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ABSTRACT 
Solid oxide fuel cells (SOFCs) offer a real alternative to classical technologies for the 

generation of electricity by clean, efficient and environmental-friendly means. Nevertheless, the 

main limitation of SOFCs lies in their unsatisfactory durability and reliability due to the high 

operating temperatures and thermal cycling characteristic of these devices. An intense search is 

currently underway for materials for SOFCs with the objective of lowering the working temperature 

and then overcoming these limitations. Among the different candidates which have emerged, 

Lanthanum Silicate (LSO) and Yttrium-doped Barium Zirconate (BZY) were considered as potential 

alternatives to be used as electrolyte materials for intermediate-temperature solid oxide fuel cells. 

While numerous studies have been devoted to characterizing and optimizing the microstructural 

and electro-chemical properties of SOFC components, as yet there is little research available on 

mechanical properties and the influence they have on SOFC lifespan. The reliability and durability 

of these devices depends not only on their electro-chemical stability, but also on the ability of their 

structure to withstand residual stresses arising from the cell manufacturing process and mechanical 

stresses from operation. Owing to the fact that SOFCs are composed by stacking of several single 

cells which in turn are made up of individual brittle layers in close contact, these stresses mainly 

originate from the difference between the coefficient of thermal expansion and elastic properties 

of adjacent layers and creep deformation. Mismatched stresses can result in the mechanical failure 

of a single cell and have dramatic consequences on the whole stack. Therefore, knowledge of 

mechanical properties of the cell components becomes an important issue for the mechanical 

integrity and development of SOFCs (Chapter 1). 

The aim of this PhD thesis is the fabrication and structural, microstructural and mechanical 

characterization of Lanthanum Silicate and Yttrium-doped Barium Zirconate. To this end, high 

density (d > 97%) ceramics made through conventional or spark plasma sintering were prepared 

from nanopowders synthesized by chemical routes. The details of the synthesis routes and the 

sintering conditions are described in Chapter 2. The resulting nanopowders and pellets were 

structurally and microstructurally characterized by X-Ray diffraction, particle size analysis by laser 

diffraction and electron microscopy in Chapter 3.  

The dense ceramics were then characterized mechanically at different temperatures. First, 

the mechanical properties of LSO and BZY compounds were examined by different techniques at 

room temperature in Chapter 4. Nanoindentation, microindentation, resonant ultrasound 
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spectroscopy, compression tests and density functional theory were used to determine their elastic 

constants, hardness and fracture toughness. Then, the influence of temperature on the thermo-

elastic properties of both materials was investigated in Chapter 5. In this chapter finite elements 

numerical simulations were also carried out to characterize the state of stress and predict fracture 

in Lanthanum Silicate. Later on, the mechanical response of both electrolyte materials was 

evaluated by means of compressive mechanical tests at solid oxide fuel cell operating temperatures 

(700 °C) under different atmospheres (Chapter 6). Moreover, this chapter is also devoted to 

studying the fracture and plastic deformation mechanisms of these compounds at high 

temperature by means of creep experiments.   

Finally, Chapter 7 summarizes the most relevant conclusions derived in this work.  

 

Keywords: Solid oxide fuel cells, electrolyte materials, mechanical properties, creep. 
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RÉSUMÉ 
Les piles à combustible à oxyde solide (SOFC) offrent une alternative réelle aux technologies 

classiques de génération d’électricité en étant à la fois propre, efficace et respectueuse de 

l’environnement. Toutefois, leur principale limitation réside en leur durée de vie et fiabilité limitées 

dues à leur haute température de fonctionnement. Des recherches intenses de matériaux pour 

SOFC sont actuellement poursuivies pour essayer d’abaisser la température de fonctionnement de 

ces dispositifs afin de dépasser ces limitations. Parmi les différents candidats qui ont émergé, le 

Silicate de Lanthane (LSO) et le Zirconate de Baryum dopé à l'Yttrium (BZY) ont été identifiés comme 

des alternatives potentielles à utiliser comme matériaux d’électrolyte pour les piles à combustible 

à oxyde solide à température intermédiaire. De manière surprenante, alors que de nombreuses 

études concernent l’optimisation microstructurale et électrochimiques des composants de la pile, 

très peu d’études concernant l’évaluation de leurs propriétés mécaniques et de leur influence sur 

la durée de vie du dispositif. La fiabilité et durée de ces dispositifs dépend non seulement de leur 

stabilité électrochimique, mais aussi de la capacité de leur structure à supporter les contraintes 

résiduels issus du procédé de fabrication et de contraintes mécaniques de fonctionnement. En 

raison du fait que les SOFC sont composés d'empilement de plusieurs cellules individuelles qui, à 

leur tour, sont constituées de couches fragiles individuelles en contact étroit, ces contraintes 

proviennent principalement de la différence entre le coefficient de dilatation thermique et les 

propriétés élastiques des couches adjacentes et la déformation du fluage. Des contraintes non 

coordonnées peuvent entraîner une défaillance mécanique d'une seule cellule et avoir des 

conséquences dramatiques sur l'ensemble de la pile. De ce fait, la connaissance des propriétés 

mécaniques des composants de la cellule est une étape importante pour préserver l’intégrité et le 

développement des SOFC (Chapitre 1). 

