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[1] This work presents a two-dimensional (2-D) study of the modal spectrum of a single
microstrip and a pair of coupled microstrip lines with an upper dielectric half-space. This
2-D study is postulated as the necessary step previous to the 3-D investigation of the
potential applications of leaky-wave antennas radiating in an environment susceptible to
be modeled by a dielectric half-space. Thus the nature and the possible transitions of
the modal spectrum will be characterized for a wide range of values of the permittivity of
the upper half-space (eu). From a physical rationale, the modal spectrum is expected to
comprise only leaky modes for values of eu greater than the permittivity of the line
substrate (e). This hypothesis is corroborated by the computed numerical results, which,
for the case of the microstrip with an air gap, also show that the above assertion is satisfied
even for values of eu less than e. Although the nature of the mathematical transition
from bound to leaky modes could not be rigorously established, there has been always
found a ‘‘physical’’ transition from each fundamental bound mode (BM) to a space-wave
leaky mode (SPWLM). This type of direct physical transition from a fundamental BM to a
SPWLM, which is not allowed in a frequency evolution, has been proved to be
mathematically viable. INDEX TERMS: 0619 Electromagnetics: Electromagnetic theory; 0609

Electromagnetics: Antennas; 0624 Electromagnetics: Guided waves; 0644 Electromagnetics: Numerical

methods; KEYWORDS: printed lines, leaky modes, dielectric half-space
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1. Introduction

[2] The frequency evolution of the propagative modes
of planar printed lines has received a great deal of early
attention [Wu, 1957; Yamashita, 1968; Itoh, 1980, 1989].
Later on, this study was extended to investigate the
evolution of surface as well as space leaky modes
[Menzel, 1979; Oliner, 1987; Das and Pozar, 1991; Tsuji
et al., 1993; Shigesawa et al., 1993; Nghiem et al., 1993;
Mesa and Marqués, 1995]. Some relevant theoretical and
practical questions concerning the excitation and physi-
cal validity of surface/space-leaky modes were more
recently discussed by Di Nallo et al. [1998], Mesa et
al. [1999], Jackson et al. [2000], and further Mesa et al.
[2002] presented an investigation on the physical and

mathematical continuity between different modal solu-
tions (proper, improper real, and leaky) in order to
establish the conditions under which certain modal
transitions can occur.
[3] Despite the thorough effort devoted to study the

evolution and nature of the modal spectrum of printed
lines, a problem not yet considered is the evolution of the
modes of a planar printed line whose upper half-space is
not free space but an isotropic dielectric of arbitrary
permittivity eu. Specifically, if the permittivity of the
upper half-space of a microstrip line is greater than the
permittivity of the microstrip substrate (e), the back-
ground grounded dielectric waveguide cannot support
surface-wave (SW) modes [Rodrı́guez-Berral et al.,
2004a] but only leaky and improper real modes. This
fact clearly prevents the existence of surface-wave leaky
modes (SFWLM) in the line because the radiation cannot
take place in the form of nonuniform SWs of the
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background waveguide, and hence all the leaky modes of
the transmission line will present spatial radiation. More-
over, bound modes cannot occur in such line as long as
the permittivity of the upper half-space is greater than the
substrate permittivity. In consequence, the discrete modal
spectrum for eu > e is expected to consist only of space-
wave leaky modes (SPWLM).
[4] The present work will be then devoted to study the

characteristics and the evolution of the modes of a single
microstrip line and a pair of coupled microstrip lines as
the permittivity of the upper half-space varies from its
lower value (e0) to values higher than the permittivity of
the line substrate. In this way, this primary 2-D study will
show the most relevant features of the modal spectrum
and will explore the new modal transitions that may
occur in this type of lines, but that could not appear in
standard printed lines. Specifically, it is expected to find
possible modal transitions from bound, SFWLM or real
improper modes (RIM) to SPWLMs. Although the rich
phenomenology of the dispersion relations to be found in
the structures under study yields an inherent theoretical
interest by itself, the present study also constitutes the
first necessary step previous to carry out the analysis of
new types of leaky-wave antennas for possible practical
applications such as ground penetrating radar [McMillan
and Shuley, 1997], hyperthermia antennas [Dubois et al.,
1996], and any other situation where the superstrate can
be modeled as a semi-infinite cover layer.
[5] The paper is organized as follows: next section will

briefly expose the mathematical aspects of the formula-
tion of the problem and the algorithm employed to search
for the modal wavenumbers. Section 3 will show and
discuss the numerical results obtained for the microstrip
and the pair of coupled lines. Results will be also
presented for a single microstrip line with an air gap
between the printed interface and the upper half-space.
This latter structure can simulate the practical situation of
a printed line that is not directly in contact with the
medium modeled by the semi-infinite cover layer. The
corresponding results will corroborate our assumption of
the exclusive space-leaky nature of the modal spectrum
for eu > e, and will also show a new kind of physical
modal transition from a bound mode to a SPWLM.

