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Abstract. A logical formalism to support the insertion of uncertain
concepts in formal ontologies is presented. It is based on the search of
extensions by means of two automated reasoning systems (ARS), and it
is driven by what we call cognitive entropy.

1 Introduction

The challenge of data management with logical trust arose from the statement
of the Semantic Web (SW). An important problem is the need for extending or
revising ontologies. Such task is, from the point of view of companies, dangerous
and expensive: since every change in ontology would affect the overall knowledge
of the organization. It is also hard to be automated, because some criteria for
revision cannot be fully formalized. Despite its importance, the tools designed
to facilitate the syntactic extension or ontological mapping do not analyze, in
general, their effect on the (automated) reasoning.

Our aim is to design tools for extending ontologies in a semi-automated way,
that is one of the problems present in several methods for cleaning data in the
SW, when it implies ontological revision (see e.g. [1] [3]). The method is based
on the preservation by extensions of the notion of ontology robustness, see [8].
lattice categoricity, (described in sect. 3), is going to be applied in a special case:
the change is induced by the user, who has detected the (cognitive) necessity of
adding a notion. That is, a vague concept which comprises a set of elements with
features roughly shaped by the existing concepts. In Ontological Engineering,
careful consideration should be paid to the accurate classification of objects: the
notion becomes a concept when its behavior is constrained by new axioms that
relate it to the initial concepts. This scenario emphasizes the current need for
an explanation of the reasoning behind cleaning programs. That is, a formalized
explanation of the decisions made by systems. Note that such explanations are
necessary for the desirable design of logical algorithms to be used by general-
purpose cleaning agents [4]. It is evident that the task will need not only specific
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automated reasoning systems (ARSs) for SW, but also those for general purpose.
The reason is that some tasks are not directly related to reasoning services for
the SW [2] [17] [8]. Thus, we use ARSs for first order logic theories, in favor of one
reaches major generality. Among the challenges the problem raises in a dynamic
setting as the SW, there are three of them which are specially interesting from
the point of view of automated reasoning. They seem to obstruct the design of
a fully formalised methodology [4] from classical database field:

– We can not suppose the database to be stable (because new facts could be
added in the future).

– Usually, the specification of an ontology is syntactically complex, so it is very
likely that classical axiomatization of database theory becomes inconsistent,
even if ontology itself is consistent.

– It is possible that the database does not contain facts about the whole rela-
tions of the language.

However, some limitations can be solved by weakening the requirements imposed
in both database and ontological reasoning [8] [2].

The method proposed is based on the assistance of two ARS, McCune’s OT-
TER and MACE4 (http://www-unix-mcs.anl.gov). The first one, OTTER, is
an automated theorem prover (ATP) based on resolution and support set strat-
egy. The program allows great autonomy: its auto2 mode suffices to find almost
every automated proof that have been required. The second one, MACE4, is
an automatic model finder sharing formula syntax with OTTER. It is based on
Davis-Putnam-Loveland-Longemann’s procedure to decide satisfiability. It has
been useful for analyzing the models of the involved theories.

Finally, it would be good to add some information about MACE4. Despite it
has not been formally verified to work correctly, once the result by MACE4 is de-
termined, it is not difficult to certify that the models it gives are correct. It is nec-
essary to use OTTER to prove that the list of models is exhaustive. Thus, MACE4
has been used as an automatic assistant to induce new results and investigate the
effect of diverse axiomatizations, which must be certified later.

2 Logic-Based Ontological Extensions

Once the need for revision is accepted, the task can be seen, up to some extent
-and specially when one designs her/his own logical theory-, from two points of
view. The first one considers it like a task similar to belief revision, analyzing
it by classic methods of AI. Nevertheless, the effort can be expensive, because
it must study once again the impact of revision on the foundational features of
the source ontology. The second one has a foundational character. The evolution
of ontology should obey ground principles which are accepted on this matter.
For example, preserving some sort of backward compatibility, if it is possible
(extracted from [15]):

– The ontology should be able to extend other ontologies with new terms and
definitions.



– The revision of an ontology should not change the well-formedness of re-
sources that commit themselves to an earlier version of the ontology.

