COMMUNICATION

WILEY-VCH

A Cationic Unsaturated Platinum(II) Complex that Promotes the Tautomerization of Acetylene to Vinylidene

Laura Ortega-Moreno, Riccardo Peloso, Joaquín López-Serrano, Javier Iglesias-Sigüenza, Celia Maya and Ernesto Carmona*^[a]

Dedication ((optional))

Abstract: Complex [PtMe₂(PMe₂Ar^{Dipp}₂)] (1) that contains a tethered terphenyl phosphine (Ar^{Dipp}₂ = 2,6-(2,6-ⁱPr₂C₆H₃)₂C₆H₃) reacts with [H(Et₂O)₂]BAr_F (BAr_F⁻ = B[3,5-(CF₃)₂C₆H₃]₄⁻) to give the solvent complex [PtMe(S)(PMe₂Ar^{Dipp}₂)]⁺ (**2**·**S**). Although the solvent molecule was easily displaced by a Lewis base (e.g. CO and C₂H₄) to afford the corresponding adducts, treatment of **2**·**S** with C₂H₂ yielded instead the allyl complex [PtMe(η²-C₂H₂)(PMe₂Ar^{Dipp}₂)]⁺ (**6**) *via* the alkyne intermediate [PtMe(η²-C₂H₂)(PMe₂Ar^{Dipp}₂)]⁺ (**5**). Deuteration experiments with C₂D₂ and kinetic and theoretical investigations demonstrated that the conversion of **5** into **6** involved a Pt(II)-promoted HC=CH to :C=CH₂ tautomerization in preference over acetylene migratory insertion into the Pt-Me bond.

Cationic organometallic complexes are valuable reagents that find numerous applications in catalysis.^[1-3] Low-coordinate cationic methyl derivatives of Pt(II) are of particular importance, for they combine high metal electrophilicity with the accessible coordination sites and the intrinsic reactivity of the metal-carbon σ -bond.^[4-6]

π-Acidic Pt(II) and Au(I) systems catalyze many electrophilic activations of alkenes and alkynes.^[7] Carbene complexes, including metal-vinylidenes,^[8-9] are often proposed as active intermediates, but in most instances there is no direct evidence for their involvement.^[7a] Vinylidene complexes of transition metals have been widely investigated, the most convenient method to induce the alkyne-to-vinylidene rearrangement being the use of electron-rich metal fragments.^[9a] By contrast, there is a scarcity of information about Pt and Au analogues,^[10-12] which might be associated with the π-acid nature of compounds of these metals.^[7]

Phosphines are one of the most important families of auxiliary ligands.^[13] Following earlier work,^[14] we describe herein the synthesis and structural characterization of the cationic, unsaturated complex [PtMe(S)(κ^2 -P,C-PMe₂Ar^{Dipp₂})]⁺ (**2-S**), that features bidentate coordination of the bulky phosphine, PMe₂Ar^{Dipp₂} (Dipp = 2,6-^{*i*}PrC₆H₃; Ar^{Dipp₂} = 2,6-(2,6-

[b] Dr. J. Iglesias-Sigüenza, Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/Prof. García González 1, 41012 Sevilla, Spain.

Supporting information for this article is given via a link at the end of the document.

¹PrC₆H₃)₂C₆H₃).^[15,16] Although complex **2·S** is not truly a lowcoordinate species,^[17] it exhibits a weakly-bonded molecule of solvent (S = H₂O, Et₂O, THF) and a labile Pt···C_{arene} interaction. Therefore it could be viewed as a source of the two-ligand Pt fragment [PtMe(PMe₂Ar^{Dipp}₂)]⁺, for which rich electrophilic reactivity can be foreseen. While no C—C bond formation was observed for C₂H₄ under ambient conditions, C₂H₂ yielded initially an unprecedented^[18,19] [PtMe(η²-C₂H₂)(PMe₂Ar^{Dipp}₂)]⁺ complex (**5**), that experienced facile C—C coupling to afford the *π*-allyl complex [Pt(η³-C₃H₅)(PMe₂Ar^{Dipp}₂)]⁺ (**6**). The use of C₂D₂ provided unequivocal proof for a CH=CH to :C=CH₂ tautomerism induced by the Pt(II) center, also supported by computational studies.

