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Abstract. Bézier curves and surfaces are two very useful tools in Geometric Modeling, with many
applications. In this paper, we will offer a new method to provide approximations of regular curves and
surfaces by Bézier ones, with the corresponding examples.

1. Introduction

The classic theory of curves and surfaces is one of the most famous areas in Differential Geometry. It
combines very visual and intuitive elements with really deep results and techniques. This theory was
mainly developed in the 18th and 19th centuries, by mathematicians like Gaspard Monge (1746-1818), who
is considered the father of Differential Geometry because of his work Application de l’Analyse à la Géométrie,
or Carl Friedrich Gauss (1777-1855), among many others.

But the direct use of regular curves and surfaces in applied areas such as engineering or architecture
is not easy in general. There, some other types of geometrical tools have been developed. For example,
Bézier curves and surfaces, named after the French Engineer and Mathematician Pierre Bézier (1910-1999).
They have proved to be two very useful tools in Geometric Modeling, with many applications.

In this paper, we want to strengthen the link between these two geometrical theories, offering an answer
to this main question: given a regular curve or surface, is it possible to approximate it by a Bézier one? Of
course, this question is not new, and have been deeply studied in some particular cases (see, for instance, [1]
and [2]). But we offer a different approach, with a method which can be used for any kind of regular curve
or surface. In fact, our method is somehow inspired by a classical construction in Differential Geometry:
the orthogonal variations. Roughly speaking, an orthogonal variation of a curve is produced when the
curve is considered as a cord, vibrating in a direction which is orthogonal to its tangent vector at any
point. Variations of curves are used, for example, to characterize geodesics as the solutions of a variational
problem. For more details and the exact definitions about this procedure, we recommend [3]. Our method
can be seen as a kind of discretization of that construction.
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2. Preliminaries

In this section, we recall some definitions and basic formulas which we will use later.
A regular parametrized plane (resp. spatial) curve is a differentiable map α : I → R2 (resp. R3) of an open

interval I = (a, b) of the real lineR intoR2 (resp. R3), such that α′(t) , 0 for any t ∈ I. We can consider also a
curve α defined on a closed interval [c, d] if there exist an open interval (a, b) and a curve ᾱ defined on (a, b)
such that [c, d] ⊂ (a, b) and α(t) = ᾱ(t), for any t ∈ [c, d] (i.e., α is the restriction of ᾱ).

Given a regular parametrized plane curve α : I → R2 : t 7→ α(t) = (x(t), y(t)), we can consider a moving
orthonormal dihedron {t,n} along α, called the Frenet dihedron, defined by:

t(t) =
α′(t)
|α′(t)| =

1
|α′(t)| (x

′(t), y′(t)), n(t) =
1
|α′(t)| (−y′(t), x′(t)).

The vector t is called the unit tangent vector and n is known as the normal vector.
For a spatial curve α, we first recall that its curvature is given by

k =
|α′ × α′′|
|α′|3 .

Therefore, at every point α(t) such that k(t) , 0, we can consider an orthonormal trihedron {t(t),n(t),b(t)},
called the Frenet trihedron, defined by:

t(t) =
α′(t)
|α′(t)| , b(t) =

α′(t) × α′′(t)
|α′(t) × α′′(t)| , n(t) = b(t) × n(t).

The vector t is called the unit tangent vector, n is the principal normal vector and b is known as the binormal
vector.

A regular parametrized surface is a differentiable map x : U → R3 : (u, v) 7→ x(u, v) of an open set U of the
real plane R2 into R3, such that ∂x/∂u × ∂x/∂v , 0 at any point (some authors also ask such a surface to be
injective). This regularity condition allows us to define the normal vector at any point of the surface, given
by:

N =
∂x/∂u × ∂x/∂v
|∂x/∂u × ∂x/∂v| .