However, such principles are more adequate if the source ontology is robust,
in the following sense [4]: An ontology is robust if its core is clear, stable (except
for extensions); if every model of its core exhibits similar properties w.r.t. the
core language, and if it is capable of admitting (minor) changes made out of the
core without committing core consistency. By core we understand a portion of
ontology that we consider as a sound theory with well known properties, and
which is accepted as the best for the concepts involved. We can consider two
kinds of extensions:

– Extension by definition. It produces conservative extensions. If definitions
are not provided for the new elements, conservation can fail.

– Ontological insertion: Essentially new (nondefinable) concepts/relations are
inserted. The task is to design good axioms to specify the new ones from
core theory.

An interesting case occurs in the task of ATP-aided cleaning of logic databases.
The bottom-up change generation in ontologies -due to the analysis of track
interaction among the Knowledge Base, the ATP and the user- induces ontolo-
gical revision. It can simulate new elements in ontology to be inserted (such as
Skolem noise [2]). We analyze here a slightly different problem, which appears
when the user is the person who decides to insert a new concept by collecting a
set of data.

The extension by definition is the basis of definitional methodologies for build-
ing formal ontologies. It is based on the following principles [7]:

1. Ontologies should be based upon a small number of primitive concepts.
2. These primitives should be given definite model theoretic semantics.
3. Axioms should only be given for the primitive concepts.
4. Categorical axiom sets should be sought.
5. The remaining vocabulary of the ontology (which may be very large), should

be introduced purely by means of definitions.

In this paper, the first three principles are assumed. The fourth one will be
replaced by lattice categoricity. Categoricity is a strong requirement that can be
hard to achieve and to preserve. Even when it is achieved, the resultant the-
ory may be unmanageable (even undecidable) or unintuitive. This phenomenon
might suggest that we restrict the analysis of completeness to coherent parts of
the theory. However, it is not a local notion: since minor changes commit the
categoricity and it is expensive to repeat the logical analysis.

With respect to the last principle, starting with a basic theory, it seems hard to
define a new concept/relationship. It is better to consider it only as the starting
point to build an ontology, thinking thus that we are in early steps of the process,
where ontological insertions are necessary.

Finally (although it is not the topic of this paper), we would like to add
that an ontological insertion should be supported by a good theory about its



relationship with the original ontology. It should as well be supported by a nice
way of expanding a representative class of models of the source theory to the
new one. This class of models must contain the intended models (those that the
ontology designer wants to represent). It can be required an interpretation of
the new elements which should be formalised, and a re-interpretation of the
older ones, which must be compatible with basic original principles.

3 Lattice Categorical Theories

In order to solve in practice the several logical problems that ontological inser-
tion raises we will analyze the categoricity of the structure of the concepts of
the ontology. We are going to take into account compatibility which has been
previously mentioned, and we will try to obtain definitions of the concepts in-
serted in the new ontology. We will also analyze categoricity of structure of
concepts of ontology. For the sake of clarity, we suppose that the set of concepts
has a lattice structure. Actually, this is not a constraint: there are methods to
extract ontologies from data which produce such structure (such as the Formal
Concepts Analysis [14]) and, in general, the ontology is easy to be extended by
definition, verifying lattice structure. Although we think about Description Log-
ics [5] as ontological language (the logical basis for ontology languages as OWL,
see http://www.w3.org/TR/owl-features/), the definitions are useful for full
first order logic (FOL), so we give the definitions in FOL language.

On the one hand, a lattice categorical theory is the one that proves the lat-
tice structure of its basic relationships. This notion is weaker than categoricity or
completeness. On the other hand, lattice categoricity is a reasonable requirement:
the theory must certify the basic relationships among the primitive concepts. In
[8] we argued that completeness can be replaced by lattice categoricity to facil-
itate the design of feasible methods for extending ontologies. Let us summarize
these ideas.

Given a fixed FOL language, let C = {C1, . . . , Cn} be a (finite) set of concept
symbols, let T be a theory (in the general case, definable concepts in T can
be considered). Given M a model of T , M |= T , we consider the structure
L(M, C), in the language LC = {�, ⊥, ≤} ∪ {c1, . . . , cn}, whose universe are the
interpretations in M of the concepts (interpreting ci as CM

i ), � is M , ⊥ is ∅ and
≤ is the subset relation. We assume from now on that L(M, C) is requested to
have a lattice structure for every theory we consider. This requirement simplifies
the examples.