Protonation (CD₂Cl₂, -80 °C) of complex **1** that features κ^2 -P,C phosphine coordination^[20] (see the Supporting Information) with $[H(Et_2O)_2]BAr_F$ (BAr_F⁻ = B[3,5-(CF_3)_2C_6H_3]_4⁻) did not permit observation of a transient σ-CH₄ complex.^[2c] Liberation of CH₄ formation instead with occurred of complexes [PtMe(S)(PMe₂Ar^{Dipp}₂)]⁺ (2·S) (Scheme 1) featuring rather large J_{PPt} and ${}^{3}J_{PtH}$ (Pt—Me) couplings of about 4800 and 77 Hz, respectively. These complexes exhibited dynamic behavior at 25 °C,[21] although below -10 °C the molecular structure became rigid on the NMR time scale. The Dipp rings give rise below 25 °C to two septets (2.38 and 2.28 ppm in C2D2Cl4) and four doublets (between 1.52 and 1.06 ppm) for the ⁱPr substituents. At higher temperatures (Figure S12) the two rings become equivalent (above 110 °C; $\Delta G^{\dagger} = 19 \pm 2 \text{ kcal} \cdot \text{mol}^{-1}$ at the coalescence temperature of 100 °C).

Single crystals of **2·S** could only be obtained after prolonged cooling at -20 °C of CH_2Cl_2/Et_2O solutions of the complex. Adventitious H_2O originated crystals of the aquo complex [PtMe(H₂O)(PMe₂Ar^{Dipp}₂)]BAr^F **2·H₂O** in preference to those of **2·Et₂O** or **2·CH₂Cl₂**. The H₂O ligand is *trans* to P (Figure 1) and forms a Pt—O bond with a normal^[22] length of 2.143(4) Å. Other metric parameters have the expected values, though the Pt···C_{arene} interaction (Pt1-C22 in Figure 1) of 2.348(5) Å is significantly longer than normal olefinic Pt(II)—C

 [[]a] Dr. L. Ortega-Moreno, Dr. R. Peloso, Dr. J. López-Serrano, Dr. C. Maya, Prof. Ernesto Carmona Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA). Universidad de Sevilla and Consejo Superior de Investigaciones Científicas (CSIC). Avenida Américo Vespucio 49, 41092 Sevilla (Spain) E-mail: <u>guzman@us.es</u>

COMMUNICATION

bonds (*ca.* 2.11-2.16 Å).^[23-25] The X-ray data therefore support the notion that cations **2-S** could behave as a source of the electrophilic [PtMe(PMe₂Ar^{Dipp}₂)]⁺ fragment.

Figure 1. ORTEP view of the cation of complex 2-H₂O; most hydrogen atoms are excluded for clarity and thermal ellipsoids are set at 40% level probability. Selected bond distances (Å) and angles (°): Pt1-O1 2.143(4), Pt1-C1 2.034(6), Pt1-P1 2.170(1), Pt1-C22 2.348(5), O1-Pt1-C1 83.2(2), C1-Pt1-P1 89.6(2), P1-Pt1-C22 83.9(1), C22-Pt1-O1 103.1(2).

We sought empirical evidence for the electron density at the Pt(II) center of **2-S** by carrying out its reaction with CO. Treatment of **2-S** with CO (2 bar, 20 °C) gave the carbonyl complex [PtMe(CO)(PMe₂Ar^{Dipp₂})]⁺, (**3**), with a κ^2 -P,C tethered phosphine in a structure akin to **2-S**. Its carbonyl IR stretching frequency at 2127 cm⁻¹ is only somewhat smaller than the 2143 cm⁻¹ value of free CO. For comparison, cationic bis(diimine) complexes [PtMe(CO)(N/N)]⁺ ^[25] and recently reported [Pt(PCP)(CO)]⁺ derivatives^[26] have $\tilde{\nu}$ (CO) values of 2103-2116 cm⁻¹ and 2111-2145 cm⁻¹, respectively.

