmax, when the simulation ends, e.g. tmax = 60
in Fig 4.2, are taken as the asymptotic results. At the maximal time, if it is well
chosen, the probability to find the electron on an e-p coupled site is negligible small,
hence the electronic densities both on the left and the right lead have converged.
Therefore, we define the transmission coefficient for a TEBD-LBO simulation of a
Gaussian wave packet as the value T = TN(tmax) at the maximal time tmax. The wave
packet starts LTB − j0 = 50 sites left of the e-p coupled structure with a velocity
v = vmax = 2 so that we do not expect any noticeable interaction or transmission
before t = (LTB − j0 − 4σ)/v ≈ 15. In the case of a free wave packet (γ = 0) TN(t)
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FIG. 4.3.: (a) Transmission coefficients calculated using TEBD-LBO (lines) and with scat-
tering theory and wave packet averaging (symbols) for an e-p coupled impurity (LH = 1).
Results are plotted as a function of the electron-phonon coupling γ for the adiabatic regime
ω0 = 0.4 (grey solid line and triangles), the intermediate regime ω0 = 1.35 (blue dotted
line and squares), and the anti-adiabatic regime ω0 = 10 (red dashed line and dots). For
ω0 = 10, γ is divided by a factor 10. (b) Components |〈ψ|n〉|2 of the occupied-site optimal
mode |ψ〉 in the bare boson basis |n〉 calculated with TEBD-LBO for ω0 = 10 and γ = ω0
(red solid line) as well as γ =

√
2ω0 (blue dashed line). Also shown are the first (circles) and

second (triangles) excited states of the single-site Holstein model occupied by one electron.
From Ref. [28].

converges at t = (LTB − j0 + 4σ)/v ≈ 35 for a single e-p coupled impurity site. For
longer e-p coupled structures this time is extended by t+ = LH/v but for interacting
systems we can only estimate the maximal time needed with the help of empirical
knowledge.
In Fig.4.3(a) we compare the transmission coefficients from the TEBD-LBO sim-

ulations with those obtained using the scattering theory and wave packet averaging
for an e-p coupled impurity. The results are in perfect agreement in all parameter
regimes, which verifies again the accuracy of our TEBD-LBO method and also shows
that the transmission coefficients (4.25) and (4.27) are well defined. We see sharp
maxima and minima of the transmission coefficient as a function of the e-p coupling
strength γ in the anti-adiabatic regime in Fig. 4.3(a). Their positions agree with the
resonance condition (4.17), i.e. γ =

√
mω0 with m = 0, 1, ...,∞, because E = 0 is the

average energy of the incident electron in our simulations.
In agreement with our considerations for the anti-adiabatic limit, we find that the

optimal mode for the occupied impurity is practically constant during the simulation
of the scattering process in this regime. As we have argued, only one eigenvalue of the
single-site reduced density matrix has a finite weight for the impurity occupied by the
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electron. In the case of transmission resonances the optimal mode for the occupied
impurity coincides with an eigenstate of the single-site Holstein model. We know from
Sec. 3.1 that the eigenenergies of the single-site Holstein model are Em = mω0 − εb
and Fig. 4.3(b) shows that the respective eigenstates are indeed the ones with energy
Em = 0. For the first and second peak, at γ = ω0 and γ =

√
2ω0, respectively,

the quasi-stationary modes are essentially the first and second excited state of the
single-site Holstein model with the same phonon frequency and e-p coupling strength.
We can formulate this as a general result for a single e-p coupled impurity site in the
anti-adiabatic regime: for the transmission resonance at γ =

√
mω0 the optimal mode

for the occupied impurity coincides with the eigenstate |m〉a of the single-site Holstein
model with H |m〉a = Em |m〉a and Em = mω0 − γ2/ω0 = 0 = Ekin(t = 0).
The high transmission rate at these couplings can be explained as follows. During

the passage of the electron, the impurity changes between the no-electron eigenstate
and the one-electron eigenstate with the same energy and in the anti-adiabatic regime
the phonon degrees of freedom react almost instantaneously to the presence of the
electron. This causes a resonant tunneling as indicated at the end of Sec. 4.1. This
is also true for larger structures LH > 1.
For smaller phonon frequencies, we find smaller oscillations of the transmission co-

efficient as a function of the e-p coupling strength, with vanishing amplitude in the
adiabatic limit, as shown in Fig.4.3(a). As the phonons do no longer react instanta-
neously to the presence of the electron, the optimal mode for the occupied impurity
is no longer (quasi-)stationary, but evolves in time, although it may still approach an
eigenstate of the single-site Holstein model for a finite period. Furthermore, dissipa-
tion is possible for smaller phonon frequencies and Eq. (4.11) implies that a scattered
electron, that has transferred a part of its energy to the phonon system, is transmitted
and reflected with equal probability.
Figure. 4.4(a) shows the transmission coefficient in the anti-adiabatic regime for

different lengths of the e-p coupled structure. We find the same resonances for all
values of LH . Around the peak at ω0 = γ = 10 the transmission coefficients in the
figure are slightly too small, because the probability that the electron is still trapped
on the e-p coupled structure at t = tmax is increasing with LH . Nevertheless, this
error is smaller than 2 ·10−2. The self-trapping time of the electron for such multi-
site e-p coupled structures is investigated in Sec. 4.5. The transmission coefficient is
decreasing with increasing wire lengths LH , as one would expect2, for a great part
of the shown e-p couplings γ, but, interestingly, in the weak coupling regime γ < ω0

2
this is not the case. We cannot explain why the transmission coefficient can have a
maximum for some LH > 1 for some couplings.
The optimal modes are more involved for LH > 1 than for a single impurity site.

The single-site reduced density matrix has more than one eigenstate with a finite
weight for an occupied e-p coupled site, since the remaining lattice is not necessarily
in the vacuum state. Hence, even in the anti-adiabatic limit the phonon state can vary

2The fraction of the electronic wave packet that is transmitted through the first site of the e-p
coupled wire can be reflected by the next one and so forth.
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FIG. 4.4.: (a) Transmission coefficients calculated with TEBD-LBO in the anti-adiabatic
regime (ω0 = 10) as a function of the electron-phonon coupling γ for several e-p coupled wire
lengths: LH = 1 (red dashed-dotted line), LH = 2 (blue dashed line), LH = 3 (black dotted
line) and LH = 4 (grey solid line). (b) Components |〈ψ|n〉|2 of the two most important
optimal modes |ψ〉 for a site occupied by an electron in the bare boson basis |n〉 calculated
with TEBD-LBO for LH = 2 and ω0 = γ = 10 at two points in time: First (red solid line)
and second (orange dashed line) optimal modes at t = 25 and first (gray dotted line) and
second (blue dashed-dotted line) optimal modes at t = 75. Also shown are the ground state
(circles) and first excited state (squares) of the single-site Holstein model occupied by one
electron. From Ref. [28].