The relationship between L(M, C) and the model M itself is based in two facts.
The first one, the lattice L can be characterized by a finite set of equations EL,
plus a set of formulas ΘC categorizing the lattice under completion, that is, ΘC
includes the domain closure axiom, the unique names axioms and, additionally,
the axioms of lattice theory. Thus, every model M of E∪ΘC is finite. The second
one, there exists a natural translation Π of these LC-equations into formulas in
the FOL language so that if E is a set of equations characterizing L(M, C) (so
L(M, C) |= E), then M |= Π(E).



Definition 1. Let E be a LC-theory. We say that E is a lattice skeleton (l.s.)
for a theory T if E verifies that

– There is M |= T such that L(M, C) |= E ∪ ΘC , and
– E ∪ ΘC has an unique model (modulo isomorphism).

Every consistent theory has a lattice skeleton [8]. Roughly speaking, the existence
of essentially different lattice skeletons makes difficult to reason with the ontology
while the existence of only one would make it easy.

Definition 2. T is called a lattice categorical (l.c.) theory if whatever pair
of lattice skeletons for T are equivalent modulo ΘC.

Note that if T is l.c. and E is a l.s. of T , then T � Π(E). Note also that every
consistent theory T has an extension T ′ which is lattice categorical: it suffices
to consider a model M |= T , and then to find a set E of equations such that
ΘC ∪ E has L(M, C) as only model. The theory T ∪ Π(E) (and any consistent
extension of it) is l.c.

Finally, we can give a formalization of robust ontological extension, based in
the categorical extension of the ontology:

Definition 3. Given two pairs (T1, E1), (T2, E2) we will say that (T2, E2) is a
lattice categorical extension of (T1, E1) with respect to the sets of concepts
C1 and C2 respectively, if C1 ⊆ C2 and L(T2, C2) is an E1-conservative extension
of L(T1, C1).

For reasoning with the lattice of concepts it suffices to work with a lattice skele-
ton, so, to simplify, we suppose throughout that T is the self l.s.

3.1 Cognitive Support

Once formalized the notion of lattice categorical extension, we need to design
several functions to advise how to select the best l.c. extension.

Assume that T is a theory, and L is the lattice defined by C in some M |= T .
From the point of view of ontology designer, such a model M is the intended
model that the ontology attempts to represent. Suppose that Δ = {h1, . . . hn}
is the set of facts on C, and the user wants to classify some elements that occur
in Δ by means of a new concept. We can suppose, to simplify the notation, that
every fact explicit in T belongs to Δ. Let U(Δ) be the universe determined by
Δ; that is, {a : ∃ C ∈ C [C(a) ∈ Δ]}.

Given C ∈ C in Δ, we consider

|C|Δ := |{a : C(a) ∈ Δ}| and |C|ΔT := |{a ∈ U(Δ) : T ∪ Δ |= C(a)}|.

Definition 4. The cognitive support of C with respect to Δ, T and L, is

supL
T,Δ(C) :=

|{a ∈ U(Δ) : ∃i[Ci ≤L C ∧ T ∪ Δ |= Ci(a)]}|
|U(Δ)|



This support estimates the number of facts on the concept C entailed by T ,
normalized by the size of the universe U(Δ). Because of the computational com-
plexity of logical reasoning, it can be hard in general to compute it: we need
to seek, by logical entailment, the cone of concepts defined by C. However, this
computation is trivial for lattice categorical theories:

Proposition 1. If T is lattice categorical, then supL
T,Δ(C) =

|C|ΔT
|U(Δ)|

The proposition holds because if Ci ≤L C, then T |= Ci � C. Thus, if T ∪ Δ |=
Ci(a), then T ∪ Δ |= C(a).

From now on, we suppose that Δ is compounded by facts on atoms of the
lattice of concepts (that is, about the most specific concepts). Note, also, that if
T is l.c., then L is unique, and we will thus omit the superscript L in that case.

Corollary 1. If J = {C1, . . . , Cn} is a Jointly Exhaustive and Pairwise Dis-
joint (JEPD) set of concepts in L, then supT,Δ(.) is a probability measure.