Complex **2-S** offered also the possibility of accommodating Pt—alkene or Pt—alkyne functions *cis* to the Pt—Me bond, thus amenable to experience insertion reactions.^[24,27] These compounds are related to the catalyst resting state involved in the Pd- and Ni-catalyzed olefin polymerization^[1a] and in the Pt-catalyzed dimerization of ethylene.^[22,28-29]

Addition of C2H4 to CH2Cl2 solutions of complex 2.S led to the adduct $[PtMe(\eta^2-C_2H_4)(PMe_2Ar^{Dipp_2})]^+$ (4), exhibiting once again chelating κ²-P,C phosphine ligation. The Pt-C₂H₄ linkage undergoes fast C₂H₄ rotation at 20 °C, with a barrier $\Delta G^{\dagger} = 11 \pm$ 1 kcal·mol⁻¹ at the coalescence temperature of 25 °C (Figure S13). It also experiences associative exchange with excess free C_2H_4 (EXSY NMR between 0 and 25 °C, $\Delta G^{\pm} = 16 \pm 2$ kcal·mol⁻¹). At room temperature, it gives rise to a broad ${}^{13}C{}^{1}H$ NMR resonance at 102.2 ppm, thereby having an olefin coordination shift to lower frequencies, $\Delta\delta$, of nearly -21 ppm. For comparison, in dicationic $[Pt(PNP)(C_2H_4)]^{2+}$, $\Delta \delta = -45$ ppm.^[7c,30] This observation is indicative of a significantly decreased contribution of the $\pi\text{-back-donation}$ in complex $\textbf{4}^{[31]}_{,}$ in agreement with the high π -acidity of the Pt(II) center in 2-S. Complex 4 is nonetheless stable at 20 °C towards C2H4 migratory insertion into the Pt-Me bond, although under excess of C_2H_4 (2 bar) becomes a catalyst precursor for C_2H_4 dimerization^[22,28,29] above 55 °C (see the Supporting Information). Related diimine Pt catalysts required heating for 2 days at 100 °C.[28]

When complex **2-S** was treated with C_2H_2 at room temperature (2 bar, CH_2CI_2 solution) a clean reaction yielded the η^3 -allyl complex $[Pt(\eta^3-C_3H_5)(PMe_2Ar^{Dipp_2})]^+$ (6), through the intermediacy of the π - C_2H_2 compound $[PtMe(\eta^2-C_2H_2)(PMe_2Ar^{Dipp_2})]^+$ (5) (Scheme 2). Monitoring of the reaction

by variable temperature ¹H and ³¹P{¹H} NMR spectroscopy revealed that C₂H₂ coordination takes place even at -80 °C, forming adduct **5** that features a ³¹P{¹H} resonance at 11.5 ppm, with a ¹J_{PPt} of 4282 Hz. This species contains Pt—Me (δ 0.60, ³J_{HP} = 3 Hz, ²J_{HPt} = 76 Hz) and Pt— η^2 -C₂H₂ linkages, the latter giving rise to a ¹H NMR doublet centered at 3.08 ppm (³J_{HP} = 4 Hz, ²J_{HPt} = 50 Hz) and to a ¹³C doublet resonance centered at 77.7 ppm, with ¹J_{CH}, ²J_{CH}, and ²J_{CP} couplings of 263, 44, and 12 Hz, respectively.

Scheme 2. Formation of the $\pi\text{-allyl}$ complex 6 from 2-S and C_2H_2 via $\eta^2\text{-}$ acetylene adduct 5.

A second intermediate formed above -60 °C and survived for a short time at room temperature before it converted into the n^3 -allyl complex 6 that was the only observable reaction endproduct. Its NMR characterization was therefore attempted at -20 °C. It contains an intact Pt-Me unit, as hinted by a ¹H NMR resonance at δ 0.43 ppm (²J_{HPt} = 74 Hz) and a corresponding $^{13}C{^{1}H}$ signal at -6.6 ppm ($^{2}J_{CP}$ = 6 Hz). In addition, a ^{13}C resonance was recorded at 221.2 ppm. Since in a recently reported cationic Pt(II) alkylidene a ¹³C signal at 209 ppm was assigned to the alkylidene carbon nucleus,^[14a] it is tempting to ascribe the observed 221.2 ppm resonance to the Pt-bonded carbon of the $Pt=C=CH_2$ unit. The corresponding CH_2 resonance could not be assigned with confidence and therefore we defer a definite structural proposal for this intermediate until additional data become available. Noteworthy, for a recently reported Au(I) vinylidene, the key resonances of the α - and β -carbon of the vinylidene ligand could not be detected despite extended acquisition. ¹³C labeling was needed to identify two broad multiplets at 206 and 112 ppm for this vinylidene fragment.^[10]

Unequivocal evidence for the participation of a Pt(II)vinylidene in the formation of complex **6** was provided by isotopic labelling studies using C_2D_2 . The newly formed allyl moiety of **6**-*d*₂ contained two D atoms bound to a terminal allyl carbon atom. Furthermore, the use of C_2D_2 yielded a kinetic isotope effect $k_{\rm H}/k_{\rm D}$ of 2.7 ± 0.3 suggesting that acetylene C—H bond cleavage was involved in the rate-determining step.