significantly with time, because the relative weights of the optimal modes may change.
This can be seen in Fig. 4.4(b) where we show the most important phonon states for
a two-site e-p coupled structure with ω0 = γ = 10. Around t ≈ 25, where the center
of the electronic wave packet arrives at the e-p coupled structure, the optimal modes
with the highest weights are the first excited state of the single-site Holstein model
for an occupied site and the phonon vacuum for an empty site, respectively. This is
analogous to the case of a single impurity. There is, however, a difference arising from
the emergence of the additional optimal modes. With a small but finite probability
the electron gets trapped on the e-p coupled structure for a large time t > 150. In this
long period, when the scattering process is mostly completed, both e-p coupled sites
are in another phonon state. The highest weight for an occupied e-p coupled site has
the ground state of the single-site Holstein model, while for an empty site the bare
mode with one phonon has the second highest weight3. These two states together
fulfill the condition EGS + E1 = 0. Therefore, we can explain why the transmission
resonances have the same positions in the anti-adiabatic regime and which optimal

3The optimal mode with the highest weight for an empty site is the phonon vacuum, because at
this time the electron is with a high probability far away from the e-p coupled structure.
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4.3. Transmission

modes are the most relevant. However, we cannot predict the time evolution of their
weights or the transmission maxima and minima outside the anti-adiabatic regime.

Although we see in Fig. 4.4(a) that the transmission does not decrease systemat-
ically with increasing wire length LH in every regime, we can expect this behaviour
in the weak-coupling adiabatic regime, where the phonon system reacts very slowly
to the presence of the electron. Assuming that the phonon state does not deviate
significantly from the vacuum state during the scattering, the transmission coefficient
for an e-p coupled structure with LH > 1 can be calculated as a series of independent
single-site scattering processes. The reflection coefficient for an e-p coupled impurity
R(LH = 1) = 1 − T (LH = 1) can be obtained either with a TEBD-LBO simulation
or with scattering theory. Hence, we express the reflection coefficient R(LH) for an
e-p coupled wire of length LH in terms of R(1). As a first step we deduce the formula
for LH = 2. The electron can be either reflected directly by the first e-p coupled site
or it is transmitted in and out of the structure through the first e-p coupled site with
an odd number of reflections in the intervening time

R(2) = R(1) + T (1)2
∞∑
n=0

R(1)2n+1 = R(1) + T (1)2R(1)
∞∑
n=0

[
R(1)2

]n
. (4.28)

Since |R(1)2| < 1 for all parameters, the geometric series converges. The reflection
coefficient for LH = 2 is then

R(2) = R(1) + [1−R(1)]2R(1)
1−R(1)2 = 2R(1)

1 +R(1) , (4.29)

where we have used T (1) = 1 − R(1). The same can be done for an e-p coupled
structure with LH = 3 by considering the first two sites as one big site with reflection
given by (4.29) and by iteration it is possible to determine R(LH) for arbitrary wire
length LH . The closed formula

R(LH) = LHR(1)
1 + (LH − 1)R(1) (4.30)

can be proven by induction. As the induction basis one can use either LH = 1, which
is trivial, or LH = 2, what was already proven in (4.29). To conclude the proof we
have to show that (4.30) holds for LH + 1 assuming that it holds for LH . Considering
that the 2n + 1 reflections within the structure are composed of n reflections on the
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FIG. 4.5.: Reflection coefficient R(LH) calculated with TEBD-LBO as a function of the
electron-phonon coupling γ in the weak-coupling adiabatic regime (ω0 = 0.6) for e-p coupled
wires of length LH = 2 (crosses), LH = 6 (squares), and LH = 11 (circles). The lines show
the predictions of scattering theory for an e-p coupled impurity combined with Eq. (4.30)
for R(2) (red solid line), R(6) (blue dotted line), and R(11) (purple dashed line). From
Ref. [28].

composite big site on the left and n+ 1 reflections on the right site, we get

R(LH + 1) = R(LH) +
[
1−R(LH)

]2
R(1)

∞∑
n=0

[
R(1)R(LH)

]n

=
R(1) +R(LH)

[
1− 2R(1)

]
1−R(1)R(LH)

=
R(1)

[
1 + (LH − 1)R(1)

]
+
[
1− 2R(1)

]
LHR(1)

1 + (LH − 1)R(1)− LHR(1)2

= (LH + 1)R(1)
1 + LHR(1) .

(4.31)

Figure 4.5 shows good agreement of (4.30) and TEBD-LBO simulations for wire
lengths up to LH = 11. During the derivation of (4.30) we have used that the single-
site reflection is constant, but (4.25) holds only for the vacuum as the initial phonon
state. Therefore, we clearly need weak coupling and a slow reaction of the phonon
system to the presence of the electron, so that the phonon states of the e-p coupled
sites do not change significantly during the scattering process.
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4.4. Dissipation

In the case of large e-p coupled structures LH � 1 the transmission coefficient

T (LH) = 1−R(LH) = 1−R(1)
1 + (LH − 1)R(1) = T (1)

LH
[
1− T (1)

]
+ T (1)

(4.32)

is inversely proportional to the length of the e-p coupled wire. In particular (4.32) is
strictly monotonically decreasing with increasing LH for all 0 < T (1) < 1 and LH ≥ 0
and, therefore, the surprising maxima of the transmission coefficient for e-p coupled
structure lengths LH > 1 for some couplings in Fig. 4.4(a) cannot be explain with the
above considerations. This illustrates that weak-coupling is not sufficient for (4.30)
because we have g ≈ 3

10 in the relevant part of Fig. 4.4(a) whereas g . 1
3 in Fig. 4.5.

Outside the adiabatic weak-coupling or anti-adiabatic regime the TEBD-LBO sim-
ulations become very costly for multi-side e-p coupled structures. Both the bond
dimension D and number of optimal modes dO are larger for, otherwise, equal system
parameters. Due to the existence of more than one site with large local Hilbert space
the block entanglement, and therefore D, can be much higher. In particular D is
no longer upper bounded by dO. The number of optimal modes required for an e-p
coupled site is larger solely from the fact that the remaining lattice is not necessarily
in the vacuum state as it was in the impurity case. Additionally, the electron can
be trapped on the e-p coupled structure for a much longer (see Sec. 4.5). For these
reasons the discussion of the transmission coefficient is restricted to LH = 1, weak-
coupling or the anti-adiabatic regime. Although not enough for a comprehensive
study, we have some results for LH > 1 that suggest a behaviour of the transmission
as a function of γ, which is similar to that in the impurity case, in all parameter
regimes.