2. Analysis

[6] The corresponding eigenvalue problem will be
formulated in terms of a mixed potential integral equa-
tion (MPIE) [Michalski and Zheng, 1990], which is
solved in the spatial domain after employing the discrete
complex image theory (DCIT) [Fang et al., 1988] to
generate the spatial-domain Green’s functions from their
spectral counterparts. The method of moments (MoM) is
finally applied to obtain the dispersion relation of the
structures under study. The above procedure is used

instead of the spectral domain analysis (SDA) because
of its wider versatility (it can be easily extended to
include nonplanar conductors) and its enhanced numer-
ical efficiency [Bernal et al., 2001]. A relevant specific
advantage of the present approach is that the choice of
different integration paths in the SDA [Nghiem et al.,
1993; Mesa et al., 1999] is here simply accounted for by
the proper choice in the sign of certain variables [Bernal
et al., 2002]. Although the DCIT has been already
applied to solve 2-D planar transmission lines problems
by Soliman et al. [1999, 2003], Bernal et al. [2000,
2001, 2002], and Rodrı́guez-Berral et al. [2004b], the
works of Soliman et al. [1999, 2003] and Bernal et al.
[2000, 2001] deal only with bound modes whereas the
extension to leaky modes carried out by Bernal et al.
[2002] and Rodrı́guez-Berral et al. [2004b] exclusively
considers SPWLM associated with the fourth quadrant of
the (1;all SW;0) sheet of the complex kz-plane—the
notation for the Riemann surface proposed by Mesa
and Jackson [2002] will be here employed. Since the
final goal of the present work is to characterize the
evolution of the modal spectrum (to account for any
kind of modal transition that might appear), the
employed algorithm has to be capable of dealing prop-
erly with any type of mode. In consequence, although the
scheme in Rodrı́guez-Berral et al. [2004b] will be
basically followed, the present implementation of the
MPIE-DCIT algorithm will have some distinctive details
to allow for its extension to any kind of mode.
[7] The mathematical aspects of the method will be

briefly exposed in subsection 2.2, whereas the details
pertinent to the practical implementation of the algorithm
will be illustrated by means of a comparison with some
results reported by Mesa and Jackson [2002] at the
beginning of section 3.

2.1. Formulation of the Problem

[8] The structures under study will be a single micro-
strip and a pair of symmetric coupled microstrip lines,
whose semi-infinite cover layer can be separated by an
air gap of height d. The general cross section of the above
structures is shown in Figure 1. For simplicity, only
lossless isotropic dielectrics and perfect conductors will
be considered. A common harmonic factor exp[ j(wt �
kzz)] is implicitly assumed in all the field and current
magnitudes, where w is the angular frequency and kz the
propagation constant along the longitudinal direction.
The boundary condition for the tangential components
of the electric field on the surface of the conductor strips
can be expressed in terms of the vector and scalar
potentials as

ŷ� jwA x; yð Þ þ rt � jkzẑð Þf x; yð Þf g ¼ 0; ð1Þ
where A and f are the vector and scalar potentials
respectively, and rt is the transverse-to-z nabla operator.
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The use of the symmetries present in the pair of coupled
lines allows us to write the following generic MPIE valid
for any of the considered structures:

ŷ�
(
jw

Z w=2

�w=2

�
GA

xx x; x0ð ÞJ x0ð Þ � hGA
xx x;wþ d � x0ð Þ

� Jx x0ð Þx̂� Jz x
0ð Þẑ½ gdx0

þ rt � jkzẑð Þ �
Z w=2

�w=2

�
Gf x; x0ð Þ

þ hGf x;wþ d � x0ð Þ j
w

r0
t � jkzẑ

� �
� J x0ð Þ dx0

)
¼ 0

� x 2 �w=2;w=2ð Þ; ð2Þ

where Gxx
A is the x̂x̂ component of the dyadic Green’s

function associated with A, Gf is the scalar Green’s
function associated with f, J is the surface electric
current density on the strip, and h = 0 for the case of a
single microstrip line and h = 1(�1) for the even (odd)
modes of the pair of coupled lines. Since y = y0 � h, the y
dependence will be obviated henceforth. The application
of the MoM to the integral equation (2) leads to an
eigenvalue problem whose eigenvalues are the propaga-
tion constants of the line modes. (Although the present
formulation is restricted to the structures here considered,
this formulation and most of the further results and
conclusions can be easily extended to more general
planar structures.)

2.2. Kernel of the Integral Equation

[9] The kernel of the above integral equation is given
by the spatial-domain Green’s functions Gxx

A and Gf. In
the case of layered substrates, closed form expressions of
these functions are only available for their corresponding
spectral counterparts, which can be easily obtained using
an analogous transmission line network [Michalski and
Zheng, 1990; Hsu et al., 1993; Felsen and Marcuvitz,

1973]. Once the spectral domain Green’s functions
(SDGF) have been obtained, the kernel of the integral
equation can be computed after performing the following
inverse Fourier transform:

G x� x0ð Þ ¼ 1

2p

Z 1

�1
eG kr
� �

e�jkx x�x0ð Þdkx; ð3Þ

where G stands for either Gxx
A or Gf and kr =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2z

p
.

