
Parallel implementation of a cellular automaton

model for the simulation of laser dynamics

J.L. Guisado1, F. Fernández de Vega1, F. Jiménez-Morales2, and K.A. Iskra3

1 Centro Universitario de Mérida, Universidad de Extremadura,
Sta. Teresa Jornet, 38. 06800 Mérida (Badajoz), Spain.

http://cum.unex.es/profes/profes/jlguisado
2 Departamento de F́ısica de la Materia Condensada, Universidad de Sevilla,

P.O.Box 1065, 41080 Sevilla, Spain.
3 Section Computational Science,

Faculty of Science, Universiteit van Amsterdam,
Kruislaan 403, 1098 SJ Amsterdam, The Netherlands.

Abstract. A parallel implementation for distributed-memory MIMD
systems of a 2D discrete model of laser dynamics based on cellular au-
tomata is presented. The model has been implemented on a PC cluster
using a message passing library. A good performance has been obtained,
allowing us to run realistic simulations of laser systems in clusters of
workstations, which could not be afforded on an individual machine due
to the extensive runtime and memory size needed.4

1 Introduction

In the last two decades, computational simulations based on cellular automata
(CA) have been extensively used in many fields of science and technology [1].
More recently, many parallel implementations of CA models have been presented
[2]. One of the reasons is that CA are intrinsic parallel systems very suitable
to be easily implemented in parallel computers to carry out high performance
simulations. Another reason is that in the same period parallel computer archi-
tectures have experienced a huge development and a “democratization” due to
the affordability of clusters of workstations with a very good price/performance
ratio. As a consequence, parallel CA simulations have been successfully applied
in many fields, see for example [3–6]. In addition, different software tools for
the programming of CA in parallel computers (for example [7, 8]) have been
introduced.

In this work, we present a parallel implementation in two dimensions of a
discrete model of laser dynamics based on CA, introduced in references [9–11].
This implementation will allow us to run large size 2D simulations of the model
on clusters of workstations. In addition, the 2D implementation will be useful to
test the feasibility of a parallel 3D version of the model, needed to make realistic

1 This work was partly supported by the project OPLINK (TIN2005-08818-C04-03)
of Ministerio de Educacin y Ciencia (Spain).

2

simulations of specific laser systems, which would necessarily require a parallel
implementation due to its extensive runtime and memory requirements.

The rest of the paper is organized as follows. In Section 2 the discrete model
for the simulation of laser dynamics is summarized. The parallel implementation
of the model is described in Section 3. In Section 4 the performance of our
implementation is analyzed. Finally, the conclusions of this study are explained
in Section 5.

2 Cellular automaton model

A laser system is modeled by a cellular automaton [9, 10] defined on a two-
dimensional square lattice of Nc = L × L cells with periodic boundary condi-
tions. Two variables ai(t) and ci(t) are associated with each node of the CA.
ai(t) represents the state of the electron in node i at time t: if ai(t) = 0 the
electron is in the laser ground state and if ai(t) = 1 it is in the upper laser
state. ci(t) ∈ {0, 1, 2, ..., M} represents the number of photons in node i at time
t. A large enough upper value of M is taken to avoid saturation of the sys-
tem. The state variables values, which represent “bunches” of real photons and
electrons, are obviously smaller than the real number of photons and electrons
in the system and connected to them by a normalization constant. The Moore

neighborhood is considered. The transition rules, which represent the different
physical processes in a laser system at the microscopic level, are:

– Rule 1. Pumping: If ai(t) = 0 then ai(t + 1) = 1 with a probability λ.
– Rule 2. Stimulated emission: If ai(t) = 1 and the sum of the values of the laser

photons states in the nine neighbor cells is greater than a certain threshold
(1 in our model), then ci(t + 1) = ci(t) + 1 and ai(t + 1) = 0.

– Rule 3. Photon decay: A finite life time τc is assigned to each photon when
it is created. The photon will be destroyed τc time steps after it was created.

– Rule 4. Electron decay: A finite life time τa is assigned to each electron that
is promoted from the ground level to the upper laser level. That electron
will decay to the ground level again τa time steps after it was promoted, if
it has not yet decayed by stimulated emission.

Spontaneous emission as well as thermal contributions are simulated by a
continuous noise of random photons introduced at every time step in the laser
mode, by making ci(t+1) = ci(t)+1 for a small number Nn of cells (< 0.01% of
total) with randomly chosen positions. As in real lasers, these random photons
are responsible of the initial start-up of the laser action.

