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Abstract. Maintenance of logical robustness in Information Integration
represents a major challenge in the envisioned Semantic Web. In this
framework, it is previsible unprecise information (with respect to an on-
tology) is retrieved from some resources. The sound integration of such
information is crucial to achieve logical soundness. We present a data-
driven approach to classify that knowledge by means of the cognitive
entropy of the possible robust ontology extensions and data.

1 Introduction

Knowledge Integration is a major issue in both Knowledge and Data Engineering
(KDE) and Artificial Intelligence fields. Therefore, it has to be solved in one of
the current projects where both fields come together, the Semantic Web (SW). In
this framework, there are many situations where defficent information obstructs
the use of trustworthy reasoning systems [1]. Even, it can suggest the revision
of the intensional component of the Knowledge Database, namely the ontology.

In Ontological Engineering, an accurate classification of the objects is a main
goal. It considers that the individuals involved in such data will remain well
classified when they fall in the most specific classes of the concept taxonomy.
A solution for that classification may be to introduce provisional concepts or
notions for classifying individuals. Since the insertion of a notion of this kind is
mainly data-driven, the notion is initially located in lower levels of the taxonomy
of concepts. This is like that because very little is known about its definition, as
well as how to subclassify their elements. In any way, we need to build a robust
extension of the ontology to trustworthy work with the new concepts.

The subject of this paper is to present a method to insert concepts which have
been induced by defficent information, into an ontology. Since data that suggests
the revision is unprecise (up to certain degree), the user is not interested in to
obtain a definition of the new concept. That is, one only aims to provisionally
classify facts waiting for more precise information. This data-driven approach is
investigated here. The method proposed for ontological insertion lies in extending
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the ontology to provisionally classify the individuals. The extension preserves
main features of ontology source, and it can be considered as a robust extension
(lattice categoricity [2], [3]). The main benefit of the method lies in the fact of
it is fully formalized and it is semi-automated, assisted by automated reasoning
systems.

There is other use case requiring this kind of ontological insertion. When the
ontology engineer identifies a set of specific data (that is, facts on most specific
concepts of the ontology) with the extension of a new concept, since he/she has
not a formal definition of the concept, the place of the ontology in which it has to
be inserted is not specified. This fact typically occurs in settings where ontology
engineer detects language poorness in the ontology. This point of view gives rise
to user-driven approaches that we have formalized in [2].

The remainder of the paper is organized as follows. In the next section we
present a simple example to illustrate the problem. In section 3 the formalization
of robust ontology extension is outlined. A kind of extension is the extension by
insertion of an undefinition (sect. 4). The method is applied to solve the problem
of the example. Finally, some final remarks about the approach are given in
section 5.

2 A Motivating Example

In order to understand the problem as well as its solution, let us suppose that a
Geographical Information System (GIS) launches agents for finding, in the SW,
information about several geographical objects in United States. Suppose that
the data set Δ found by the agents is:

Overlap(West, Mount Elbert)
PartOf(Mount Elbert,Colorado)
ProperPartOf(Miami, F lorida)
ProperPartInverse(F lorida, Miami)
PartialOverlaps(Basin of Missouri River,West)
Overlaps(Basin of P latte River, Nebraska)
TangentialProperPart(Mount Elbert, GreatP lains)
Discrete(Colorado, Basin of Missouri River)

PartOf(Colorado, West)
ProperPart(East, Colorado)
PartOf(Miami, F lorida)
Overlaps(East, Miami)
Overlaps(West, Colorado)
Discrete(West, Georgia)
Part(East, Georgia)

Note that several facts do not provide the most specific spatial relation that it
might be expressed by the ontology. That is the case of the fact Overlaps(Basin
of P latte River, Nebraska). Both regions are overlapping, however there is no
information about what level of overlapping relates these regions. Since the GIS
deals with concepts representing underspecify spatial relations such as Overlaps,
or PartOf, ..., it is hard to classify individual regions in an accurate way. They
would be classified to work within a set of specific spatial-relations/concepts, a
jointly exhaustive set of pairwise disjoint (JEPD) concepts to get the exhaustive
intended classification.