Proof. It is easily seen that
∑

C∈J supL
T,Δ(C) = 1.

The cognitive entropy of J is CH(J ) = −
∑

C∈J
supT,Δ(C) log supT,Δ(C).

3.2 Entropy of Ontological Extensions

Suppose that the user decides that a set {a1, . . . , ak} ⊆ U(Δ) induces a new
concept D (provisionally, a notion). Such a notion might not be fully represented
by those elements. Also, it is possible that some of them do not belong to the new
concept, because of noise in the data. It might also be the case that the concept
is constrained by a set Σ of axioms introduced by the user. Furthermore it is also
possible that T ∪ Σ is not l. c., that is, this theory does not prove the intended
lattice induced by C ∪ {D}. MACE4 provides the collection {L1, . . . , Lm} of the
lattices induced by the models of T ∪ Σ. Let Ti be a lattice skeleton for Li

(i = 1, . . . , m).
Now, we focus our attention on a concrete level of the Ontology, where we

intend to insert the new concept. The level will be a JEPD J = {C1, . . . , Ck} of
the lattice L verifying that if the new concept D contains some of them,

J Li

�D = {Ci ∈ J : Ci ≤Li D} = ∅

then Ji = (J \ J Li

�D) ∪ {D} is a JEPD in Li. Since Ti is a l.c. extension of T ,
the support of D is easy to achieve:

Theorem 1. In above conditions, supTi,Δ(D) =
∑

C∈JLi
�D

supL
T,Δ(Ci)

To estimate the conditional entropy of the new extension, we consider a nat-
ural definition of conditional support:

supTi,T,Δ(C′|C) :=
|{a ∈ U(Δ) : T ∪ Δ |= C(a) ∧ Ti ∪ Δ |= C′(a)}|

|C|ΔT



This support allows to estimate the amount of new information produced by
the extension by standard methods; through the conditional entropy associated
to the two probability measures. The conditional cognitive entropy is :

CH(J ||Ji) = −
∑

C′ ∈ J
C ∈ Ji

supTi,Δ(C′|C) log supTi,Δ(C′|C)

This sum can be simplified (assuming 0 log 0 = 0): if C = C′ or C, C′ ∈ J , then

supTi,T,Δ(C′|C) log supTi,T,Δ(C′|C) = 0

and the following property holds:

Proposition 2. In above conditions, supTi,T,Δ(C′|C) =
|C′|ΔT
|C|ΔTi

This entropy is similar to Kullback-Leibler distance or relative entropy (see [16]),
but using the entailment to classify the elements. It is known that it is minor
than the initial entropy. In [13] similar entropies are used, but based on proba-
bilistic assignation. Finally, in order to estimate what is the best extension for
our purposes, it is necessary to compute the The Shannon’s diversity index
for each Li. This index normalizes the amount of information produced by the
extension, and is defined as

IH(Ji) =
CH(J ||Ji)

log |Ji|
The interpretation of the index is as follows: if we select Li with minimum

IH(Ji), the new information produced by the new concept is minor. This option
is the cautious one: the reparation of the source ontology is light and we do not
expect big changes in the representation of the intended model. If we select Li

with an upper IH(J), the change of the information is more relevant; we select
such an extension if we regard as robust the specification of the concept given
by Σ together with the facts. In general, we have to chose the l.c. extension with
minor index. Intuitively, in this way we do not change too much the information
of the initial ontology.

4 An Example

We would like to show a short example in the field of Qualitative Spatial Reason-
ing (QSR). Region Connection Calculus (RCC) [12] is a well-known mereotopo-
logical approach to QSR, that we can consider to be a robust ontology. For
RCC, the spatial entities are non-empty regular sets. The primary relation be-
tween them is connection, C(x, y), with intended meaning: “the topological clo-
sures of x and y intersect”. The basic axioms of RCC are A1 := ∀x[C(x, x)]
and A2 := ∀x, y[C(x, y) → C(y, x)] jointly with a set of definitions on the main
spatial relations (fig. 1), and other axioms not used here (see [12]).