3 The parallel implementation

A very large automaton must be used to obtain results that quantitatively re-
produce the behaviour of lasers (macroscopic systems) because a fine-grained
model is needed, or in general to implement any 3D model. The runtime for a

3

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 200 400 600 800 1000 1200 1400
R

un
tim

e
(s

)
System width (cells)

Fig. 1. Runtime of an experiment consisting in running a sequential implementation
of the 2D laser model for 1000 time steps, using the same values of the parameters, for
different system sizes.

typical experiment grows quickly with the automaton size, as shown in Fig. 1.
Therefore a parallel implementation is mandatory.

Parallelization of the model has been performed for distributed-memory
MIMD (multiple-instruction multiple-data) systems using the message passing
paradigm. The Parallel Virtual Machine (PVM) library has been used, because
we were interested in a further study of our model using dynamic load balanc-
ing mechanisms specifically developed for this library. Nevertheless, it would be
straightforward to port this implementation to other message passing libraries
such as Message Passing Interface (MPI). Parallelization has been carried out
following the master-slave programming model and the data decomposition or
partitioning methodology for workload allocation: identical tasks operate on dif-
ferent portions of the data. A “master program” divides the CA grid in p par-
titions of equal size and sends each to a “slave program” running on a different
processor. The particular tasks performed by the master and slave programs are:

– Master program:

1. Input data from external file (system size, number of partitions, param-
eter values, number of time steps) and initialization.

2. Spawning of slave programs.
3. Partitioning of the initial data of the automaton.
4. Sending of common information and initial data to each slave.
5. Collection of results from slaves for each time step.
6. Termination of slave programs.
7. Calculations with the complete results.
8. Output of final data to external files.
9. Timing functions to measure performance.

– Slave program:

1. Reception of common information and initial data from master.
2. Time evolution computation for the assigned partition: application of

CA evolution rules.

4

3. Exchange of state of the boundary cells with slave programs computing
the neighboring partitions.

4. Computation of intermediate results and their communication to master
program.

A diagram of this procedure is shown in Fig. 2 (a), where each box in bold
type represents a different processor and the bold arrows represent the commu-
nications between the processes running on different processors.

SLAVE

SLAVE

(optional)
to monitor execution

on−screen output
results file

input data file

SLAVE
MASTER

(a) (b)

Fig. 2. (a): Block diagram of the parallel computing structure used. (b): The CA
has been partitioned using a 1-dimensional domain decomposition: the automaton is
vertically partitioned in stripes and each sub-domain is assigned to a different processor.
Two additional columns of ghost cells are added at both sides of each partition to store
the photon state ci(t) of neighboring cells belonging to different partitions.

In general, for d-dimensional CA 1-, 2-, ... or d-dimensional domain decom-
positions can be considered. Here, a 2D CA is used so that two possibilities
arise: using a 1D domain decomposition, i.e. partitioning the CA in stripes, or
using a 2D (checkerboard) domain decomposition. We have used a 1D domain
decomposition because it makes the communication structure simpler and min-
imizes the number of send/receive calls (essential for an implementation using
message passing). Furthermore, it is more favorable in runtime for a small to
moderate number of nodes [12], despite the amount of data to be communicated
is larger. As shown in Fig. 2 (b), the CA is vertically partitioned in stripes and
each sub-domain is assigned to a different processor. For each sub-domain, two
additional columns of ghost cells have been included at the left and right sides,
used to store the photon state ci(t) of neighboring cells belonging to different
sub-domains.

5

Each slave program computes the time evolution on its assigned partition of
the automaton by applying the CA evolution rules. In each time iteration, the
application of the evolution rules involves the following procedures:

1. Stimulated emission.
2. Refresh values of photon state ci(t).
3. Photon and electron decay and electron pumping.
4. Noise photons.

Procedures 1 to 3 are three successive loops through all of the cells in the par-
tition. In the first one, stimulated emission is computed storing new values of
the photon state ci(t) in a temporal array; in the second one, the values of the
photon state ci(t) of all the cells in the partition are updated using the val-
ues stored in the temporal array; in the third one, photon and electron decay
and electron pumping are computed. In procedure 4, Nn/p noise photons are
introduced in randomly chosen cells inside the partition, where Nn is the total
number of noise photons introduced in the system at every time step and p is
the number of partitions in the system.