It should be noticed that, due to the cylindrical symmetry
of the background waveguide and to the choice by
Michalski and Zheng [1990, formulation C], the SDGF
does not depend separately on kx and kz, but on kr.
Following Rodrı́guez-Berral et al. [2004b], the SDGF
will be expressed as a function of the vertical
wavenumber in the upper semi-infinite medium, kyu =ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2u � k2r

q
(with ku = w

ffiffiffiffiffiffiffiffiffi
eumu

p
) in order to remove its

branch points in the kr plane. Using this new variable, a
pole located at kyu = kyu,p is extracted out by subtracting

eGP kyu
� �

¼ Rp

kyu � kyu;p
; ð4Þ

where Rp is the residue of the spectral Green’s function at
kyu,p. In the complex kx-plane, the function eGP has a pair
of branch points at kx = ±kxu, where kxu �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2u � k2z

p
(the

same branch points of the complete SDGF) and a pair of

poles at kx = ±kxp, with kxp �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2u � k2z � k2yu;p

q
.

[10] As mentioned above, the DCIT algorithm here
employed has certain distinctive details with respect to
the implementation reported by Rodrı́guez-Berral et al.
[2004b]. These details pertain mainly to the computation
of the inverse Fourier transform of the function eGP in (4).
At this point, it is convenient to recall that the nature of
the mode under consideration (bound, RIM, SFWLM or
SPWLM) is closely related to the integration path in the
complex kx-plane that is employed to calculate the
inverse Fourier transform appearing in the SDA [Mesa
et al., 1999]. Moreover, it is shown by Mesa et al. [1999]
and Mesa and Jackson [2002] that every possible (phys-
ical or not) integration path in the complex kx-plane can
be conveniently decomposed into a path along the real
axis, closed paths encircling the poles, and a loop
between the branch points (any of the two latter con-
tributions may not be present). According to these
considerations and taking into account the aforemen-
tioned singularities of eGP, its spatial counterpart
canbewritten as the followingquasi-analytical expression:

GP x� x0ð Þ ¼ jRp

p

�
np

kyu;p

kxp
e�jkxpjx�x0 j þ 1

2
Ian

� e�jkxujx�x0 jI1 � 2x jk2xuI2


: ð5Þ

This expression is found after employing integration
paths similar to those in Mesa and Jackson [2002], but

Figure 1. Cross section of the general structure under
study.

RS4002 RODRÍGUEZ-BERRAL ET AL.: PRINTED-LINES LEAKAGE IN COVER LAYERS

3 of 11

RS4002



further deforming the real axis contribution downward in
the kx plane to a vertical steepest descent path (SDP)
from the branch point to �j1. The first term in the RHS
of (5) is present for each pole of eGP that is enclosed once
the real axis path has been deformed to the vertical SDP,
with n being an integer value equal to the number of
encirclements (negative sign for counterclockwise sense
and positive for clockwise). The integer factor x in the
fourth term coincides with the first index in the
integration path classification given by Mesa and
Jackson [2002] and kxu must be chosen with negative
imaginary part. The remaining Ian, I1 and I2 functions are
given by

Ian kxu; kxp; jx� x0j
� �

¼ e�jkxpjx�x0jE1 s1jx� x0jð Þ
þ ejkxpjx�x0 jE1 s2jx� x0jð Þ ð6Þ

I1 kxu; kxp; jx� x0j
� �
¼

Z 1

0

sþ jkxu þ sign Re kxuð Þf g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ 2jkxus

p
s2 þ 2jkxus� k2yu;p

� e�sjx�x0 jds ð7Þ

I2 kxu; kxp; jx� x0j
� �
¼

Z 1

0

ffiffiffiffiffiffiffiffiffiffiffiffi
1� s2

p

k2xu 1� s2ð Þ � k2yu;p
cos skxujx� x0jð Þds; ð8Þ

where s1 = j(kxu � kxp), s2 = j(kxu + kxp), E1(�) is the
exponential integral function, and the sign of square root
in (7) is chosen to give negative imaginary part. The
improper integral in (7) converges rapidly because it
comes from an asymptotic extraction and therefore can
be quickly computed by using, for instance, an
adaptative Gauss-Kronrod quadrature scheme. It is
important to recall that no restriction has been imposed
to the kyu,p pole, and hence this pole extraction strategy
can be used to extract proper as well as improper real or
leaky modes of the background waveguide. If the
common pole extraction by pairs in the kr-plane
(reported for instance in Bernal et al. [2002]) was used,
improper poles could not have been adequately handled.
[11] When dealing with the asymptotic behavior of the

SDGF, it should be considered that the extraction of
poles using (4) introduces a new kyu