4.4. Dissipation
The total energy (4.4) is a constant of motion, which is given by the initial electronic
excess energy. After the scattering process the electron is again far away from the
e-p coupled structure (see Sec. 4.5), so that the e-p interaction energy vanishes and
no energy can be transferred from the electron to the phononic degrees of freedom
or vice versa. We define the dissipated energy ED as the loss of kinetic energy or
equivalently as the gain of phonon energy at t = tmax. The time evolution of the
phonon energy

Eph(t) = ω0
∑
j

〈ψ(t)|b†jbj|ψ(t)〉 (4.33)

is illustrated in Fig. 4.6. We see that the time when (4.33) converges depends strongly
on the system parameters, but this is obviously the same time that the total electronic
density on the right lead (4.27) converges and, therefore, our simulation time is chosen
sufficiently large. For a single e-p coupled impurity site the phonon energy has a
maximal value that increases monotonically with the coupling strength γ for a given
frequency ω0. The dissipated energy, however, has no such monotonic behavior. As
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FIG. 4.6.: Phonon energy calculated with TEBD-LBO as a function of time. (a) For an e-p
coupled impurity with ω0 = 1.35 and three electron-phonon couplings γ = 0.8 (red solid
line), γ = 1.45 (blue dotted line), and γ = 1.8 (black dashed line). (b) For a four-site e-p
coupled structure in the intermediate regime (ω0 = 1.6, γ = 1.85) the phonon energies are
shown separately for the first (red crosses), second (blue squares), third (black bullets), and
fourth (gray triangles) site. From Ref. [28].

can be seen in Fig. 4.6(a) the phonon energy may retain its maximal value or drops
down to a, possibly, much lower value.
For e-p coupled structures with LH > 1 the phonon energy can evolve completely

differently on every site, as shown in Fig. 4.6(b). Due to the reflections inside the
e-p coupled structure the phonon energy Eph(t) can have several local maxima. In
this example the phonon energy is much higher on the first site compared to the rest
of the wire, because a part of the electron is already reflected at the first site and
the part of the electronic wave packet, which is transmitted through the first site,
has already transferred some of its energy to the phonon system. Therefore, it is less
likely to observe a permanent energy transfer on the other e-p coupled sites. The
total amount of dissipated energy is upper bounded by the initial excess energy of
the electron, which means ED < 2 in our TEBD-LBO simulations. Each phonon has
an excitation energy ω0, hence there is no dissipation for phonon frequencies ω0 & 2.
In these cases phonons can be excited transiently, but they are reabsorbed before the
electronic wave packet leaves the e-p coupled structure. We see in Fig. 4.6 that the
percentage of phonons, which are only transiently excited, varies greatly for systems
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FIG. 4.7.: The phonon energy divided by the electronic density on the impurity nH for a
wave packet with LH = 1 and ω0 = 10. (a) The normalized phonon number with a small
offset for the electron density as a function of time for γ = 4.3 (red solid line), γ = 5.3
(blue dotted line) and γ = 6.3 (black dashed line). (b) The normalized phonon number
at t1 = 25, i.e. in the middle of the scattering process, as a function of g2 (red solid line)
compared to the mean phonon number 2g2 (black dashed line) for the single-site Holstein
model.

with dissipation.
There are two effects that mainly determine the time evolution of the phonon energy

during the scattering process. The phononic degrees of freedom of an occupied site
evolve in time according to (3.11) as for the single-site Holstein model, which is
thoroughly discussed in Sec. 3.1. These results were obtained for a site with n =〈
c†c
〉

= 1, but during a scattering process the amount of occupation of an e-p coupled
site changes and this also directly affects the phonon energy. This can be illustrated
in the case of phonon frequencies ω0 that are large compared to the hopping integral
t0, where the phonon state of an e-p coupled impurity is nearly constant during the
passage of an electronic wave packet. In Fig. 4.7(a) we divide the phonon number
by the electronic density on the impurity and find a smeared step function for this
normalized phonon number as a function of time. We have added the small value
10−4 to the electronic density to avoid freakish behavior caused by the division of
two values smaller than the numerical error. Figure 4.7(b) shows that the height of
the steps, i.e. the constant value the normalized phonon number attains during the
scattering process, is increasing as a function of g2 with an oscillation with increasing
amplitude. The mean phonon number 2g2 of the single-site Holstein model with
one electron serves as an approximate lower boundary, where the normalized phonon
number attains this value when the resonance condition g2 = m, m ∈ N is fulfilled.
This effect shows how the dynamics of the electron influence the phononic degrees of
freedom.
One effect of the inverse kind can only be seen in the adiabatic regime, where the
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FIG. 4.8.: TEBD-LBO results for the electronic density nj(t) as a function of lattice site
j and time for an e-p coupled impurity (LH = 1) at j = 90 with e-p coupling γ = 2.5 and
phonon frequency ω0 = 1.65. The thin lines illustrate the theoretically calculated velocities
v0 = 2 sin(k0) (purple solid) and v1 = ±2 sin(k1) (green dashed and dotted).

energy of one phonon is smaller than the electronic excess energy, which means that
dissipation is possible. When phonons are excited permanently in a scattering event
the velocities of the corresponding partial wave packets are reduced. Figure 4.8 shows
how the electronic density evolves in time with a clear splitting into transmitted and
reflected part at the e-p coupled structure. Both partial wave packets get further
divided into a part with the same absolute velocity as the initial wave packet and
another part with velocity v1 = ±2 sin(k1), which is in accordance with the picture of
an inelastic scattering process, where one phonon with frequency ω0 remains excited
on the e-p coupled structure. Energy conservation (4.9) implies that the asymptotic
electron kinetic energy is given by lim

t→∞
Ekin(t) = −2 cos(kn) for n < nB permanently

excited phonons. This leads to group velocities vn = ±2 sin(kn) for the corresponding
partial wave packets. The results illustrated in Fig. 4.8 also support the implication
of Eq. (4.11) that in case of energy dissipation the electron gets transmitted and
reflected with equal probability. How much energy gets dissipated for a certain set of
parameters is, however, a sophisticated issue.
To understand this non-monotonic behavior of the dissipated energy, we examine

the case of a single-site e-p coupled impurity. Figure 4.9 shows the dissipated energy as
a function of the e-p coupling γ for different frequencies. We see similar oscillations
with vanishing amplitude in the adiabatic limit as for the transmission coefficient.
Within the scattering theory we have computed the coefficients Cn of the electronic
state, where n states the number of phononic excitations. We have argued that only
a finite number of these coefficients contributes to the transmission and reflection,
while the rest corresponds to bound states, which would violate energy conservation

58



4.4. Dissipation

 0

 0.2

 0.4

 0.6

 0.8

 0  0.5  1  1.5  2  2.5

E
D

γ

FIG. 4.9.: Dissipated energies calculated using TEBD-LBO (symbols) and with scattering
theory and wave packet averaging (lines) for an e-p coupled impurity (LH = 1). Results are
plotted as a function of the electron-phonon coupling γ for the adiabatic regime ω0 = 0.4
(grey solid line and triangles), the intermediate regime ω0 = 0.9 (blue dotted line and
squares), and close to the limit of the non-dissipative regime ω0 = 1.5 (red dashed line and
dots). From Ref. [28].

if the electron were far away from the impurity. The good agreement of scattering
theory results and TEBD-LBO simulations of Gaussian wave packets in all parameter
regimes indicates that each term vn

v0

∣∣∣Cn
A

∣∣∣2 of the stationary scattering state (4.16) really
corresponds to the probability to find a transmitted electron with n permanently
excited phonons for an incident plane wave. Consequently, the dissipated energy can
be written as

ED(K) = 2ω0

nB−1∑
n=1

n
vn
v0

∣∣∣∣∣CnA
∣∣∣∣∣
2

= 2ω0

nB−1∑
n=1

n
sin(kn)
sin(k0)

∣∣∣∣∣CnA
∣∣∣∣∣
2

, (4.34)

where the factor 2 originates from the condition Bn = Cn for n > 0. To compare
(4.34) with our TEBD-LBO data we have to follow the the procedure of Sec. 4.2 and
average over the Gaussian distribution as in (4.25). The perfect agreement of both
approaches in Fig. 4.9 confirms that the dissipated energy can indeed be determined
with the scattering theory. In the anti-adiabatic regime ED = 0 holds, which can also
be seen in (4.34) because nB = 1 in this case and, hence, the sum has no summands.