Computational studies at the DFT M06/6-31g(d,p)/SDD level were developed and two mechanistic routes were explored, namely, migratory insertion of the coordinated C₂H₂ molecule of **5** into the Pt—Me bond and a 1,2-hydrogen shift within the η^2 -bound alkyne. $\Delta G^{\neq,\text{DCM}}$ values of 26.1 kcal·mol⁻¹ and 19.4 kcal·mol⁻¹ were respectively found (Figure 2).^[32] The latter path led in its first elemental step to the vinylidene ligand of intermediate **A**, with energy only 6.5 kcal·mol⁻¹ above **5**. Fast CH₃ migration to the Pt=C bond ($\Delta G^{\neq,\text{DCM}} = 5.9$ kcal·mol⁻¹ from **A**) yields a second intermediate **B** that originates **6** after a facile, Pt-assisted H migration from CH₃ to the central Pt-bonded

carbon atom. The overall energy return $\Delta G^{0,\text{DCM}}$ is of 40.9 kcal·mol⁻¹. The calculations support therefore that the vinylidene route to the η^3 -allyl complex **6** is preferred over the classical migratory insertion reactivity.

Figure 2. Free energy profile for the transformation of 5 to 6 via acetylene to vinylidene tautomerization.

The small energy difference computed for the tautomeric structures **5** and **A** (6.5 kcal·mol⁻¹) is rather intriguing. To gain further information, the donor-acceptor properties of the C2H2 and vinylidene ligands of 5 and A were analyzed by means of the Energy Decomposition Analysis (EDA; Table 1) $^{\left[33\right] }$ and Natural Orbital for Chemical Valence (NOCV) schemes.^[34] For the sake of completeness, the Pt-C₂H₄ linkage of complex 4 was also investigated computationally. The results of this analysis confirm that the C=CH₂ ligand has the largest fragment interaction energy (ΔE_{int} : -72.2 vs. -32.5 (η^2 -C₂H₄) and -31.6 (η^2 - C_2H_2) kcal·mol⁻¹). The Pt(II)-vinylidene interaction has a strong electrostatic component (see Table 1 and the Supporting Information for further details)^[7a,35] and it is largely responsible for the accessibility of the vinylidene isomer under mild conditions ($\Delta(\Delta E_{int})$ between η^2 -HC=CH and :C=CH2 coordination amounts 40.6 kcal·mol⁻¹).

Table 1. EDA analysis of the [Pt]- η^2 -C₂H₄, [Pt]- η^2 -C₂H₂ and [Pt]=C=CH₂ interactions in **4**, **5** and **B** optimized at the BP86/TZP level imposing Cs symmetry.

	[Pt]- η^2 -C ₂ H ₄	[Pt]- η ² -C ₂ H ₂	[Pt]=C=CH ₂
$\Delta \boldsymbol{E}_{int}^{[a]}$	-32.5	-31.6	-72.2
ΔE_{Pauli}	148.0	153.2	267.3
$\Delta E_{elstat}^{[b]}$	-106.7 (59.1%)	-110.2 (59.6%)	-218.6 (64.4%)
$\Delta E_{\rm orb}^{[b]}$	-73.8 (40.9%)	-74.6 (40.4%)	-120.9 (35.6%)
$\Delta \boldsymbol{E}(\mathbf{A}')^{[c]}$	-47.61 (64.6%)	-45.8 (61.3%)	-103.3 (85.4%)
$\Delta \boldsymbol{E}(\mathbf{A}")^{[c]}$	-26.14 (34.4%)	-28.9 (38.7%)	-17.7 (14.6%)

^[a] kcal·mol⁻¹; ^[b] Percentage of electrostatic/covalent contribution to the attractive interactions; ^[c] Percentage contribution to the orbital interactions.