�1 asymptotic term,
which yields the following total asymptotic behavior to
be extracted:

eG1 kyu
� �

¼
C �

PNp

p¼1 Rp

kyu
; ð9Þ

where C is a constant whose expression can be found in
the work of Bernal et al. [2000] and Np is the number of

poles that have been previously extracted out.
The remaining part of the SDGF, eGI(kyu), can be
now appropriately approximated by means of the
following finite sum of complex exponential terms:eGI kyu

� �
� eG kyu

� �
� eGP kyu

� �
� eG1 kyu

� �
� 1

kyu

XNe

i¼1

aie
�jkyugi : ð10Þ

As discussed by Rodrı́guez-Berral et al. [2004b], the
above expansion exhibits a very good numerical
behavior with no more than ten terms. The spatial
counterparts of eG1 and eGI can be obtained straightfor-
wardly by using identity (11) in Bernal et al. [2000],
yielding

G1 jx� x0jð Þ ¼ j

p
C �

XNp

p¼1

Rp

" #
K0 jkxujx� x0jð Þ ð11Þ

GI jx� x0jð Þ ¼ j

p

XNe

i¼1

aiK0 jkxu

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� x0ð Þ2þ g2i

q� �
;

ð12Þ

where K0(�) is the modified Bessel function of second
kind and order zero.

3. Numerical Results

[12] This section will show and discuss the results
obtained for the modal evolution with respect to eu of
several planar printed lines as those in Figure 1. First,
and with the aim of testing the numerical performance of
the MPIE-DCIT algorithm used in the present work, our
results will be compared with the SDA results presented
by Mesa and Jackson [2002] concerning rather involved
modal transitions from physical to nonphysical modes.
Thus Figure 2 shows a comparison between the SDA
results reported in Figure 11 ofMesa and Jackson [2002]
and the data provided by the present algorithm for the
frequency evolution of a SPWLM of a standard micro-
strip line between 10 and 30 GHz. In order to achieve
accurate enough results for any type of mode, the
sampling of the SDGF in the kyu plane has been carried
out along a two-levels path [Aksun, 1996], although
enforcing the second-level sampling path in the complex
kyu-plane to fit as much as possible the mapping of the
corresponding kx-plane SDA integration path. In partic-
ular, our results in Figure 2 have been computed using a
second-level sampling path that explores the first quad-
rant of the kyu plane when =(kz) < 0 and the second
quadrant when =(kz) > 0, since the mapping of the
improper part of the corresponding SDA integration path
runs into these quadrants (see Figure 12 in Mesa and
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Jackson [2002] for the kx-plane SDA integration paths).
In addition to the TM0 SW pole, the improper real TE1

pole has been also extracted out beyond 18 GHz because it
lies on the positive imaginary axis of the kyu plane near the
sampling region and may then deteriorate the second-
level approximation of the SDGF. Certainly, this latter
improper pole must be extracted out for the frequency
range shown in Figure 12d in Mesa and Jackson [2002]
since its associated kx-poles are detoured around by
the SDA integration path. For frequencies below
24.158 GHz, there is also a pair of poles located on the
first and second quadrant of the kyu plane corresponding
to a pair of complex-conjugate leaky waves of the
background waveguide. As the pole on the second
quadrant approaches the second-level sampling path, this
pole is similarly extracted out to compute accurately the
propagation constant of the mode in the frequency range
corresponding to Figure 12e inMesa and Jackson [2002].
Equivalently, as the kz modal propagation constant finally
crosses the real axis to enter the =(kz) < 0 zone, the leaky
kyu-pole on the first quadrant is now extracted out to
calculate the data corresponding to frequencies up to
24.158 GHz. At this frequency value, the two leaky poles
meet together on the positive imaginary axis of the kyu
plane, giving then rise to two improper real poles. The
pole that further approaches the origin of the kyu plane is
extracted out beyond 24.158 GHz.
[13] Once the reliability of our proposed algorithm

has been properly checked, the evolution of several
modes of a microstrip line with an upper semi-infinite
dielectric is now studied in Figures 3a and 3b. At low
values of the substrate permittivity, five modes have

been plotted: the fundamental one and a set of modes
that are further related to it: a pair of real improper
modes (RIM) and a pair of complex-conjugate
SPWLMs. The fundamental mode is observed to keep
on being a bound mode (BM) until the permittivity of
the upper half-space equals that of the line substrate. At
this point, the BM kz-solution touches the logarithmic-
type branch point at kz/k0 = ku/k0 �

ffiffiffiffiffiffiffiffiffiffiffi
eu=e0

p
. The two

RIMs appearing at low values of eu join together at
approximately eu = 1.60e0 to give rise to a pair of
complex-conjugate SFWLMs. (This behavior is well
known and has been previously reported in the litera-
ture for frequency evolution [Lampariello et al., 1990;
Tsuji et al., 1993; Mesa et al., 2002; Mesa and Jackson,
2002].) This pair of SFWLMs meet together at another

Figure 3. Evolution of the normalized-to-k0 (a) phase
and (b) attenuation constants of the fundamental mode
and two pairs of improper modes for a microstrip line
with h = 0.635 mm, d = 0, w = 3 mm, e = 9.8e0, Freq =
20 GHz. See color version of this figure in the HTML.