For CA in general, after each time iteration, the state of the CA cells in the
boundaries of each slave partition must be communicated to the slave programs
dealing with the neighboring partitions, because this state will be needed to
compute the CA evolution rules there. For this particular model, the only state
value from neighboring cells needed to compute the CA evolution rules for a
cell is the photon state ci(t). Therefore, only this state is communicated to the
neighboring partitions. This communication is carried out directly between the
slave programs. In addition, in the last part of each time iteration, each slave
program computes the total number of electrons ai(t) and laser photons ci(t) in
its CA partition and sends this information to the master, which can record it
and make some calculations with it, such as computing the Shannon’s entropy
as described in [9].

4 Performance analysis

In order to test the performance of the parallel implementation, simulations
have been carried out on a Linux PC cluster of ten nodes with Intel Pentium-
4 processor, for different sizes of the cellular automaton grid (2520 × 2520,
1260 × 1260 and 630 × 630 cells). The cluster is heterogeneous: six nodes have
a clock frequency of 2.7 GHz and the other four nodes of 1.8 GHz. A particular
configuration has been chosen for the experiments to avoid indeterminism in the
results. For simulations with 1 to 6 nodes, the slave programs have been run on
the “fast” (2.7 GHz) machines. For simulations with 7 to 10 nodes, additional
“slow” (1.8 GHz) machines have been used to achieve the required number of
nodes. The master program was always run on the master node of the cluster
(which runs at 1.8 GHz).

The results of the simulations carried out with a sequential implementation
of the 2D CA laser model (previously presented in references [9, 10]) are repro-
duced with the present parallel implementation. An example is shown in Fig.

6

(a) (b)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

 0 200 400 600 800 1000

P
op

ul
at

io
n

 (·
 1

04)

Time Steps

Population Inversion
Laser Photons

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

 0 200 400 600 800 1000

P
op

ul
at

io
n

 (·
 1

06)

Time Steps

Population Inversion
Laser Photons

Fig. 3. Evolution of the whole system for two different system sizes. (a) (left): 300 × 300
cells, typical result of previous sequential implementations of the model. (b) (right):
2520 × 2520 cells, using the parallel implementation with a much larger system size.

3 which shows the time evolution for 1000 iterations (time steps) of the popu-
lation inversion and the total number of laser photons for two different system
sizes: 300 × 300 cells (a), typical system size for previous sequential implementa-
tions; and 2520 × 2520 cells (b). In both cases the values of the parameters are:
λ = 0.0125, τc = 10, τa = 180. The ratio of noise photons (introduced in every
time step) to total number of cells in the system has been maintained constant
(0.03% of the cells) for the experiments with different system sizes. The typi-
cal laser behaviour known as relaxation oscillations or laser spiking (correlated
large amplitude damping oscillations) [9] is reproduced. The differences between
both results are that the populations are scaled and that the shape of the os-
cillations is smoother in (b) due to having used a much larger system size, thus
reproducing more accurately the relaxation oscillations obtained in real lasers or
from the integration of macroscopic differential equations.

The performance of the parallel implementation has been measured by run-
ning the same experiment (corresponding to the results shown in Fig. 3) using
different system sizes and for different number of partitions of the whole CA
(each one being handled by the slave program on a different node). The wall
clock time of the experiments is shown in Fig. 4 (a), using a logarithmic scale.
Runtimes get significantly shorter when the number of processors is increased,
with the exception of the change from 6 to 7 processors. The reason is that “fast”
machines have been used for a number of processors from 1 to 6, whereas “slow”
machines are used to complete a number of processors higher than 6. As the CA
operates in lock-step mode, the speed of the application is limited by the speed
of the slowest running task and adding one “slow” machine results in a slower
speed for the whole application.

The performance of the parallel implementation can be measured in terms of
the speedup, ratio of the runtime of the sequential version of the program to the
runtime of the parallel version. The speedup obtained for different number of

7

(a) (b)

 10

 100

 1000

 10000

 1 2 3 4 5 6 7 8 9 10

R
un

tim
e

(s
)

Number of Processors

2520 x 2520
1260 x 1260

630 x 630

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24
 26

 0 1 2 3 4 5 6 7 8 9 10

S
pe

ed
up

Number of Processors

2520 x 2520
1260 x 1260

630 x 630
Linear Speedup

Fig. 4. (a): Runtime of the experiments, shown in a logarithmic scale, using three
different system sizes, for different number of partitions of the whole CA. Each partition
was run on a different processor. (b): Performance (in terms of speedup in respect to the
sequential program) of the parallel implementation for varying number of processors
and for three different system sizes.

partitions of the system is shown in Fig. 4 (b), in comparison with the line y = x,
or linear speedup, which could be defined as the theoretical optimal speedup.