DC(x, y) ↔ ¬C(x, y) (x is disconnected from y)
P (x, y) ↔ ∀z[C(z, x) → C(z, y)] (x is part of y)
PP (x, y) ↔ P (x, y) ∧ ¬P (y, x) (x is proper part of y)
EQ(x, y) ↔ P (x, y) ∧ P (y, x) (x is identical to y)
O(x, y) ↔ ∃z[P (z, x) ∧ P (z, y)] (x overlaps y)
DR(x, y) ↔ ¬O(x, y) (x is discrete from y)
PO(x, y) ↔ O(x, y) ∧ ¬P (x, y) ∧ ¬P (y, x) (x partially overlaps y)
EC(x, y) ↔ C(x, y) ∧ ¬O(x, y) (x is externally connected to y)
TPP (x, y) ↔ PP (x, y) ∧ ∃z[EC(z, x) ∧ EC(z, y)] (x is a tangential prop. part of y)
NTPP (x, y) ↔ PP (x, y) ∧ ¬∃z[EC(z, x) ∧ EC(z, y)] (x is a non-tang. prop. part of y)

Fig. 1. Axioms of RCC

We have proved (by using MACE4 and OTTER) that the set of formulas E
given in the figure 2 categorises under completion the lattice of the RCC-spatial
relationships (given in fig. 3). The set of binary relations formed by the eight
(JEPD) relations given in figure 3 is denoted by RCC8. If this set is thought to
be a calculus, all possible unions of the basic relations are also used. Another
interesting calculus is RCC5, based on {DR, PO, PP, PP i, EQ}.

� ≡ C 	 DR PO 
 ¬P � ¬Pi � ¬DR DR ≡ EC 	 DC
NTPP 
 ¬TPP � ¬Pi � ¬DR C ≡ O 	 EC TPP 
 ¬Pi � ¬DR

O ≡ PO 	 P 	 Pi EQ 
 ¬PPi � ¬DR Pi ≡ EQ 	 PPi
TPPi 
 ¬NTPPi � ¬DR P ≡ EQ 	 PP NTPPi 
 ¬DR

PPi ≡ TPPi 	 NTPPi EC 
 ¬DC PP ≡ TPP 	 NTPP

Fig. 2. A skeleton for RCC

Suppose that if we insert a new spatial uncertain relation D expressing “x and
y have a isometric overlapping relation”; that is, D covers partial overlapping PO
and extensional equality EQ relationships. That is, proper part is not possible
between isometric objects. This is suggested by the study of spatial relationships
among identical objects (e.g. the 2-D spatial configuration of a set of coins).
Thus, we consider that the new relation D satisfies

RCC ∪ {∀x∀y(PO(x, y) → D(x, y)), ∀x∀y(EQ(x, y) → D(x, y))}

or, in terms of skeleton, E ∪ {PO � D, EQ � D}. MACE4 produces seven l.c.
extensions (classified according to their lattices in fig. 4). All these extensions
can be mereotopologically interpreted [11]. Suppose that the set that motivates
the extension is:

Δ :=

⎧
⎨

⎩

PO(m1, m2) EQ(m2, m3) EQ(m3, m4) PO(m1, m3) DC(m4, m6)
DC(m3, m5) PO(m5, m1) NTPP (c1, m3) EC(c2, m1) TPP (c2, c5)
DC(c1, c2) TPPi(c5, c2) NTPP (m2, c4) DC(m1, c3) TPP (c1, c3)

In this case, |U(Δ)| = 15, and the basic JEPD is the set J = {PO, PP, EQ, PPi,
EC, DC}. In each Li, Ji is a JEPD, so we can assign conditional entropy and
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Fig. 3. The lattice of spatial relations of RCC (left) and he relations of RCC8 (right)

Shannon’s diversity index to each extension.Thus, T2 ≡ E+∪{D ≡ PO�EQ} is
the selected l.c. extension because it has the minimum Shannon’s index. On the
other hand, the user’s notion might be inconsistent. For instance, if the user’s
proposal for Σ′ is {PO � D, EQ � D, P � D, D � O}, then there is not any
l.c. extension, a fact that we have certified using MACE4 and OTTER.