The problem can be stated as: Given a set Δ of facts with respect to an
ontology O, where the most specific information on some individuals can not



entailed, to design an provisional robust extension of O to provisionally classify
these concepts.

The ontology for the running example is Region Connection Calculus (RCC),
designed for (mereotopological) Qualitative Spatial Reasoning (QSR)[7]. The re-
lations of RCC are used in both GIS and spatial databases [9]. More information
on RCC can be found in [7].

The jointly exhaustive and pairwise disjoint (JEPD) set of binary relations
depicted in figure 1 (right-bottom) is denoted by RCC8. The complexity of RCC8
to solve Constraints Satisfaction Problems (CSP) has been deeply studied by
J.R. Renz and B. Nebel [11]. Other calculus to take into account is RCC5. It is
based on the set {DR, PO, PP, PP i, EQ}. It is less precise but more manageable
than RCC8. Therefore, RCC8 represents the most specific spatial relationships
in RCC. The remaining relations of RCC can be regarded as unprecise. The
special interest of authors in this ontology lies in its role as meta-ontology for
visual cleaning [4].

3 Extending Ontologies with Backward Compatibility

The study of ontology revision covers a very broad spectrum of theories and
techniques. It encompasses logical and engineering methods, including theories
from the fields of KDE and Knowledge Representation and Reasoning. A typi-
cal case of the need of ontology revision occurs when ontology engineer detects
that new data are not accurately specified/classified with respect to the current
information. A first solution may be to insert some provisional concept(s) (no-
tion(s)) classifying that unprecise information and to expect that new conditions
will allow us to refine information for obtaining a right classification. Actually,
it involves an extension of ontology. For instance the existence of ground literals
(instances) of an abstract concept (i.e. they are non-direct instances) can be a
methodological problem in ontology design. Thus, it is better to consider a new
concept that provisionally represents a notion. As we have already commented,
such a concept will not have subclasses; thus, it will be located at the ground
level of the taxonomy of concepts.

It is necessary to point out that ontology evolution must obey basic accepted
principles such as backward compatibility, while it is possible. In [3] a weak form
of backward compatibility, useful for the aim of this paper, is introduced. In fact,
it has been used for other kind of extensions in [2].

Considering an ontology as a pair (T, E) where T is the axioms set and E is
a equational characterization of the intended lattice of concepts, (the skeleton),
we say that an ontology is lattice categorical (l.c.) if the lattice determined by T ,
and denoted by L(T, C), is unique. C denotes the set of concepts of T . The theory
RCC is an example of l.c. theory. The only possible lattice structure exhibited
by the models of RCC is that of figure 1, and a skeleton E is computed in [3].

In [3] and [2] we replaced completeness by lattice categoricity to facilitate the
design of feasible methods for extending ontologies with logical soundness. The
extension is defined as follows. Given (T1, E1), (T2, E2), two ontologies of this
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Fig. 1. The skeleton E (left) for the lattice of RCC (right)

kind with respect to the sets of concepts C1 and C2 respectively, we say that
(T2, E2) is a lattice categorical extension of (T1, E1) if L(T1, C1) ⊆ L(T2, C2)
and L(T2, C2) |= E1.

3.1 Cognitive Support

Once the notion of lattice categorical extension has been introduced, some func-
tions for selecting the best l.c. extension have to be designed.

Suppose that Δ = {h1, . . . hn} is a set of facts on concepts in C. The user aims
to classify some of individuals appearing in Δ by means of specific concepts. We
can suppose, to simplify the notation, that every fact explicit in T belongs to Δ.