Figure 2. Results obtained for a space-leaky mode of a
microstrip line with h = 1.27 mm, w = 4 mm, e = 10.2e0,
eu = e0 for frequencies between 10 and 30 GHz. Solid
line, SDA results by Mesa and Jackson [2002]; boxes:
our results. The arrows point at the direction of
increasing frequencies.
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splitting point at approximately eu = 8.01e0, where the
pair of SFWLMs turns again into two RIMs that arrive
at the singular point at eu = e. A pair of nonphysical
complex-conjugate SPWLMs (they do not satisfy the
path consistency condition, PCC, reported by Mesa et
al. [1999]) also collapses in the singular point at eu = e.
[14] Figure 4 shows a closer view of how these modes

approach the singular point eu = e, where it can be
observed that the normalized wavenumber of the TM0-
SW mode of the background waveguide (kTM0

curve)
also touches the ku/k0 curve at the singular point. It
means that the branch-point singularity in the complex
kz-plane associated with the TM0-SW mode coalesces
with the branch point associated with the upper half-
space. The five modes shown in the figure also meet at
the singular point, and four of them (the fundamental
one, a pair of complex-conjugate SPWLMs and one
RIM) approach with the same slope. Beyond this singu-
lar point, two pairs of complex-conjugate SPWLMs
appear (one phase-constant curve for each pair); although
only one of the modes has physical meaning according to
the PCC (kz = b � ja with b < ku and a > 0).
[15] Thus it seems to appear certain transitions

between the four modes that approach the singular point
from the left with the same slope and the two pair of
SPWLMs appearing at the right side. Because of the
simultaneous collapse of both the kTM0

and ku/k0 curves
at this singular point, the residue associated with the
kTM0

-pole vanishes as jeu � ej ! 0 (it will be shown
further in Figure 5). Since the loop contribution coming
from the ±kxu branch points is also null in the above limit
(the loop disappears as kxu ! 0), there will always exist a
smooth transition between any mathematical solution

that differ in the number of loops and pole encirclements.
In consequence, it is not possible to specify which type
of mathematical transition is actually taking place,
although a physical transition does appear between the
fundamental BM and the physically meaningful
SPWLM. To the authors’ knowledge, this type of direct
physical transition has not been previously reported,
although a resembling physical transition was previously
observed between the first higher mode of a microstrip
line and a SPWLM by Mesa et al. [2002, Figure 5].
[16] In fact, the transition from the fundamental BM to

a SPWLM contradicts the statement reported in the work
of Mesa et al. [2002] about the mathematical impossi-
bility for the fundamental mode to transition into any
improper-nature mode in a frequency evolution. Indeed,
this latter proposition does not hold under the conditions
of the above BM-to-SPWLM transition. The analysis by
Mesa et al. [2002] was based on the study of the
behavior of the longitudinal component of the electric
field (Ez) as the BM approaches the TM0 branch point. A
similar analysis is now developed in Appendix A in
order to prove the viability of the above transition using
the mathematical context of the present work. In a
frequency evolution, as kz ! kTM0

, it is found that
kTM0
x ! 0 whereas kTM0

yu remains finite. Thus, looking
at (A8)–(A10) in Appendix A, it can be noted that Res1
remains finite whereas

Res2 /
kTM0
yu

kTM0
x

RTM0

f
eJz 0ð Þ ð13Þ

diverges (and hence the longitudinal electric field) unlesseJ z(0) = 0. This condition implies zero total current, and
this cannot be satisfied by the fundamental mode of a
microstrip line. On the contrary, for the transition shown
in Figure 4, Ez can remain finite despite eJ z(0) 6¼ 0
because kTM0

yu ! 0 as eu ! e (since kTM0
! ku). The

Figure 5. Behavior of RTM0

f and the quotient kTM0
yu =kTM0

x

as eu ! e for the case of Figure 3.

Figure 4. Insight of Figure 3a showing the details of
the evolution of the phase constants of the modes that
collapse at the singular point at eu = e. See color version
of this figure in the HTML.
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above BM-to-SPWLM transition is thus feasible pro-
vided that RTM0

f kTM0
yu =kTM0

x remains finite or goes to zero
as eu ! e and kz ! kTM0

. Figure 5 shows the behavior
of both RTM0

f and kTM0
yu =kTM0

x as eu approaches e for
the case of Figure 3. The values of kz used to compute the
above quotient come from the propagation constant of the
fundamental mode. It can be seen that the residue decays
to zero as (e � eu)

2, whereas the quotient behaves as
(e � eu)