The overall behaviour of the dissipated energy in Fig. 4.9 is very similar to that
of the transmission coefficient in Fig. 4.3(a). Although the oscillation frequencies do
not coincide in general, we find that the dissipated energy ED(K) is proportional to
the reflection coefficient R(K) = 1 − T (K) in the special case of 1 < ω0 < 2. For
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these phonon frequencies nB = 2 and thus

R(K) =
∣∣∣∣∣C0 − A

A

∣∣∣∣∣
2

+ sin(k1)
sin(k0)

∣∣∣∣∣C1

A

∣∣∣∣∣
2

=
∣∣∣∣∣ −γC1

2i sin(k0)A

∣∣∣∣∣
2

+ sin(k1)
sin(k0)

∣∣∣∣∣C1

A

∣∣∣∣∣
2

=
(

1 + γ2

4 sin(k0) sin(k1)

)
sin(k1)
sin(k0)

∣∣∣∣∣C1

A

∣∣∣∣∣
2

,

(4.35)

where condition (4.11) and equation (4.14) are used to write the reflection first in
terms of the Cn and finally to eliminate C0. The dissipated energy is given by

ED(K) = 2ω0
sin(k1)
sin(k0)

∣∣∣∣∣C1

A

∣∣∣∣∣
2

, (4.36)

which can be inserted into (4.35) to obtain

ED(K) = 2ω0R(K)
1 + γ2

4 sin(k0) sin(k1)

. (4.37)

Such a simple relation can only be found for this special case.
As for the transmission coefficient the study of longer e-p coupled structures is not

as extensive as for the impurity case, but if we restrict to the weak-coupling regime,
where the local Hilbert space dimension and bond dimension are comparatively small,
we can go to very large e-p coupled structures. In Fig. 4.10(a) and (b) results are
shown for LH = 100 in the anti-adiabatic and adiabatic regime, respectively. In the
anti-adiabatic case the shape of the Gaussian wave packet is nearly conserved during
the process and the phonons follow the electron as for the polaron problem, mentioned
at the beginning of Ch. 3. When viewing the electron and phonon cloud as a polaron,
the reduced velocity on the e-p coupled structure, compared to an electron on a
tight-binding lead, can be explained with an increase of the effective mass. For the
adiabatic regime we find the phonons trailing the electron with finite densities of both
particle types remaining on the e-p coupled structure for t > 100. The greater part
of the electronic density is transmitted and still resembles a Gaussian wave packet
at the end of the simulation and the velocity has not changed during the scattering
process. Further, we find only single phonon excitations on the e-p coupled sites with
smaller probability for sites more to the right.
As for the transmission coefficient we have some results for multi-site e-p coupled

structures with larger coupling strengths that indicate a behavior of the dissipated
energy similar to the one shown in Fig. 4.9. Also for ω0 < 1 the dissipated energy
and reflection coefficient seem to be related, but not as simple as shown above for
1 < ω0 < 2, where both quantities are proportional. In addition, the transmission
coefficient and dissipated energy have been studied for different initial wave numbers
k0 within the scope of a bachelor thesis [49] by Kyle Poland. The results show that
both quantities can vary significantly with the wave number. New resonances become
apparent in this study, but a more thorough investigation is needed to understand
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FIG. 4.10.: The electron (nj , red) and phonon (Nj , blue) densities calculated with TEBD-
LBO are compared for times t1 = 28 (solid), t2 = 50 (dashed) and t3 = 76 (dotted). The
gray line shows the electron density of a free wave packet at t = t3. The e-p coupled
structure has length LH = 100 and begins at j = 120. All phonon densities are multiplied
by a factor 10. (a) The anti-adiabatic weak-coupling regime is shown with ω0 = 2.9 and
γ = 0.25. (b) The adiabatic weak-coupling regime is shown with ω0 = 0.2 and γ = 0.1. The
electron density at t3 = 76 is finite on all e-p coupled sites.

their physical meaning. These results were obtained for a single e-p coupled site
and agreement with the scattering theory was found for wave numbers not to far
away from π/2. Interestingly, the agreement was much better for the transmission
coefficient than for the dissipated energy.

4.5. Transient self-trapping
In the previous sections we have seen that the interaction of the electronic wave
packet with the phononic degrees of freedom can lead to a transient self-trapping
on the e-p coupled structure. For example the quantities TN(t) and Eph(t) may
converge at clearly distinct times for different system parameters. For long e-p coupled
structures it takes naturally more time, compared to a single-site e-p coupled impurity,
for the electronic wave packet to pass through. This additional time is given by
∆t ≈ (LH − 1)/v. This effect is not related to a localization of the electron and,
therefore, does not describe a self-trapping, but it has to be kept in mind, e.g. when
comparing the lengths of the plateaus in Fig. 4.2. We have identified two different
mechanisms that can cause a transient self-trapping of the electron on the e-p coupled
structure.
In Fig. 4.11(a) the electronic density nj(t) on a single-site e-p coupled impurity is

compared with the phonon energy Eph(t) in the system. We see that a great part of
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FIG. 4.11.: (a) Electronic density on the e-p coupled impurity (red solid line) and phonon
energy (blue dashed line) calculated with TEBD-LBO as a function of time for LH =
1, ω0 = 0.20, and γ = 1.90. The electron density is multiplied by a factor 10. The black
dotted line shows Eq. (4.38) with toff = 24, Eoff = 0.12, and a constant average density
nj(t = 40) = 0.0116. (b) Electronic densities (multiplied by a factor 100) calculated with
TEBD-LBO as a function of time on the left (red line) and right (blue dots) sites of a
two-site e-p coupled structure with ω0 = γ = 10. From Ref. [28].

the electronic density is transmitted through, or reflected by, the impurity on a time
scale ∆t ≈ 15, which is comparable to the time that it takes a wave packet (with
width σ = 5 and velocity v = 2) to pass a site without interaction. However, a small
fraction remains on the e-p coupled impurity for a long time. This can be understood
by examining the phononic degrees of freedom. We notice that the self-trapping time
scale ∆t ≈ 30 is similar to the period of the phonon oscillations t = 2π