For more details about regular curves and surfaces, we recommend the classical reference [3].
Let us recall now the definitions of Bézier curves and surfaces. Given n + 1 points P0, . . . ,Pn, they

determine the Bézier curve B : [0, 1]→ R2 (or R3) given by

B(t) =
n∑

i=0

Bn
i (t)Pi,

where

Bn
i (t) =

(
n
i

)
ti(1 − t)n−i, 0 ≤ i ≤ n

is the Bernstein polynomial of degree n. Given a grid of m · n points Pi j, 0 ≤ i ≤ m, 0 ≤ j ≤ n, it determines the
Bézier surface B : [0, 1] × [0, 1]→ R3 given by

B(u, v) =
m∑

i=0

n∑
j=0

Bm
i (u)Bn

j (v)Pi j,

where Bm
i and Bn

j are Bernstein polynomials of degree m and n, respectively.
For more details about Bézier curves and surfaces, we recommend the reference [4].
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3. Normal approximation of regular curves

Let α : [0, 1] −→ R2 be a regular parametrized plane curve. We want to approximate it by a Bézier
curve, which will be determined by n + 1 control points P0,P1, . . . ,Pn in R2. We now describe our method
to choose these points:

• Step 1: We choose n + 1 values t0, . . . , tn in [0, 1] such that t0 = 0 < t1 < · · · < tn−1 < tn = 1. We directly
put P0 = α(0), Pn = α(1). For every i = 1, . . . ,n − 1, we consider the point

Pi(λi) = α(ti) + λin(ti), (1)

where λi is a real parameter and n(ti) is the normal vector to α at α(ti). This means that the point Pi(λi)
lies on the normal line to α at α(ti) (see Figure 1)

α(ti)

α(0)

α(1)

Pi(λi)

n(ti)

t(ti)

Figure 1: Point Pi(λi) on the normal line to α at α(ti).

• Step 2: We construct the Bézier curve

B(λ1, . . . , λn−1, t) = Bn
0(t)P0 +

n−1∑
i=1

Bn
i (t)Pi(λi) + Bn

n(t)Pn, (2)

depending on the parameters λ1, . . . , λn−1, where Bn
i (t) are the usual Bernstein polynomials.

• Step 3: We define the function:

F(λ1, . . . , λn−1) =
∫ 1

0
|α(t) − B(λ1, . . . , λn−1, t)|2dt. (3)

This function is, in fact, the squared semimetric in L2([0, 1]). It represents the error between α(t) and
B(λ1, . . . , λn−1, t).

• Step 4: In order to obtain the best possible approximation with this method, we minimize the above
function, finding values λ0

1, . . . , λ
0
n−1. Then, the Bézier curve we are looking for is B(λ0

1, . . . , λ
0
n−1, t),

which is determined by the control points P0,P1(λ0
1), . . . ,Pn−1(λ0

n−1),Pn.

Let us notice how this can be done just by solving a linear equations system given by ∂F/∂λ j = 0, for
any j = 1, . . . ,n − 1. In fact, by applying the usual “differentiation under the integral sign” criterion,
it follows from (3) that

∂F
∂λ j
=

∫ 1

0

∂G
∂λ j

dt,
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where

G(λ1, . . . , λn−1, t) =|α(t) − B(λ1, . . . , λn−1, t)|2

=

2∑
k=1

(αk(t) − Bk(λ1, . . . , λn−1, t))2,

αk(t) (resp. Bk(λ1, . . . , λn−1, t)) being the k-th component of α(t) (resp. B(λ1, . . . , λn−1, t)). Therefore:

∂G
∂λ j
= 2

2∑
k=1

(αk(t) − Bk(λ1, . . . , λn−1, t))
∂(αk(t) − Bk(λ1, . . . , λn−1, t))

∂λ j
.

But it easily follows from (1) and (2) that

∂(αk(t) − Bk(λ1, . . . , λn−1, t))
∂λ j

= −Bn
j (t)nk(t j),

where nk(t j) denotes the k-th component of n(t j). Thus,

∂F
∂λ j
= − 2

2∑
k=1

nk(t j)
∫ 1

0
(αk(t) − Bk(λ1, . . . , λn−1, t))Bn

j (t)dt

= − 2
2∑

k=1

nk(t j)
(∫ 1

0
αk(t)Bn

j (t)dt − Pk
0

∫ 1

0
Bn

0(t)Bn
j (t)dt

−
n−1∑
i=1

αk(ti)
∫ 1

0
Bn

i (t)Bn
j (t)dt − Pk

n

∫ 1

0
Bn

n(t)Bn
j (t)dt


+ 2

n−1∑
i=1

 2∑
k=1

nk(ti)nk(t j)
∫ 1

0
Bn

i (t)Bn
j (t)dt

λi,

where we have used (1) and (2) again. This expression is clearly linear in λ1, . . . , λn−1.