1/2. In consequence, the longitudinal electric field
does not diverge and the above BM-to-SPWLM is viable.
[17] At 20 GHz, the microstrip line previously ana-

lyzed also presents a higher-order bound mode (HOBM)
for low values of the permittivity of the upper half-space.
The behavior of its normalized phase and attenuation
constants, and of other related improper modes, is shown
in Figure 6a. This figure shows that, as eu increases and
unlike the BM in Figure 3, the phase-constant curve of
the HOBM does not touch the curve associated with the

wavenumber of the upper half-space but the curve
corresponding to the TM0 mode. This fact can be better
appreciated in Figure 6b, which also shows the TM0

curve of the background waveguide. It can be also
observed that, after the HOBM meets the TM0 mode at
eu � 5.34e0, the HOBM transitions into a RIM that goes
further to infinity as eu ! e whereas the SPWLM, whose
value of the phase constant is very close to that of the
HOBM and TM0 meeting point, does not suffer any
transition at eu � 5.34e0. Actually, the meeting between
the HOBM kz-solution and the corresponding kTM0

branch point occurs in the complex kz-plane on the
principal sheet with respect to the ku branch point, while
the SPWLMs solutions lie on other sheets with respect to
this branch point. In consequence, the kz-solutions asso-
ciated with the HOBM and the SPWLMs never cross
each other in the complex kz-plane. It can be then
concluded that the mathematical transition of the first
HOBM to a RIM is of the type reported in the work of
Mesa et al. [2002, Figure 5], although the RIM goes to
infinity instead of meeting another RIM in a further
splitting point. Similar to Figure 5 in the work of Mesa et
al. [2002], there seems to exist here a physical transition
(through a gap) between the HOBM and the physically
meaningful SPWLM appearing for eu ^ 6.05e0.
[18] Next, Figure 7 shows the behavior of the propa-

gation constants with respect to the permittivity of the
upper half-space for the even and odd fundamental
modes of a pair of symmetric coupled microstrips. Each
one of the two fundamental bound modes present for
low values of eu suffers a transition at the singular point

Figure 7. Behavior of the normalized phase constants
(solid lines) and attenuation constants (dashed lines) for
the physically meaningful modes of a pair of symmetric
coupled microstrip lines with h = 0.635 mm, d = 0, w =
3 mm, d = 1 mm e = 9.8e0, Freq = 20 GHz. See color
version of this figure in the HTML.

Figure 6. (a) Normalized propagation constants of
the first higher mode (and other improper related modes)
of the microstrip line previously analyzed in Figure 3.
(b) Details of the modal transitions. See color version of
this figure in the HTML.
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eu = e very similar to that shown in Figure 4. Beyond this
point, two pairs of even/odd complex-conjugate
SPWLMs appear, although only one even/odd pair
provides the even/odd SPWLM that has physical mean-
ing. Instead of plotting all the curves corresponding to
the above modes in Figure 7, this figure will only
show those associated with the physically meaningful
modes; namely, the fundamental even/odd BMs and
the corresponding even/odd physically meaningful
SPWLMs. (The corresponding higher-order BMs of this
structure at the working frequency also present transi-
tions as those shown in Figure 6).
[19] Finally, results will be shown for a microstrip line

with an air gap below the upper dielectric half-space.
This structure shows an even richer phenomenology
than the previous ones because of the multilayered
nature of its background waveguide. As a previous step,
Figure 8 shows the behavior of the normalized phase and
attenuation constants with respect to eu for the TM0

mode of a grounded waveguide with an air gap below
the upper half-space. It can be observed that the TM0

mode keeps on being a proper SW mode until eu =
4.74e0. At this point, the TM0 modal solution touches the
ku branch point, goes through this branch cut and
becomes a RIM. Further, this RIM meets another RIM
at eu � 5.98e0 to give rise to a pair of complex-conjugate
leaky modes (LM). This behavior resembles the spectral
gap found for the higher-order modes of a grounded
dielectric slab [Lampariello et al., 1990] and the evolu-
tion of the fundamental TM0 mode of the grounded
waveguide with an upper dielectric half-space (but with-
out air gap) reported in Figure 4b of Rodrı́guez-Berral et
al. [2004a]. Nevertheless, the TM0 to RIM transition
occurs at eu = e in the case analyzed by Rodrı́guez-Berral

et al. [2004a, Figure 4b], whereas it now takes place at a
point for which the eu value is considerably below
the permittivity of the substrate. Loosely speaking, the
existence of a sort of effective permittivity for the
substrate plus air gap causes the appearance of a wide
range of values of eu (those between the two vertical dash-
dotted lines, 4.74e0 < eu < 9.8e0) for which the back-
ground waveguide does not have SWs despite eu < e.
[20] The consequences of the above fact in the behav-