In conclusion, this work proves that the electrophilic Pt(II) center of the cationic methyl-acetylene complex **5**, readily accessible from **2-S** and C_2H_2 , induces a C—C bond forming reaction through an isomeric methyl-vinylidene structure in preference to classical migratory insertion reactivity.

Acknowledgements

Financial support (FEDER support, Subprogramas Ramón y Cajal and Juan de la Cierva, grant BES-2011-048035) from Spanish Ministry of Science (Projects CTQ2013-42501-P, CTQ2014-51912-REDC and CTQ-2014-52769-C3-3-R) and the Junta de Andalucía (Grant FQM-119 and project P09-FQM-4832 and FQM-2126) is gratefully acknowledged. The use of the facilities of the Galicia Supercomputing center (CESGA) and the SGAI-CSIC (Cluster Trueno) are gratefully acknowledged.

Keywords: phosphane ligands • π -acid complex • vinylidenes • platinum • DFT

- a) S. D. Ittel, L. K. Johnson, M. Brookhart, *Chem. Rev.* 2000, 100, 1169; b) D. S. McGuinness, *Chem. Rev.* 2011, 111, 2321; c) J. R. Khusnutdinova, D. Milstein, *Angew. Chem. Int. Ed.* 2015, 54, 12236.
- a) M. Joost, A. Amgoune, D. Bourissou, *Angew. Chem. Int. Ed.* 2015, 54, 15022; b) J. J. Verendel, O. Pàmies, M. Diéguez, P. G. Andersson, *Chem. Rev.* 2014, *114*, 2130; c) W. H. Bernskoetter, C. K. Schauer, K. I. Goldberg, M. Brookhart, *Science* 2009, *326*, 553.
- a) J. Carreras, M. Patil, W. Thiel, M. Alcarazo, J. Am. Chem. Soc. 2012, 134, 16753; b) C. Hahn, M. Miranda, N. P. B. Chittineni, T. A. Pinion, R. Perez, Organometallics 2014, 33, 3040; c) R. Dorel, A. M. Echavarren, Chem. Rev. 2015, 115, 9028.
- [4] a) R. Romeo, G. D'Amico, E. Sicilia, N. Russo, S. Rizzato, J. Am. Chem. Soc. 2007, 129, 5744; b) R. J. Puddephatt, Coord. Chem. Rev. 2001, 219-221, 157.
- [5] a) L. Johansson, M. Tilset, J. A. Labinger, J. E. Bercaw, J. Am. Chem. Soc. 2000, 122, 10846; b) J. S. Owen, J. A. Labinger, J. E. Bercaw, J. Am. Chem. Soc. 2006, 128, 20056; c) A. E. Shilov, G. B. Shul'pin, Chem. Rev. 1997, 97, 2879; d) U. Fekl, K. I. Goldberg, in Advances in Inorg. Chem., Vol. 54, Academic Press, 2003, p. 259.