5 Data-Driven Ontology Revision: Deficient Data Layout

In above sections, we have formalized the insertion of a concept that will remain
well defined once the appropriate extension is selected. In that case, the compu-
tation of entropies is easier than the entropies defined in this section. Now, we
aim to extend the ontology in a provisional way because the deficient classifica-
tion of data induces the insertion of subconcepts for refining the classification
of individuals which initially were misclassified1. In this case the new concepts
will fall in the bottom level. Therefore, we aim to extend JL, the JEPD set of
concepts which are the atoms of the lattice L(T, C).

The following definition formalizes the notion of insertion of a concept with
certain degree of imprecision as subconcept of a given concept C. It has to be
determined whether there is a l.c. extension of the ontology with an (atomic)
subconcept μC of C. Intuitively, the meaning of μC(a) is “the concept a falls
in the concept C, but we do not know any more specific information about a”.
Formally,

Definition 5. Let (T, E0) be a l.c. core and C ∈ C. We say that the ontology
admits an undefinition at C (T �w C) if there is a l.c. extension of T , (T ′, E′),
such that

1. T ′ is l.c. with respect to C ∪ {μC}, (where μC /∈ C).
2. {μC} is an atom in the lattice L′ = L(T, C ∪ {μC}).
3. There is not C′ such that μC <L′

C′ <L′
C.

1 This approach is inspired in the study presented at Eurocast 2007 [9].
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Fig. 4. The seven l.c. extensions by insertion. The grey box denotes the new relation.

Note that, in above conditions, JL[μC] := JL ∪ {μC} is a JEPD set for L′ (see
fig. 5, left). This requirement represents, in fact, that we have not any additional
information about μC. For example, in figure 5 right, the relation μC(a, b) means
“the regions a and b are connected, but it is unknown if they overlap or they are
externally connected”.

The notation T |=μ C(a) means T |= C(a) and, for all D <L C, T |= D(a).
In other words, C(a) is the most specific knowledge on a entiled from T . It is
easy to see that
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Fig. 5. The ontology (RCC, E) admits an undefinition in the concept C (connection)
(right)

Proposition 3. Whatever two extensions by undefinition at C of T have equiv-
alent lattice skeletons modulo completion.

Such a skeleton of the extension is denoted by E[μC]. We can also consider the
iteration of this kind of extensions, namely E[μC1, . . . , μCk].

Corollary 2. E[{μC : C ∈ C ∧ T �w C}] is unique (modulo database
completion axioms).

5.1 Inserting Provisional Spatial Relationships in RCC

As we have already commented, the JEPD set named RCC8 is the representation
of a precise classification for RCC. In order to build the adequate extension, we
compute first the list of extensions obtained by inserting only one relation.

Theorem 2. There are exactly eight extensions by undefinition of the lattice of
RCC by insertion of a new relation D such that RCC8 ∪ {D} is a JEPD set.

Such new relations can be mereotopologically interpreted [11]. A proof of this
result appears at [11]. The lattices of extensions are detailed at [8]. For example,
the lattice depicted in fig. 5 (right) has a skeleton E[μC].

The next step consists in deciding which is the best l.c. extension to clas-
sify data. Suppose that Δ = {h1, . . . hn} is the set of facts. Assume that the
user believes that the set of misclassified elements is I = {a1, . . . ,ak} ⊆ U(Δ)
(according with user’s ontology). In this case, the problem is not due to a new
concept, because the user has not decided yet an insertion. Such elements are
not falling on atomic concepts (T |= C(a) for any C ∈ JL), because the user has
not an specific definition of them, that is, he has got only unprecise information
(as, instances of upper concepts).

It is easy to provide an extension by undefinition with complete classification
of data. For each ai ∈ I, let Ci ∈ C such that T |=μ Ci(ai). Any extension by
undefinition at the set {Ci : i = 1, . . . k} classifies every element of U(Δ) with



a concept of the JEPD set JT ′ := J ∪ {μC1, . . . , μCk}. Note also, that if we do
not require Ci is the most specific one, the extension is not unique.

Definition 6. Let T ′ be an extension by undefinition of T defined as in 5. The
support of μC is defined as

suppT ′,Δ(μC) =
|{a ∈ U(Δ) : a ∈ I ∧ T ∪ Δ |=μ C(a)}|

|U(Δ)|

That is, the support of μC uses the number of elements for such that T proves
they belong to C. In this way suppT ′,Δ is also a probability measure on JT ′ .
Note that this computation is equivalent to consider the support with respect to
the theory T ′∪{μC(a) : T ∪Δ |=μ C(a)}. To simplify, we consider throughout
that T ′ is that theory.