ior of the line modes is now considered at the light of
Figure 9, which shows the evolution of the fundamental
BM and a couple of RIMs as eu increases from e0.
Similarly to what was found in Figure 3, at eu � 1.9e0
the two RIMs transition into a pair of complex-conjugate
SFWLMs, which in turn transition again into a couple of
RIMs after the splitting point. Further, one of the result-
ing RIMs approaches the TM0 curve (not shown) to
finally disappear at eu � 4.74e0 when the corresponding
branch points of both the TM0 and the upper half-space
coalesce (Figure 8 showed this meeting of the kTM0

and
ku curves and it is also marked by the leftmost dash-
dotted vertical line in Figure 9). Nevertheless, unlike the
behavior observed either in Figure 3 or in Figure 6, the
other RIM neither diverges nor disappears at the point
where the TM0 mode turns into a RIM. Instead, this
mode continues until meeting another RIM at eu �
4.95e0, where they join together to give rise to a pair
of complex conjugate SFWLM. With respect to the
fundamental mode, it can be observed that this mode
keeps on being a BM for values of eu > 4.74e0;

Figure 9. Evolution of the normalized-to-k0 phase
constants (solid lines) and attenuation constants (dashed
lines) of the fundamental BM and two RIMs for a
microstrip line with an air gap below the upper half-
space, with h = 0.635 mm, d = 0.1 mm, w = 3 mm, e =
9.8e0, Freq = 20 GHz. See color version of this figure in
the HTML.

Figure 8. Behavior of the normalized phase (solid
lines) and attenuation (dashed lines) constants for
the TM0 mode of a background waveguide with h =
0.635 mm, d = 0.1 mm, e = 9.8e0, Freq = 20 GHz. See
color version of this figure in the HTML.
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specifically up to eu � 9.15e0, where its propagation
constant touches the ku branch point. It means that the
microstrip line under analysis presents BMs in a range
(4.74 < eu/e0 < 9.15) where there are not SWs of its
associated background waveguide; namely, in a range
where the modal spectrum of the background waveguide
is entirely of continuous nature. The presence of BMs in
this range (phenomenon that, to the authors’ knowledge,
has not been previously reported) is somewhat expected
since its existence should not be exclusively related to
the existence of a proper discrete spectrum of the
background waveguide but rather to the fact that the
substrate permittivity is greater than the half-space per-
mittivity (which allows for the confinement of the mode
to the lower substrate between the ground plane and
the conductor strip). Apart from these considerations,
Figure 9 also shows how the fundamental BM seems
to transition into a physically meaningful SPWLM.
However, it should be noticed that this transition takes
place at eu � 9.15e0 < e. Hence, the modal spectrum of
this structure consists only of improper modes beyond
certain value of eu that is lower than the substrate
permittivity. Similar to what was observed for the TM0

waveguide mode in Figure 8, the reason is again that the
air gap introduces a sort of effective permittivity for the
substrate plus air gap bilayer lower than e.
[21] Although not shown in Figure 9, and similar to the

cases of Figures 3 and 4, there are infinite mathematical
improper modal solutions that also approach the above
BM to SPWLM transition point. These improper solu-
tion will be those associated with integration paths
involving the real axis and a given number of loops.
On the contrary, solutions involving integration paths
that detour around any of the improper poles are not
found to approach the transition point because the
residues of the improper poles of the background wave-
guide do not tend, in general, to zero as kz approaches the
transition point.

4. Conclusions

[22] This work has studied the evolution of the modal
spectrum of planar printed lines with an upper dielectric
half-space of permittivity eu as this permittivity increases
from its lower possible value, e0. The modal spectrum
evolution and transitions are discussed at the light of
results computed for a microstrip line, a pair of coupled
symmetric microstrip lines, and a microstrip line with an
air gap between the substrate and the upper dielectric
half-space. The general conclusions obtained from the
above study are expected to be valid for more complex
planar layered and multiconductor lines. It has been
found that, for values of eu greater than the substrate
permittivity (e), the modal spectrum consists only of
improper modes (or equivalently, the total spectrum is

accounted for by the continuous spectrum). The physi-
cally meaningful modes in this range (eu > e) are of the
SPWLM type exclusively.
[23] The features of the evolution observed for each

kind of modes in the case of single/multiconductor lines
printed on a grounded layer and with an upper dielectric
half-space are listed below:
[24] 1. The fundamental modes are bound up to eu = e,

where these modal solutions touch the logarithmic-type
branch point in the longitudinal wavenumber complex
plane at kz = ku. At this point the BMs disappear, and a
physically meaningful SPWLM continues smoothly the
evolution of each fundamental mode. Although the
existence of mathematical transitions from the funda-
mental BMs to the SPWLMs cannot be rigorously
asserted, there appears a physical transition from each
fundamental BM to the corresponding physically mean-
ingful SPWLM. This type of modal transition, which is
not allowed in a frequency evolution, has been proved to
be mathematically viable under the conditions of the
present study.
[25] 2. Each HOBM present at eu = e0 remains bound

until, in its evolution in the complex kz-plane as eu
increases, its propagation constant approaches the TM0