- [6] a) M. J. Ingleson, M. F. Mahon, A. S. Weller, *Chem. Commun.* 2004, 2398; b) S. H. Crosby, G. J. Clarkson, J. P. Rourke, *Organometallics* 2011, *30*, 3603; c) W. Baratta, S. Stoccoro, A. Doppiu, E. Herdtweck, A. Zucca, P. Rigo, *Angew. Chem. Int. Ed.* 2003, *42*, 105; d) O. Rivada-Wheelaghan, M. Roselló-Merino, J. Díez, C. Maya, J. López-Serrano, S. Conejero, *Organometallics* 2014, *33*, 5944; e) J. L. Spencer, G. S. Mhinzi, *J. Chem. Soc, Dalton Trans.* 1995, 3819.
- a) A. Fürstner, P. W. Davies, Angew. Chem. Int. Ed. 2007, 46, 3410; b)
 A. R. Chianese, S. J. Lee, M. R. Gagné, Angew. Chem. Int. Ed. 2007, 46, 4042; c) C. Hahn, Chem. Eur. J. 2004, 10, 5888.
- [8] a) M. I. Bruce, Chem. Rev. 1991, 91, 197; b) C. Bruneau, P. H. Dixneuf, Angew. Chem. Int. Ed. 2006, 45, 21763; c) C. Bianchini, M. Peruzzini, A. Vacca, F. Zanobini, Organometallics 1991, 10, 3697; d) F. De Angelis, S. Fantacci, A. Sgamellotti, Coord. Chem. Rev. 2006, 250, 1497; e) V. Cadierno, M. P. Gamasa, J. Gimeno, Coord. Chem. Rev. 2004, 248, 1627; f) Y. Wakatsuki, J. Organomet. Chem. 2004, 689, 4092.
- [9] a) J. M. Lynam, Chem. Eur. J. 2010, 16, 8238; b) O. J. S. Pickup, I. Khazal, E. J. Smith, A. C. Whitwood, J. M. Lynam, K. Bolaky, T. C. King, B. W. Rawe, N. Fey, Organometallics 2014, 33, 1751; c) M. Jiménez-Tenorio, M. C. Puerta, P. Valerga, M. A. Ortuño, G. Ujaque, A. Lledós, Inorg. Chem. 2013, 52, 8919; d) H. Werner, Coord. Chem. Rev. 2004, 248, 1693.
- [10] R. J. Harris, R. A. Widenhoefer, Angew. Chem. Int. Ed. 2015, 54, 6867.
- a) U. Belluco, R. Bertani, F. Meneghetti, R. A. Michelin, M. Mozzon, J. Organomet. Chem. 1999, 583, 131; b) U. Belluco, R. Bertani, R. A. Michelin, M. Mozzon, J. Organomet. Chem. 2000, 600, 37; c) U. Belluco, R. Bertani, R. A. Michelin, M. Mozzon, F. Benetollo, G. Bombieri, R. J. Angelici, Inorg. Chim. Acta 1995, 240, 567; d) M. Rashidi, R. J. Puddephatt, J. Am. Chem. Soc. 1986, 108, 7111.
- [12] a) T. G. Appleton, M. H. Chisholm, H. C. Clark, K. Yasufuku, J. Am. Chem. Soc. **1974**, *96*, 6600; b) S. Carlisle, A. Matta, H. Valles, J. B. Bracken, M. Miranda, J. Yoo, C. Hahn, Organometallics **2011**, *30*, 6446; c) B. E. Cowie, D. J. H. Emslie, Chem. Eur. J. **2014**, *20*, 16899.