Example 3.1. Let α : [0, 1] −→ R2 be the parabola given by α(t) = (t, t2).

If we want to approximate αwith just an intermediate point, we put n = 2 and we directly have P0 = α(0) = (0, 0)
and P2 = α(1) = (1, 1). We choose t1 = 1/2 and construct

P1(λ1) = α(1/2) + λ1n(1/2) =
(

1
2
−
√

2
2
λ1,

1
4
+

√
2

2
λ1

)
.

Therefore, the Bézier curve depending on parameter λ1 is given by:

B(λ1, t) = B2
0(t)P0 + B2

1(t)P1(λ1) + B2
2(t)P2

=

(
2(1 − t)t

(
1
2
−
√

2
2
λ1

)
+ t2, 2(1 − t)t

(
1
4
+

√
2

2
λ1

)
+ t2

)
.

Now, we calculate the function appearing in Step 3, resulting:

F(λ1) =
∫ 1

0
|α(t) − B(λ1, t)|2dt =

2
15
λ2

1 +

√
2

30
λ1 +

1
120
.



Alfonso Carriazo et al. / Filomat 29:3 (2015), 457–464 461

To minimize this function, we impose ∂F/∂λ1 = 0, and we obtain the linear equation

4
15
λ1 +

√
2

30
= 0,

whose solution is λ0
1 = −

√
2/8. Therefore, our control point is P1(λ0

1) = (5/8, 1/8) and the corresponding Bézier
curve is:

B(λ0
1, t) =

(5
4

(1 − t)t + t2,
1
4

(1 − t)t + t2
)
.

The error is given by F(λ0
1) = 0.004166666667. In Figure 2 we can see both the real curve α(t) (in blue) and its

approximation B(λ0
1, t) (in red). We represent in green the control points P0,P1(λ0

1),P2.

Figure 2: Approximation of a parabola.

If we choose more intermediate control points, we obtain better approximations. The error estimates can be seen
in the following table. In all cases, we have chosen the values ti uniformly distributed.

n error estimate
2 0.004166666667
3 0.001459250709
4 0.0008372327736

We can improve our method if we take into account a well-known fact for Bézier curves: the derivatives
at the endpoints are completely determined. In fact, if B(t) is a Bézier curve given by control points
P0,P1, . . . ,Pn, then

B′(0) = n(P1 − P0), B′(1) = n(Pn − Pn−1).

In our case:

B′(λ1, . . . , λn−1, 0) = n(α(t1) + λ1n(t1) − α(0)),
B′(λ1, . . . , λn−1, 1) = n(α(1) − α(tn−1) − λn−1n(tn−1)).

If we impose for the Bézier curve B(λ1, . . . , λn−1, t) of Step 2 that its tangent directions at the endpoints
P0 and Pn are the same as those of the curve α(t), i.e.,

B′(λ1, . . . , λn−1, 0) · n(0) = 0, B′(λ1, . . . , λn−1, 1) · n(1) = 0, (4)

then we obtain two linear equations easily determining λ0
1, λ

0
n−1. We follow our method to obtain the other

parameters λ0
2, . . . , λ

0
n−2 and we say that the Bézier curve B(λ0

1, . . . , λ
0
n−1, t) is “clamped” at the endpoints

P0,Pn.
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Example 3.2. We apply the above improvement to the parabola of Example 3.1. As we will easily determine
control points P1(λ1) and Pn−1(λn−1), we put n = 4 and we directly have P0 = (0, 0) and P4 = (1, 1). We choose
t1 = 1/4, t2 = 1/2, t3 = 3/4 and we construct P1(λ1),P2(λ2),P3(λ3) in our usual way.

Now, we write equations from (4):

1
4
+

4
√

20
5
λ1 = 0, −

√
5

20
− 32

√
65

65
λ3 = 0.