ω0
= 10π. In

the single-site Holstein model the time evolution of the phonon energy is given by
Eq. (3.11) and we can generalize this equation to match it to the results of the TEBD-
LBO simulation for a Gaussian wave packet. In Sec. 3.1 we assumed that there is
always one electron on the site, but clearly this is not the case with the tight-binding
leads attached to the e-p coupled site. With the electronic density nj(t) on the e-p
coupled impurity we get

Eph(t) = 2nj(t)εb
[
1− cos

(
ω0(t− toff)

)]
+ Eoff , (4.38)

where toff and Eoff are offsets for the time and energy, respectively. As can be seen
in Fig. 4.11(a) we can reproduce the TEBD-LBO results qualitatively with fitted
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4.5. Transient self-trapping

parameters nj(t), toff and Eoff. Therefore, we can assume that the phononic degrees
of freedom evolve in the same way as for the single-site Holstein model. In the
adiabatic strong-coupling regime we find a negligible small occupation of the lower
bare states |n〉, with n < nB, for a great part of the period. During that time only the
bound states have a finite weight and the electron cannot leave the impurity without
violating energy conservation.
In Sec. 4.3 we have argued that a small fraction of the electronic wave packet can

be trapped on an e-p coupled structure with LH = 2 for a time t > 150. This
long trapping has to be caused by another mechanism, because the one discussed
above is negligible in the anti-adiabatic regime, where the period of the phononic
degrees of freedom is small compared to the time scale of the passage of the electron
through a small non-interacting wire. This is supported by the results of the TEBD-
LBO simulations, where we see no transient self-trapping of the electron for the same
system parameters, γ = ω0 = 10, but with LH = 1.
As the resonance condition (4.17) is fulfilled, the transmission is very high, both

for the impurity and the two-site e-p coupled structure. Figure 4.11(b) shows the
electronic density on both sites of the e-p coupled structure after the scattering process
is mainly completed, i.e. 99% of the wave packet has been transmitted or reflected.
The small part that is trapped oscillates between both sites with constant frequency
and damped amplitude. The constant period corresponds to a velocity v ≈ 1

4 , which
is only about one-eighth of its initial velocity. In every period t ≈ 8 a fraction of the
electronic density leaks out into the tight-binding leads, resulting in a shrinking of
the total density on the e-p coupled structure by 30% on a time scale ∆t ≈ 90. This
is a much larger time scale than any other that we have discovered in this scattering
problem.
We know from Sec. 4.3 that, during the trapping period, the e-p coupled structure

is mainly in a state where the occupied site is in the ground state of the single-site
Holstein model, while the empty site is in the first excited bare phonon state. In the
anti-adiabatic regime no phonons can be permanently excited and thus the electron
cannot leak into the adjacent tight-binding lead, but is bound to the unoccupied e-p
coupled site. This process can be seen as a multiple reflection at the e-p coupled
structure edges, but it should not be confused with the series of independent single-
site scattering events that could be applied in the adiabatic weak-coupling regime.
The fact that a part of the electronic wave packet is transmitted or reflected imme-

diately, while the rest is transiently self-trapped and gets, possibly gradually, released
into the tight-binding leads, admits different definitions for the trapping time. So far
we only studied the time when the last partial wave packets leave the e-p coupled
structure, but one could also ask for the minimal time delay, i.e. the additional time
that the electron needs at any rate for tunneling through the e-p coupled structure. It
is tempting to define this delay by the distance between the maxima in the electronic
density distribution of a non-interacting wave packet and the rightmost partial wave
packet after the transmission. The time for the comparison has to be chosen such
that both wave packets are far away from the e-p coupled structure and the inter-
acting electron must not have dissipated some of its energy, which would result in a
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FIG. 4.12.: The rightmost part of the electronic density distributions nj(t) calculated with
TEBD-LBO at t = 60 as a function of the lattice site index j for LH = 1, ω0 = 1.35 and
several electron-phonon couplings corresponding to transmission minima at γ = 1.5 (blue
dotted line) and at γ = 2.45 (black dashed-dotted line) as well as to transmission maxima
at γ = 1.80 (orange dashed line) and at γ = 2.65 (grey double-dashed line). The vertical
black line shows the position of the maximum of the free Gaussian wave packet (red line).
From Ref. [28].

lower velocity and, hence, in an increasing time delay. However, we see in Fig. 4.12
that this definition can lead to a negative time delay. This is related to the Hartman
effect [50], which seemed to allow for tunneling times of particles through a potential
barrier that are shorter than the time that it takes the particle to travel a distance
equal to the barrier width.
It was proven for positive, compactly supported, and bounded potentials that the

probability for a particle to reach a certain point before a certain time is always re-
duced by the presence of a potential barrier [51]. Although the scattering is caused
by the interaction with dynamical degrees of freedom, Fig. 4.12 supports this result.
A transmitted partial wave packet may be centered around a point more to the right
compared to a free wave packet, but the reflection compensates for that and so for ev-
ery lattice site behind the e-p coupled structure the probability of finding the electron
on its right-hand side is reduced by the interaction.
We have observed self-trapping on time scales ∆t > 150 but permanent trapping has

never appeared in this setting. There are, however, two different parameter regimes,
where this could happen. First, the results of Sec. 3.4 indicate that for a long e-p
coupled structure in the adiabatic regime the electron might transfer all of its energy
to the phonon system, which could result in an immobile trapped electron. Second,
the above mentioned resonance case in the anti-adiabatic regime already provides the
longest self-trapping time that we have observed so far and for larger e-p coupled
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FIG. 4.13.: Analysis of the electron density on an e-p coupled structure with LH = 2 at
the resonance condition ω0 = γ. (a) Electron density normalized with the respective value
at t1 = 60 as a function of time for γ = 10 (purple dashed-dotted), γ = 20 (green short
dashed), γ = 30 (blue long dashed), γ = 40 (red dotted) and γ = 50 (black solid). (b) The
total electron density at t1 = 60 (blue squares) and the relative loss in the time interval
[t1 = 60, t2 = 120] (red bullets) as a function of ω0, with exponential fits done with gnuplot.

structures, higher phonon frequency or stronger coupling the effect might be strong
enough to bind a small fraction of the electron permanently. Unfortunately, these
regimes are hard to access with our method at this time, with the exception of the
small e-p coupled structure LH = 2 at the resonance condition (4.17) with m = 1,
which can be studied for larger phonon frequencies ω0 > 10. Figure 4.13(a) shows
how the part of the electron density that is still trapped on the e-p coupled structure
at t = 60 decreases with time. For larger frequencies ω0 the electron is trapped for a
longer time. To see if this leads to permanent trapping in the limit of infinite phonon
frequency Fig. 4.13(b) compares the electron density left on the e-p coupled structure
at t = 60 and the relative loss nH(t=60)−nH(t=120)

nH(t=60) on a logarithmic scale. The lines show
exponential fits for both curves. For permanent trapping of a finite amount of density
to appear, the red bullets would have to fall off faster than the blue squares. Instead
both exponential fits have nearly the same slope, which corresponds to a permanent
trapping only in the case of nH(t) = 0, ∀t ≥ 60. Additionally, both curves deviate
from their fits in a way that indicates convergence to a finite value, meaning that a
small part of the electron always gets trapped, but never permanently.
Studying this effect for the resonance condition (4.17) with γ =