COMMUNICATION

- a) D. S. Surry, S. L. Buchwald, *Chem. Sci.* 2011, *2*, 27; b) J. F. Hartwig, *Acc. Chem. Res.* 2008, *41*, 1534; c) C. A. Fleckenstein, H. Plenio, *Chem. Soc. Rev.* 2010, *39*, 694; d) M. Alcarazo, *Chem. Eur. J.* 2014, *20*, 7868.
- [14] a) J. Campos, R. Peloso, E. Carmona, *Angew. Chem. Int. Ed.* 2012, 124, 8380; b) J. Campos, L. Ortega-Moreno, S. Conejero, R. Peloso, J. López-Serrano, C. Maya, E. Carmona, *Chem. Eur. J.* 2015, *21*, 8883.
- [15] a) M. L. Scheuermann, K. A. Grice, M. J. Ruppel, M. Rosello-Merino, W. Kaminsky, K. I. Goldberg, *Dalton Transactions* 2014, *43*, 12018; b) H. Grützmacher, *Angew. Chem. Int. Ed.* 2008, *47*, 1814; c) P. Braunstein, F. Naud, *Angew. Chem. Int. Ed.* 2001, *40*, 680; d) H. Werner, *Dalton Transactions* 2003, 3829.
- [16] a) L. Ortega-Moreno, R. Peloso, C. Maya, A. Suarez, E. Carmona, *Chem. Commun.* 2015, *51*, 17008; b) L. Ortega-Moreno, M. Fernández-Espada, J. J. Moreno, C. Navarro-Gilabert, J. Campos, S. Conejero, J. López-Serrano, C. Maya, R. Peloso, E. Carmona, *Polyhedron* 2016, *116*, 170.
- H. Braunschweig, P. Brenner, R. D. Dewhurst, J. O. C. Jimenez-Halla, T. Kupfer, D. Rais, K. Uttinger, *Angew. Chem. Int. Ed.* **2013**, *52*, 2981.
- [18] R. G. Goel, R. C. Srivastava, Can. J. Chem. 1983, 61, 1352.
- a) M. Benedetti, V. Lamacchia, D. Antonucci, P. Papadia, C. Pacifico, G. Natile, F. P. Fanizzi, *Dalton Transactions* 2014, *43*, 8826; b) F. P. Fanizzi, G. Natile, M. Lanfranchi, A. Tiripicchio, G. Pacchioni, *Inorg. Chim. Acta* 1998, *275/276*, 500.
- [20] A. Falceto, E. Carmona, S. Alvarez, Organometallics 2014, 33, 6660.
- [21] M. D. Butts, B. L. Scott, G. J. Kubas, J. Am. Chem. Soc. 1996, 118, 11831.
- [22] J. J. Adams, N. Arulsamy, D. M. Roddick, Organometallics 2009, 28, 1148.
- [23] M. Black, R. H. B. Mais, P. G. Owston, Acta Cryst. B 1969, 25, 1753.
- [24] a) M. Fusto, F. Giordano, I. Orabona, F. Ruffo, A. Panunzi, *Organometallics* **1997**, *16*, 5981. b) M. Green, *J. Organomet. Chem.* **1986**, *300*, 93; c) M. Bottrill, M. Green, *J. Am. Chem. Soc.* **1977**, *99*, 5795.
- [25] H. A. Zhong, J. A. Labinger, J. E. Bercaw, J. Am. Chem. Soc. 2002, 124, 1378.
- [26] B. G. Anderson, J. L. Spencer, Chem. Eur. J. 2014, 20, 6421.
- [27] P. Ganis, I. Orabona, F. Ruffo, A. Vitagliano, Organometallics 1998, 17, 2646.
- [28] M. Shiotsuki, P. S. White, M. Brookhart, J. L. Templeton, J. Am. Chem. Soc. 2007, 129, 4058.
- [29] a) S. White, B. L. Bennett, D. M. Roddick, Organometallics 1999, 18, 2536; b) S. Basu, N. Arulsamy, D. M. Roddick, Organometallics 2008, 27, 3659.
- [30] C. Hahn, P. Morvillo, E. Herdtweck, A. Vitagliano, Organometallics 2002, 21, 1807.
- [31] L. Cavallo, A. Macchioni, C. Zuccaccia, D. Zuccaccia, I. Orabona, F. Ruffo, Organometallics 2004, 23, 2137.
- [32] The barrier for insertion of C₂H₄ in 4 is significantly higher at 33.6 kcal-mol⁻¹ in agreement with the relative inertness of this complex.
- [33] a) Morokuma, K. J. Chem. Phys. **1971**, 55, 1236; b) Ziegler, T.; Rauk, A. Theor. Chim. Acta **1977**, 46, 1.
- [34] M. P. Mitoraj, A. Michalak, T. Ziegler, J. Chem. Theory Comput. 2009, 5, 962.
- [35] a) M. S. Nechaev, V. M. Rayon, G. Frenking, *J. Phys. Chem. A.*, 2004, 108, 3134; b) C. Massera, G. Frenking, *Organometallics* 2003, 22, 2758; c) S. F. Vyboishchikov, G. Frenking, *Chem. Eur. J.*, 1998, 4, 1428; d) G. Frenking, M. Solà, S. F. Vyboishchikov, *J. Organomet. Chem.*, 2005, 690, 6178.

Entry for the Table of Contents (Please choose one layout)

Layout 1:

COMMUNICATION

The cationic complex $[PtMe(S)(PMe_2Ar^{Dipp_2})]^* reacted with$ acetylene to yield the allyl complex $<math display="block">[Pt(\eta^3-C_3H_5)(PMe_2Ar^{Dipp_2})]^*, formally$ the product of a classical migratoryinsertion reaction. Nevertheless, $deuteration experiments with C_2D_2$ and kinetic and theoreticalinvestigations demonstrated that thetransformation occurred*via*a Pt(II) $promoted HC=CH to :C=CH_2$ tautomerization.

L. Ortega-Moreno, R. Peloso, J. López-Serrano, Javier Iglesias-Sigüenza, C. Maya and E. Carmona*

Page No. – Page No.

A Cationic Unsaturated Platinum(II) Complex that Promotes the Tautomerization of Acetylene to Vinylidene