The solutions are λ0
1 = −

√
5/32 and λ0

3 = −
√

13/128. They completely determine P1(λ0
1) and P3(λ0

3). Therefore,
we only have to obtain the value for the parameter λ2 of the Bézier curve B(λ0

1, λ2, λ0
3, t) by minimizing the function

F(λ0
1, λ2, λ0

3). The result is λ0
2 = −59

√
2/1536 and the error is now F(λ0

1, λ
0
2, λ

0
3) = 0.000873819987, which is smaller

than F(λ0
1) from Example 3.1.

This method to approximate plane curves can also be adapted for spacial curves, i.e., curves in R3. In
such a case, n(ti) would be the principal normal vector to α at α(ti) (see Figure 3). To do so, we need κ(ti) , 0,
where κ(t) denotes the curvature of α(t) (if not, n(ti) is not defined). Therefore, we should be more careful
with the choosing of the values of t1, . . . , tn−1.

α(ti)

α(0)

α(1)

Pi(λi)

n(ti)

t(ti)

b(ti)

Figure 3: Point Pi(λi) on the principal normal line to α at α(ti).

Example 3.3. Let α : [0, 1] −→ R3 be the circular helix given by α(t) = (cos(2πt), sin(2πt), t).

In Figure 4 we show the approximations (in red) of α (in blue) for n = 2, 3, 4, 5, i.e., with 3, 4, 5, 6 control points
(in green), respectively. The error estimates can be seen in the following table:

n error estimate
2 0.5830658815
3 0.1466088404
4 0.04716853518
5 0.02161578330

Let us notice how the approximation for n = 2 is very bad, because a Bézier curve determined by 3 control points
is always a plane curve.
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Figure 4: Approximations of a circular helix.

4. Normal approximation of regular surfaces

Let x : [0, 1] × [0, 1] −→ R3 be a regular parametrized surface. We want to approximate it by a Bézier
surface, which will be determined by a grid of m ·n control points Pi j inR3. We follow these steps to choose
the points:

• Step 1: We approximate the border curves

α1(t) = x(t, 0), α2(t) = x(0, t), α3(t) = x(t, 1), α4(t) = x(1, t),

by Bézier curves B1(t), . . . ,B4(t), by following the method described in Section 3. Therefore, we
determine the exterior points of the control grid.

For the interior points of the control grid, we write

Pi j(λi j) = x(ui, v j) + λi jN(ui, v j),

where λi j is a real parameter and N(ui, v j) is the normal vector to x at x(ui, v j). This means that the
point Pi j(λi j) lies on the normal line to x at x(ui, v j).

• Step 2: We construct the Bézier surface B(λi j,u, v), depending on the parameters λi j.

• Step 3: We define the function:

F(λi j) =
∫ 1

0

∫ 1

0
|x(u, v) − B(λi j,u, v)|2dudv.
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• Step 4: We minimize the above function, finding values λ0
i j. Then, the Bézier surface we are looking

for is B(λ0
i j,u, v), and the interior points of the control grid are Pi j(λ0

i j).

Example 4.1. Let x : [0, 1]× [0, 1] −→ R3 be the piece of a circular cylinder given by x(u, v) = (u, cos(πv), sin(πv))
and shown in the first frame of Figure 5. The border curves are painted in blue.

To follow the above described method, we begin by approximating the border curves by Bézier curves with n = 3.
This will produce a grid of 16 control points (with 4 interior points). The obtained Bézier curves are shown in the second
frame of Figure 5. Let us notice how, given that α1 and α3 are just line segments, B1(t) = α1(t) and B3(t) = α3(t),
and the corresponding control points lie on these line segments. We then follow our method to determine the interior
control points. The resulting Bézier surface is shown in the third frame of Figure 5. Its border is given by Bézier
curves B1(t), . . . ,B4(t).

Figure 5: Approximation of a piece of circular cylinder.

With this method we can approximate any regular parametrized surface. For example, approximations
of a piece of a helicoid, a catenoid and a torus are shown in Figure 6.

Figure 6: Approximations of helicoid, catenoid and torus.
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