√
mω0, m > 1

or LH > 2 naturally requires a higher numerical effort due to larger local Hilbert
spaces and bond dimensions, but also increasing ω0 while keeping γ

ω0
= 1 yields some

difficulties. The large Hamiltonian parameters necessitate a smaller time step τ in
order to keep the error on the same order of magnitude, leading to a longer time for
the simulation. A smaller time step also requires to adjust the chosen cutoffs in the
algorithm, i.e. to keep smaller eigenvalues of the block- and single-site reduced density
matrices, because the weight of newly appearing states decreases with smaller time
steps. The last obstacle to mention is that the trapped density on the e-p coupled
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structure is already below 10−3 for ω0 = 50 and the precision of the algorithm may
not suffice to treat much smaller densities reliably.
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5. Summary, conclusion and outlook
In this thesis we have presented a new method to efficiently simulate one-dimensional
electron-phonon systems with weak to strong coupling. The time-evolving block-
decimation algorithm was modified with a local basis optimization that replaces the
phonon number states by the eigenstates of the single-site reduced density matrices
of each lattice site, whose number can be reduced more efficiently. When the number
of optimal states is much smaller than the number of bare states the theoretical
scaling drops from O(D3d3) to O(D2d3). The method was applied to two different
setups within the Holstein model, namely the relaxation of a highly excited electron
by interaction with phonons and the scattering of an electronic wave packet by an
EPC structure. For most calculations the algorithm was tuned for precision rather
than performance. Nevertheless, a comparison with the TEBD without local basis
optimization can be made.

5.1. Physical results
In Ch. 3 we have given analytical results for a Holstein chain for some limiting cases
like the single-site system, short simulation times and the anti-adiabatic limit. These
were used for showing the precision of the algorithm as well as for preparing the
analysis of the crossover regimes. Here smooth transitions between the different
regimes were found. In the anti-adiabatic limit ω0 � t0 the lattice sites become
nearly uncoupled and, thus, the dynamics are governed by phonon oscillations as for
the single-site system, which is equivalent to a shifted harmonic oscillator and can
be solved analytically. For ω0 ≈ t0 the electron transfers a great part of its excess
energy to the phonons and approaches a steady state, where all three energy terms
might still fluctuate, but averaged over large times no energy transfer between the
electron and phonons is observed. The magnitude of the fluctuations in the steady
state regime depends on the e-p coupling strength, but also on the phonon frequency
as even the phonon energy approaches a nearly constant value in the adiabatic case.
The relaxation time scale is in good agreement with experimental results for similar
systems, where the e-p interaction is the leading mechanism for relaxation. In the
steady state regime the states differ greatly from the slightly entangled initial state
and, hence, the optimal modes decay much slower for such a time evolved state than
for the ground state of the same system, but still the decay is roughly exponentially,
which indicates the possible advantage of using our method.
In Ch. 4 long tight-binding leads were attached to both ends of a small Holstein

chain and an electronic wave packet was injected into the left lead with momentum
towards the EPC structure. Most of the results are for a single-site impurity, where
the scattering theory yields exact results to compare with, but for example the trans-
mission resonances in the anti-adiabatic limit were shown to be independent of the
structure length LH . The transmission coefficient as a function of the e-p coupling
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5. Summary, conclusion and outlook

γ was thoroughly investigated for LH = 1. Distinct resonances and blockades were
found for large phonon frequency ω0 while in the adiabatic regime a monotonically
decreasing curve was observed. In the weak-coupling adiabatic limit the transmission
coefficient for a multi-site EPC structure can be obtained by assuming multiple inde-
pendent single-site scattering events. This leads to T ∼ 1/LH for long wires, which
is in accordance to classical results if we imply that the electrical conductance G of
a quantum conductor is determined by its scattering properties. For example the
Landauer formula [52] G = (e2/π~)T relates the conductance and the transmission,
which in our case leads to an electrical resistance 1/G ∼ LH . Our results therefore
yield a macroscopic limit coinciding with confirmed classical results.

During the passage of the electron phonons can be created transiently or perma-
nently, depending on the adiabaticity ratio ω0/t0. On large e-p coupled structures
(LH = 100) in the anti-adiabatic weak-coupling regime the electron is nearly per-
fectly transmitted, but is slowed down by the transiently excited phonons that follow
it, which is in accordance with polaron theory. In the adiabatic weak-coupling regime,
where dissipation is possible, the electron leaves a trail of phonons, with a small den-
sity on each site, behind. For an electron that has dissipated a part of its energy we
find equal probabilities for transmission and reflection and a reduced absolute veloc-
ity due to energy conservation. The dissipated energy oscillates as a function of the
e-p coupling, which is covered by the scattering theory, but a precise relation to the
similar behavior of the transmission coefficient could only be found for single-site im-
purities with t0 < ω0 < 2t0, where ED ∼ 1−T . This result can also be combined with
the Landauer formula and would then directly relate the conductance and dissipated
energy.

The electron may pass the e-p coupled structure without noticeable time delay,
but it can also be trapped for large times. We have found two different mechanisms,
that can cause long trapping times. The first one can be observed even for LH = 1
and is solely conditioned by strong coupling. When only the higher phonon number
states with n > 2t0/ω0 have a finite weight, the electron cannot leave the e-p coupled
structure until the full oscillation of the phononic degrees of freedom is completed.
Hence the trapping time ∆t ≈ 2π

ω0
is similar to a period of the phonon oscillations.

The second mechanism can be observed for LH ≥ 2 at the transmission resonance
in the anti-adiabatic regime. The small part of the electron, that is not transmitted
immediately, gets trapped for a long time. The excess energy of the electron matches
not only one eigenenergy of the single-site Holstein model with the same parameters,
which leads to the resonant tunneling, but also a lower eigenenergy plus a phonon
excitation (or more) on a neighboring empty site. The electron is then bound by the
potential induced by this phonon. In this case the self-trapping time scale can easily
exceed ∆t > 150 but a permanent trapping was not observed.
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5.2. TEBD-LBO performance