Theorem 3. The extension above defined exhibits the maximum cognitive en-
tropy among every possible extension by undefinition classifying U(Δ).

Sketch of proof: If T ′′ is other extension, then some ai of I are classified with
respect to a concept which is not the most specific one. Thus the result follows
by the convexity of the function p log p.

A l.c. extension by undefinition with maximum entropy gives little information
on new concepts. This option is a cautious solution to the problem, because
strong requirements for the new concepts are not been imposed.

Fig. 6. Map of United States



5.2 A Motivating Example

In order to understand the problem and its solution, let us suppose that a Ge-
ographical Information System (GIS) launches agents for finding, in the SW,
information about several geographical objects in United States (see fig. 6).
Suppose that the set Δ found by information agents is:

Overlap(West, Mount Elbert)
PartOf(Mount Elbert, Colorado)
PartOf(Colorado, West)
ProperPartOf(Miami, F lorida)
Overlaps(West, Colorado)
Overlaps(Basin of P latte River, Nebraska)
Discrete(Colorado, Basin of Missouri River)
Overlaps(East, Miami)
PartialOverlaps(Basin of Missouri River, West)
ProperPart(East, Colorado)
PartOf(Miami, F lorida)
ProperPartInverse(F lorida, Miami)
TangentialProperPart(Mount Elbert, Great P lains)
Discrete(West, Georgia)
Part(East, Georgia)

Note that several facts do not provide the most specific spatial relation that
it might be expressed with RCC ontology. That is the case of the fact Overlaps
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Fig. 7. Classification of data according to E[μPP, μP, μPP i, μO, μDR]



(Basin of P latte River, Nebraska). Both regions are overlapping, however
there is no information about what level of overlapping relates these regions.

Since the GIS deals with concepts representing underspecified spatial relations
such as Overlaps, PartOf, ..., it is hard to classify individual regions in an
accurate way. They would be classify to work within a set of specific spatial-
relations/concepts, a jointly exhaustive set of pairwise disjoint concepts to get
the exhaustive intended classification.

The problem can be stated as follows: Given a set Δ of facts with respect to
an ontology O, where most of specific information on some individuals can not
entailed, to design a provisional robust extension of O to provisionally classify
these concepts.

The extension of RCC for the running example will be a combination of some
of the eight extensions. We are interested on finding an extension by undefinition
of RCC that classifies the data and exhibits the highest entropy. According to
data of the example, and th. 3, the selected extension has skeleton (see fig.
7): E[μPP, μP, μPPi, μO, μDR]. This l.c. extension reaches (by above theorem)
maximum entropy, its value is 1.566. For example, E[μP, μPPi, μO, μDR], shows
entropy 1.326.

6 Closing Remarks

A formalization of data integration with unprecise information for the Seman-
tic Web has been investigated. It presents a method to insert new concepts
in an ontology with backward compatibility and preserving a weak form of
completeness.

Although it is usual to study entropy for associating data to concepts in On-
tology Learning, it is not usual to consider the provability from ontology like
a factor, as we do. However, we think, that it will be a key issue in the SW.
There are other approaches, but they deal with probabilistic objects. J. Cal-
met and A. Daemi also use entropy in order to revise or compare ontologies
[10] [13]. This is based on the self taxonomy defined by the concepts but prov-
ability from specification is not regarded. Conditional entropy has already been
considered in the similar task of Abductive Reasoning for learning qualitative
relationships/concepts (usually in probabilistic terms, see e.g. [6]). The main
difference between this approach and ours is that we work with probability mass
distribution of provable facts from ontological specifications.

Finally, it should be noted that only some distributions of data will induce
the user to decide an ontological insertion. Therefore, although once the distri-
bution of data is determined, the method is fully formalized, the soundness of
the extensions still depends on human decisions.

Future research lines are addressed, in the medium term, to implement the
cognitive entropy into a representation of ontologies system as a tool to as-
sist the extension of ontologies. In a long term, we will establish a theory,
a formal theory in computational logic, to classify lattice categorical
extensions.
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