The cognitive support of C with respect to Δ, T and L, is

supL
T,Δ(C) :=

|{a ∈ U(Δ) : ∃i[Ci ≤ C ∧ T ∪ Δ |= Ci(a)]}|
|U(Δ)|

where U(Δ) := {a : exists C ∈ C [C(a) ∈ Δ]} is the universe determined by
Δ. That is, the cognitive support estimates the number of facts on the concept
C that T entails (normalized by the size of U(Δ)). The computation is trivial

for lattice categorical theories, [2]: supL
T,Δ(C) =

|C|ΔT
|U(Δ)| where |C|Δ := |{a :

C(a) ∈ Δ}| and |C|ΔT := |{a ∈ U(Δ) : T ∪ Δ |= C(a)}|.
Suppose now that Δ is compounded by facts on atoms of the lattice of concepts

(that is, about the most specific concepts). In this case, since J = {C1, . . . , Cn}
is a JEPD, supT,Δ(.) is a probability measure. In general, if J is a JEPD set
of concepts in L, and Δ is compounded by instances on concepts falling in the
cone of some element of J , then supT,Δ(.) is a probability measure on J .



Finally, the cognitive entropy of J is

CH(J ) = −
∑

C∈J
supT,Δ(C) log supT,Δ(C)

This entropy is the key parameter used in the user-driven approach [2].

4 Data-Driven Ontology Revision for Defficent Data

A defficent classification of data induces the insertion of subconcepts for refining
the classification of individuals which initially were misclassified. As it is already
commented, the new concepts will fall in the bottom level. Therefore, we aim to
extend JL, the JEPD set of concepts which are the atoms of the lattice L(T, C).

The following definition formalizes the notion of insertion of a concept with
certain degree of unprecision as subconcept of a given concept C. It has to be
determined whether there is a l.c. extension of the ontology with an (atomic)
subconcept μC of C. Intuitively, the meaning of μC(a) is “the concept a falls in
the concept C, but we do not know more specific information about a”. Formally,

Definition 1. Let (T, E0) be an ontology and C ∈ C. We say that the ontology
admits an undefinition at C (T �w C) if there is a l.c. extension of T , (T ′, E′),
such that

1. T ′ is l.c. with respect to C ∪ {μC}, (where μC /∈ C).
2. {μC} is an atom in the lattice L′ = L(T, C ∪ {μC}).
3. There is not C′ such that μC <L′

C′ <L′
C.

Note that, in above conditions, JL[μC] := JL ∪ {μC} is a JEPD set for L′ (see
fig. 2, left). This requirement represents, in fact, that we have not any additional
information about μC. For example, in figure 2 right, the relation μC(a, b) means
“the regions a and b are connected, but it is unknown if they overlap or they are
externally connected”.

The notation T |=μ C(a) means T |= C(a) and, for all D <L C, T �|= D(a).
In other words, C(a) is the most specific knowledge on a entailed by T . It is easy
to see that

Proposition 1. Whatever two extensions of T by undefinition at C have equiv-
alent lattice skeletons modulo completion.

Such a skeleton of the extension is denoted by E[μC]. We also consider the
iteration of this kind of extensions, namely E[μC1, . . . , μCk].

Corollary 1. E[{μC : C ∈ C ∧ T �w C}] is unique (modulo database
completion axioms).

For the example, this kind of extensions for RCC have to be investigate.
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Fig. 2. The ontology admits an undefinition in the concept C (connection) (right)

4.1 Inserting Provisional Spatial Relationships in RCC

As we have already commented, the JEPD set named RCC8 is the representation
of a precise classification for RCC.

Theorem 1. There are exactly eight extensions by undefinition of the lattice of
RCC by insertion of a new relation D such that RCC8 ∪ {D} is a JEPD set.

Such new relations can be mereotopologically interpreted [6]. The lattices of the
extensions are detailed at [3]. For example, the lattice depicted in fig. 1 (right)
has a skeleton E[μC].