branch point and crosses the corresponding branch cut at
certain value of eu lower than e. The HOBM becomes
this way a RIM, which further evolves as explained next.
[26] 3. As eu increases from e0, RIMs and SFWLMs

modal solutions may present splitting points, resembling
the spectral gap already reported in the literature for the
case of a frequency evolution. Although in this evolution
SFWLMs and RIMs can never transition into BMs,
the SFWLMs can cross any branch cut of the complex
kz-plane to enter another improper sheet. As eu ! e, the
propagation constant of the SFWLMs diverges whereas
the following possibilities have been found for the RIMs:
(1) For each fundamental BM that approaches the ku
branch point in the complex kz-plane, an associated RIM
approaches this point with the same slope. (2) The RIM
approaches the TM0 branch point in the complex
kz-plane to finally disappear at eu = e, to where it arrives
with the same slope as both the TM0 and the ku branch
points. (3) The propagation constant of the RIM diverges
as eu ! e.
[27] 4. For eu ! e, there is an indefinite number of

mathematical SPWLM-like solutions that arrive at the
kz = ku point with the same slope as the fundamental
BMs and their associated RIMs. Similarly, an indefinite
number of mathematical SPWLM-like solutions arise
from this singular point. Apart from this peculiar
behavior at eu = e, the evolution of this type of modes
does not present any distinctive feature with respect to
the case of a frequency evolution.
[28] The introduction of an air gap in the structures

brings up some differences in the behavior of the modal
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spectrum. First of all, the fundamental BM in its evolu-
tion in the complex kz-plane now touches the ku branch
point for certain value of eu lower than e. Hence the
modal spectrum comprises only improper (with respect
to the ku branch point) modes even for values of eu lower
than the substrate permittivity. In addition, there are not
RIMs among the modes that gather with the fundamental
BM at the point its propagation constant approaches ku.
It has been found that RIMs and SFWLMs can diverge,
disappear or also evolve continuously at the point where
the TM0 and the ku branch points coalesce.

Appendix A

[29] For a given value of kz and assuming that only the
TM0 SW is above cutoff, the longitudinal component of
the electric field can be decomposed into the following
two terms [Mesa et al., 2002]:

Ez xð Þ ¼ ETM0

z þ 1

2p

Z
CBC

eEz kxð Þe�jkxxdkx; ðA1Þ

where CBC is an integration path running along the
branch cut of the SDGF in the lower half of the kx plane
and ETM0

z is given by

ETM0

z ¼ �j Res eEz kxð Þe�jkxx
n o

kx¼k
TM0
x

; ðA2Þ

with kTM0
x being the location of the pole associated with

the TM0 SW in the complex kx plane. The z component
of the electric field can be written in terms of the vector
and scalar potential as Ez(x) = �jwAz(x) + jkzf(x), and
hence ETM0

z can be expressed as

ETM0

z ¼ Res �weAz kxð Þ þ kzef kxð Þ
h i

e�jkxx
n o

kx¼k
TM0
x

:

ðA3Þ
The longitudinal component of the vector potential can
be now expressed in terms of its associated SDGF and
the spectral components of the current density, which
after the choice of formulation C in Michalski and Zheng
[1990] (eGzx

A = 0 and eGzz
A = eGxx

A ) allows us to writeeAz ¼ eGA
xx
eJz: ðA4Þ

Similarly, the scalar potential can be written asef ¼ eGfes ¼ 1

w
eGf kxeJx þ kzeJzh i

; ðA5Þ

where s represents the surface charge density and the
continuity equation has been used to introduce the
surface current density. Introducing now (A4) and (A5)
into (A3) yields

ETM0

z ¼ Res �weGA
xx
eJz þ kz

w
eGf kxeJx þ kzeJzh i� 

kx¼k
TM0
x

� exp �jkTM0

x x
� �

: ðA6Þ

[30] The Green’s function eGxx
A is regular at kx = kTM0

x

because its poles correspond only to TE SW modes
[Michalski and Zheng, 1990], which means that the first
term in the RHS of (A6) does not contribute to the
residue. Thus, taking also into account that

Res eG kxð Þ
n o

¼ � kyu

kx
Res eG kyu

� �n o
; ðA7Þ

the longitudinal electric field in (A6) can be written as

ETM0

z ¼� kz

w
Res1 kTM0

x ; kTM0

yu

� �
þ Res2 kTM0

x ; kTM0

yu

� �h i
� exp �jkTM0

x x
� �

; ðA8Þ

where Res1 and Res2 are given by

Res1 kTM0

x ; kTM0

yu

� �
¼ kTM0

yu RTM0

f
eJx kTM0

x

� �
; ðA9Þ

Res2 kTM0
x ; kTM0

yu

� �
¼ kz

kTM0
yu

kTM0
x

RTM0

f
eJz kTM0

x

� �
; ðA10Þ

with

RTM0

f ¼ Res eGf kyu
� �n o

kyu¼k
TM0
yu

: ðA11Þ
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