5.2. TEBD-LBO performance
We have tested our method in two different setups and various parameter regimes.
The required memory is no limiting factor for the use of this algorithm as it was less
than 2 Gb for all presented calculations using a single core and less than 10 GB for
parallelized simulations. In the Trotter-Suzuki decomposition (2.23) each exponential
function gets further decomposed into the product e−iHe(o)τ = ∏

j
e−iH2j(+1),2j+1(2)τ of

commuting terms, which means that all of these local updates can be computed in
parallel. This is true for every TEBD implementation and is not effected by the
local basis optimization. The calculations presented in this thesis were done without
parallelization, except for a few of the latest results and some of them were carried
out on the cluster system at the Leibniz University of Hannover.
In Ch. 4 we have argued that the length of the tight-binding leads is irrelevant for

the computational time of a simulation that also includes interacting sites. A free
wave packet simulation, when the coupling is turned off (or equivalently LH = 0),
with L = 180 and t = 60 is done in 8 min. The bond dimension and local Hilbert
space dimension are kept at D = 2 and d = 2, respectively. For other systems with
the same total chain length L and simulation time t the computational time could
be much higher. For example for LH = 4 and ω0 = γ = 10 the simulation took
about 74 h with D = 51 and d = 26. Here the notion of D as the bond dimension
of the MPS is a bit misleading, because there is only one bond of this size while for
the other bonds Dj ≤ 26 holds. In fact we find Dj = 2, ∀j /∈ {87, ..., 96}, where
the EPC structure is on sites 90 ≤ j ≤ 93. Such a distribution can be expected,
because there is no dissipation for these parameters. If the electron is on either
side of a bond not connected to the EPC structure, the other side then is an empty
lattice. Next to the EPC structure the bond dimension might exceed D = 2, due to
the occurrence of states, where the electron has left the EPC structure but is still
bound to it. Another factor can be numerical artifacts arising from the small cutoff
of 10−15 that we use for the eigenstates of the block density matrices. A restriction
to larger eigenvalues has proven to be inadequate to speed up the simulations with
a controlled error. Especially for the wave packet simulations, where the electron
density is exponentially small on many sites, it is crucial not to project out too much
too early. The maximal bond dimension can be restricted more efficiently, because
this does not affect the early states. However, this does not solve the problem of the
aforementioned artifacts.
To complete the discussion we analyze a simulation with L = LH = 4, ω0 = 1.5,

γ = 5 and t0 = 1.0, which is within the strong-coupling regime. Figure 5.1 shows
the relevant information to compare the performances of the TEBD on the one side
and TEBD-LBO on the other side. In both cases we have d = 166 for the inner sites
and d = 162 for the outer sites, so we can conclude a total Hilbert space dimension
of dim(H) = 4 ·832 ·812 ≈ 1.8 ·108, which is not the largest of the presented studies,
but this system has features, that make it a good candidate for a comparison. The
bond dimension D = 30 is high enough to see the different scalings of the algorithms.
Further, this 4-site system simulates long homogeneous chains with equal local Hilbert

69



5. Summary, conclusion and outlook

 0
 100
 200
 300
 400

 0.5  1  1.5  2  2.5  3

(b)

C
P

U
 t

im
e

 [
h

]

t·t0

 0

 60

 120

 180
(a)

d
im

e
n

s
io

n

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

1

0 15 30 45 60 75

(c)

|<
ψ

|n
>

|2
n

FIG. 5.1.: Comparison of TEBD and TEBD-LBO for L = LH = 4, t0 = 1, ω0 = 1.5 and
γ = 5. (a) The local Hilbert space (red bullets) and optimal basis dimension (blue squares)
in the middle of the chain are shown. (b) The CPU time of the simulations for TEBD (red
bullets) and TEBD-LBO (blue squares) with linear fits for t ≥ 2 (solid lines, black and
purple, respectively). (c) The weights of the bare modes for an unoccupied (purple dotted)
and occupied (black dashed-dotted) site and optimal modes for an unoccupied (red solid)
and occupied (blue dashed) site. The values are taken for site j = 2 at time t = 2.5.

space dimension and bond dimension on every site and bond, respectively. This is
because the simulation time is mainly given by the time for the update of the bond
in the middle, which can be seen as follows. The most time consuming parts of both
algorithms are at least linear in both Dj−1 and Dj+1 for an update of sites j and j+1
and, thus, any update including one of the edge sites is faster by at least a factor of 30.1
The number of optimal modes has the same cutoff as the bond dimension, i.e. dO ≤ 30.
That means d ≈ 5.5 dO, which is enough to outperform the original TEBD in this
case. A further reduction of dO would have been possible without significant loss of
precision, but only at the price of a decreasing bond dimension at the outer bonds,
which would have corrupted the fair comparison. The cutoffs are chosen as 10−15

for the eigenvalues of the block density matrices, 10−7 for the weight of the highest
bare mode and 10−13 for the eigenvalues of the single-site reduced density matrices.
Figure 5.1(c) shows that even for a time evolved state the weights of the optimal
modes fall off far more rapidly than the weights of the bare modes. This verifies the
efficiency of the MPS representation in the optimal basis and Fig. 5.1(b) illustrates
how the computational time of the TEBD is affected by its use. A reduction of the
scaling by a factor of D is not achieved, which is expected because of a higher total
number of steps in a two-site update and different numerical prefactors in the most
time consuming steps. To compare both computational times we look at the period

1The bond dimension at the edges is always D(0) = D(L) = 1.
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when all dimensions have reached their maximum. As can be seen in Fig. 5.1(a) the
local dimensions do not change for t > 2 and all bond dimensions have also converged
at this point. The computational time is then a linear function of the simulation time
t and the linear fits obtained with gnuplot have gradients g1 = 299.4 and g2 = 70.8
for the TEBD and TEBD-LBO simulation, respectively. Thus, in this example, the
algorithm is faster by a factor of g1

g2
≈ 4.2 when the local basis optimization is used.

To estimate the additional error introduced by the LBO we take the relative error in
one of the main expectation values with the TEBD results as the reference and find∣∣∣∣Ebare

ph (t)−Eopt
ph (t)

Ebare
ph (t)

∣∣∣∣ < 10−5, which shows that the deviation is acceptable. As we have
argued, the 4-site system is a good approximation for homogeneous chains and the
TEBD-LBO can be expected to perform similarly for larger systems.

5.3. Outlook
The advantages of the local basis optimization are most obvious in the more chal-
lenging parameter regimes. Therefore, a further optimization of the code is a central
goal for the near future. The TEBD could be improved by finding proper rules for
the choice of the cutoffs to minimize the computational time for a given accuracy and
also by an increased utilization of the parallelization. Other planned developments
are extensions of the Hamiltonian and the initial conditions. This includes the in-
vestigation of dispersive phonons, other e-p couplings like the Su-Schrieffer-Heeger or
Edwards model and different electron fillings. So far we have used only a few different
initial states, so it would be interesting to start our simulations also with states that
are already highly entangled and exhibit phonon excitations. These states may also
be obtained by other programs, that are optimized for finding ground states.
The system we are currently studying is related to the efficiency of solar cells.