The next step consists in deciding which is the best l.c. extension to clas-
sify data. Suppose that Δ = {h1, . . . hn} is the set of facts. Assume that the
user believes that the set of misclassified elements is I = {a1, . . . ,ak} ⊆ U(Δ)
(according with user’s ontology). In this case, the problem is not due to a new
concept, because he/she has not decided yet an insertion. Such elements are not
falling on atomic concepts (T �|= C(a) for any C ∈ JL), because the user has
not an specific definition of them, that is, he has got only unprecise information
(as instances of upper concepts).

It is easy to provide an extension by undefinition with complete classification
of data. For each ai ∈ I, let Ci ∈ C such that T |=μ Ci(ai). Any extension by
undefinition at the set {Ci : i = 1, . . . k} classifies every element of U(Δ) with
a concept of the JEPD set JT ′ := J ∪ {μC1, . . . , μCk}. Note also, that if we do
not require Ci is the most specific one, the extension is not unique.

Definition 2. Let T ′ be an extension by undefinition of T as defined in 1. The
support of μC is defined as

suppT ′,Δ(μC) =
|{a ∈ U(Δ) : a ∈ I ∧ T ∪ Δ |=μ C(a)}|

|U(Δ)|

That is, the support of μC uses the number of elements for such that T proves
they belong to C. In this way suppT ′,Δ is also a probability measure on JT ′ .
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Fig. 3. Classification of data according to E[μPP, μP, μPP i, μO, μDR]

Note that this computation is equivalent to consider the support with respect to
the theory T ′ + {μC(a) : T ∪Δ |=μ C(a)}. To simplify the notation, we finally
consider throughout that T ′ is that theory.

Theorem 2. The extension above defined exhibits the maximum cognitive en-
tropy among every possible extension by undefinition classifying U(Δ).

Sketch of proof: If T ′′ is other extension, then some ai of I are classified with
respect to a concept which is not the most specific one w.r.t. T . Thus, the result
follows by the convexity of the function p log p.

A l.c. extension by undefinition with maximum entropy gives little information
on new concepts. This option is a cautious solution to the problem, because
strong requirements for the new concepts are not been imposed.

The extension of RCC for the running example will be a combination of some
of the eight extensions. We are interested to find an extension by undefinition of
RCC that classifies the data and exhibits higher entropy. According to data and
th. 2, the selected extension has skeleton (fig. 3): E[μPP, μP, μPPi, μO, μDR].
This l.c. extension has maximum entropy (by above theorem), 1.566. For exam-
ple, E[μP, μPPi, μO, μDR], shows entropy 1.326.

5 Closing Remarks and Related Work

A formalization of integration of unprecise data with respect to an ontology has
been investigated, as well as a method to insert new concepts in an ontology
with backward compatibility and preserving a weak form of completeness.

Note that reasoning services -that we need in order to build the extension
with maximum entropy- can be non-decidable for first order theories. However,
it is feasible for ontologies expressed in several (decidable) Description Logics,
or considering the skeleton (a DL theory) as basis theory.



In [2] we formalize the insertion of a concept (possibly in a upper level) that
will remain well defined once the appropriate extension is selected. In that case,
the computation of the (conditional) entropies is easier than the entropies defined
on this paper. The approach of this paper is different because it is not necessary
user decision on new concepts. Possibly, both procedures should be combined in
several situations like document enrichment tasks [10].

Entropy is usually considered for associating data and concepts of an ontology
(see e.g. [5] ). J. Calmet and A. Daemi also use entropy for revising or comparing
ontologies [8], based on the concept taxonomy. However it is unusual to consider
the provability as a parameter.

Finally, note that, although the method is fully formalized, the cognitive
soundness of the extensions will depend of the human decision. Moreover, the
iteration of the method can produce the existence of many provisional concepts
without intentional component. It may be unadvisable in some cases.
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2. Borrego-Dı́az, J., Chávez-González, A.M.: Controlling Ontology Extension by Un-
certain Concepts Through Cognitive Entropy. Uncertain Reasoning for the Seman-
tic Web, URSW 2005, CEUR 173, 56–66 (2005)
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