A very good performance has been obtained. In fact, super-linear speedup is
obtained, specially for a system size of 2520× 2520 cells, and also for 1260× 1260
cells. Swap memory is used for the sequential version of the program and not
for the parallel version for more than one node. Therefore, a very high speedup,
even higher than linear, can be obtained when comparing both magnitudes. This
reason, together with similar finite memory cache effects, explains why super-
linear speedup is produced. The use of swap memory for running a very large
size simulation of the model (as necessary for 3D simulation) can make the
calculation non-affordable on a single PC but feasible on a cluster, because the
system is partitioned so that less memory is used in each node and no swap
memory is needed.

In spite of the fact that, after every time step, the boundary data have to
be exchanged and the intermediate results (ai(t) and ci(t)) are transferred to
the master program, a very good performance has been obtained. The reason is
that, after the initial data are sent to all the slave processes and the computation
begins, communication periods are much shorter than computation periods, as
can be analyzed using a performance monitor. Therefore, the parallel application
has a high computation-to-communication ratio (of the order of 10 for slave
processes) and thus takes a good advantage of parallelization.

5 Conclusions and future prospects

A parallel implementation in 2D of a discrete model of laser dynamics using
cellular automata has been presented. A CA model is an advantageous al-
ternative to the standard description of laser dynamics, based on differential

8

equations, when these have convergence problems —as for lasers ruled by stiff
equations— or involve approximations not applicable —as for lasers with phys-
ical dimensions comparable to or even smaller than the wavelength of light, or
with an active medium of arbitrary geometry—. Another advantage of CA mod-
els is that its inherent parallel nature makes them very suitable to efficiently
implement detailed simulations on parallel computers.

Parallelization has been carried out using the master-slave programming
model and the data decomposition methodology for workload allocation. The
parallel algorithm has been implemented for distributed-memory MIMD systems
using the message passing paradigm. The implementation has been successfully
run on a PC Cluster and its performance for different model sizes has been ana-
lyzed. Our implementation takes advantage of the parallelization and achieves a
good speedup. This is a first step to run more realistic 3D models on clusters of
workstations which could not be afforded on an individual machine due to the
extensive runtime and memory size needed.

References

1. Chopard, B., Droz, M.: Cellular automata modeling of physical systems. Cam-
bridge University Press (1998)

2. Bandini, S., Mauri, G., Serra, R.: Cellular automata: from a theoretical parallel
computational model to its application to complex system. Parallel Computing
27(5) (2001) 539–553

3. Sloot, P., Kaandorp, J., Hoekstra, A., Overeinder, B.: Distributed simulation with
cellular automata: architecture and applications. Lecture Notes in Computer Sci-
ence 1725 (1999) 203–248

4. Bandini, S., Magagnini, M.: Parallel processing simulation of dynamic properties
of filled rubber compounds based on cellular automata. Parallel Computing 27(5)
(2001) 643–661

5. Dattilo, G., Spezzano, G.: Simulation of a cellular landslide model with CAMELOT
on high performance computers. Parallel Computing 29(10) (2003) 1403–1418

6. Love, P.J., Nekovee, M., Coveney, P.V., Chin, J., González-Segredo, N., Martin,
J.M.R.: Simulations of amphiphilic fluids using mesoscale lattice-Boltzmann and
lattice-gas methods. Computer Physics Communications 153 (2003) 340–358

7. Talia, D.: Cellular processing tools for high-performance simulation. IEEE Com-
puter 33(9) (September 2000) 44–52

8. Hecker, C., Roytenberg, D., Sack, J.R., Wang, Z.: System development for parallel
cellular automata and its applications. Fut. Gen. Comp. Sys. 16 (1999) 235–247

9. Guisado, J.L., Jiménez-Morales, F., Guerra, J.M.: Cellular automaton model for
the simulation of laser dynamics. Physical Review E 67(6) (2003) 066708

10. Guisado, J.L., Jiménez-Morales, F., Guerra, J.M.: Computational simulation of
laser dynamics as a cooperative phenomenon. Physica Scripta T118 (2005) 148–
152

11. Guisado, J.L., Jiménez-Morales, F., Guerra, J.M.: Simulation of the dynamics of
pulsed pumped lasers based on cellular automata. Lecture Notes in Computer
Science 3305 (2004) 278–285

12. Worsch, T.: Simulation of cellular automata. Future Generation Computer Systems
16(2-3) (1999) 157–170

View publication statsView publication stats

https://www.researchgate.net/publication/220858131