We investigate a heterojunction problem, where an electron is confined on a small
Holstein chain, this time with an additional electronic potential and one tight-binding
lead attached to it. The main question is under what conditions the electron leaks
out into the lead or stays confined on the small e-p coupled structure. This is a joint
project with Master student Christian Bick.
There are many possible applications that we intend to investigate in the near

future and that would benefit from the use of the optimal basis. In the field of time-
resolved spectroscopy the polaron-exciton problem is a natural extension of the issue
of Ch. 3. Another idea is to use the extended one-dimensional Holstein-Hubbard
model to study photo-generated phase transitions. Also, a further investigation of
transport problems is planned. Apart from adding more electrons and dispersive
phonons to further develop the study of wave packets scattered by an e-p coupled
structure, one could also apply the TEBD-LBO to spin-phonon systems to study
magnon dynamics.
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A. Orthonormalization of the initial
state

The MPS defined in Sec.2.1 that we use as the initial state in all simulations has the
canonical form. We check this for the outer vectors and the inner matrices separately.
First we have

2∑
k1=1

(Γ1,k1λ1)(Γ1,k1λ1)† =

(√
1− P (1), 0

)(√1− P (1)
0

)
+
(
0,

√
P (1) ψ(1)

|ψ(1)|

) 0√
P (1)ψ(1)∗

|ψ(1)|

 = 1
(A.1)

and
2∑

k1=1
(Γ1,k1)†(Γ1,k1) =
(

1
0

)(
1, 0

)
+
(

0
ψ(1)∗
|ψ(1)|

)(
0, ψ(1)

|ψ(1)|

)
=

(
1 0
0 1

) (A.2)

for the left vectors and
2∑

kL=1
(λL−1ΓL,kL)†(λL−1ΓL,kL) =

(
0,

√
P (L− 1)

)( 0√
P (L− 1)

)

+
(√

1− P (L− 1) ψ(L)
|ψ(L)| , 0

)√1− P (L− 1)ψ(L)∗
|ψ(L)|

0

 = 1

(A.3)

and
2∑

kL=1
(ΓL,kL)(ΓL,kL)† =
(

0
1

)(
0, 1

)
+
(
ψ(L)∗
|ψ(L)|

0

)(
ψ(L)
|ψ(L)| , 0

)
=

(
1 0
0 1

) (A.4)
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for the right vectors. Finally, we recall the definition P (j) =
j∑
l=1
|ψ(l)|2 to obtain

2∑
kj=1

(Γj,kjλj)(Γj,kjλj)† =


√

1−P (j)√
1−P (j−1)

0
0 1



√

1−P (j)√
1−P (j−1)

0
0 1

+
0 ψ(j)√

1−P (j−1)
0 0

 0 0
ψ(j)∗√

1−P (j−1)
0

 =

1−P (j)+|ψ(j)|2
1−P (j−1) 0

0 1

 =
(

1 0
0 1

)
(A.5)

and
2∑

kj=1
(λj−1Γj,kj)†(λj−1Γj,kj) =

1 0
0
√
P (j−1)√
P (j)


1 0

0
√
P (j−1)√
P (j)

+
 0 0

ψ(j)∗√
P (j)

0

0 ψ(j)√
P (j)

0 0

 =

1 0
0 P (j−1)+|ψ(j)|2

P (j)

 =
(

1 0
0 1

)
(A.6)

for the inner matrices.
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B. Diagonalization of the
tight-binding Hamiltonian for
open boundary conditions

We have used a transformation that diagonalizes the tight-binding Hamiltonian, which
is not a Fourier-transform, because we consider open boundary conditions. In position
space the Hamiltonian reads1

Hkin = −
L−1∑
j=1

(
c†jcj+1 + c†j+1cj

)
. (B.1)

We can substitute the creation and annihilation operators by c(†)
j =

√
2

L+1

L∑
n=1

sin(jkn)d(†)
kn

with kn = nπ
L+1 , n ∈ {1, 2, ..., L} to obtain the components

Hnm = 2
L−1∑
j=1

[
sin(jkn) sin((j + 1)km) + sin((j + 1)kn) sin(jkm)

]
, (B.2)

in k-space, such that Hkin = − 1
L+1

L∑
n,m=1

Hnmd
†
kn
dkm . To evaluate the sum (B.2) we

work with the theorems for the addition and multiplication of sine and cosine instead
of exponential functions. We also note that the range of the sum can be extended
to j ∈ {1, ..., L} without changing the components Hnm because sin(kn(L+ 1)) =
sin(nπ) = 0, ∀n ∈ N. Furthermore we use the identity

L∑
j=1

cos
(

j

L+ 1nπ
)

= −1
2 (1 + (−1)n) + δn0(L+ 1) . (B.3)

One finds

Hnm = 2
L∑
j=1

{
sin(jkn)

[
sin(jkm) cos(km) + cos(jkm) sin(km)

]
+ sin(jkm)

[
sin(jkn) cos(kn) + cos(jkn) sin(kn)

]}
(B.4)

= Cnm + S+
nm + S−nm ,

1The parameter t0 is omitted in this section, as it does not affect the transformation.
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conditions

with

Cnm =
L∑
j=1

[
cos(km) + cos(kn)

](
cos(jkn−m)− cos(jkn+m)

)
(B.5)

S+
nm =

L∑
j=1

[
sin(km) + sin(kn)

]
sin(jkn+m) (B.6)

S−nm =
L∑
j=1

[
sin(km)− sin(kn)

]
sin(jkn−m) (B.7)

and kn±m = kn ± km. To determine Cnm we insert (B.3) into (B.5) and obtain

Cnm =
(

cos(km) + cos(kn)
)[−1

2
(
(−1)n−m − (−1)n+m

)
+ δnm(L+ 1)

]
=

(
cos(km) + cos(kn)

)
δnm(L+ 1) , (B.8)

where δ(n±m)0 = δn(±m) and δn(−m) = 0 were used. This already provides the desired
transformation, so it remains to show that S+

nm + S−nm = 0, ∀n,m ∈ {1, ..., L}. We
may write

S±nm = ±2 sin
(
kn±m

2

)
cos
(
kn∓m

2

)
L∑
j=1

sin(jkn±m)

= ±1
2

L∑
j=1

[
cos((j − 1)kn ± jkm) + cos(jkn ± (j − 1)km) (B.9)

− cos((j + 1)kn ± jkm)− cos(jkn ± (j + 1)km)
]
,

so that it becomes obvious which terms in the sum cancel out. The remaining parts
can be summed up to obtain

2
(
S+
nm + S−nm

)
= cos((n−m)π + km)− cos((n+m)π − km)

+ cos((n−m)π − kn)− cos((n+m)π − kn) , (B.10)

where we can use the relation cos(nπ + k) = (−1)n cos(k) to conclude

2
(
S+
nm + S−nm

)
=

(
(−1)n−m − (−1)n+m

)
[cos(km) + cos(kn)] = 0 . (B.11)

Inserting (B.5) and (B.11) into (B.4) we find the Hamiltonian in k-space

Hkin = −
L∑

n,m=1

(
cos(kn) + cos(km)

)
δnmd

†
kn
dkm = −2

L∑
n=1

cos(kn)d†kndkn , (B.12)

which verifies that this transformation diagonalizes the tight-binding Hamiltonian for
open boundary conditions.
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