Le but de cette thèse est la fabrication et l’étude des propriétés structurale, 

microstructurales et mécaniques de matériaux de type Silicate de Lanthane et de Zirconate de 

Baryum dopé à l’Yttrium. A cette fin, des céramiques denses (d > 97%) ont été préparées par voie 

chimique pour l’obtention de poudres suivie de frittage conventionnel ou spark plasma. Les détails 

de l’élaboration de ces matériaux sont donnés dans le Chapitre 2. Les nanopoudres et céramiques 

obtenues ont été caractérisées sur le plan structural et microstructural par diffraction des rayons 

X, diffusion laser et microscopie électronique (Chapitre 3).  
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Ces céramiques denses ont ensuite été caractérisées sur le plan des propriétés mécaniques 

à différentes températures. Tout d’abord, les propriétés mécaniques des céramiques LSO et BZY 

ont été évaluées par différentes techniques à température ambiante dans le Chapitre 4. Les 

méthodes de nanoindentation, de microindentation, de résonance ultrasonore, de tests en 

compression et la méthode théorique de la théorie de la fonctionnelle densité ont été utilisées afin 

de déterminer les propriétés élastiques, de dureté et de résistance à la fracture des matériaux 

obtenus. L’influence de la température sur les propriétés thermo- élastiques a été explorée dans le 

Chapitre 5. Dans ce chapitre, des calculs par éléments finis ont également permis de caractériser 

l’état de stress résiduel présent au sein de l’oxyapatite après la procédure de frittage ou lors des 

essais mécaniques. Nous avons ensuite évalué la réponse mécanique des deux matériaux dans des 

conditions proches de celles de fonctionnement d’une pile i.e. à 700 °C sous atmosphère contrôlée, 

successivement oxydante et réductrice (Chapitre 6). Ce chapitre est également consacré à l’étude 

des mécanismes de déformation plastique à haute température et à l’extraction des paramètres 

de fluage.  

Finalement, le Chapitre 7 dresse une conclusion regroupant les principaux résultats.  

 

Mots clés: Piles à combustible à oxide solide, matériaux d’électrolyte, propriétés 

mécaniques, fluage  
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RESUMEN 
Las pilas de combustible de óxido sólido (SOFCs) ofrecen una alternativa real a las 

tecnologías de producción de electricidad convencionales ya que son más limpias, eficientes y 

respetuosas con el medio ambiente. Sin embargo, la principal limitación de las SOFC radica en su 

insatisfactoria durabilidad y fiabilidad debido a las altas temperaturas de funcionamiento y a los 

ciclos térmicos característicos de estos dispositivos. Actualmente se está realizando una intensa 

búsqueda de materiales para SOFC con el objetivo de reducir la temperatura de trabajo y superar 

estas limitaciones. Entre los diferentes candidatos que han surgido, el Silicato de Lantano (LSO) y el 

Zirconato de Bario dopado con Itrio (BZY) han sido considerados como potenciales alternativas para 

ser utilizados como electrolitos en pilas de combustible de óxido sólido a temperaturas intermedias. 

Mientras numerosos estudios se han centrado en la caracterización y optimización de las 

propiedades microestructurales y electroquímicas de los componentes que forman una SOFC, 

todavía hay muy pocos trabajos de investigación sobre las propiedades mecánicas y su influencia 

en la vida útil de una SOFC. La fiabilidad y durabilidad de estos dispositivos no sólo depende de su 

estabilidad electroquímica, sino también de su capacidad estructural para soportar las tensiones 

residuales que aparecen en el proceso de fabricación de la pila y tensiones mecánicas que surgen 

durante la operación. Debido al hecho de que las SOFCs están compuestas por apilamiento de 

varias celdas individuales y que a su vez estas están constituidas por capas frágiles individuales en 

íntimo contacto, estas tensiones se originan principalmente por la diferencia entre el coeficiente 

de dilatación térmica y las propiedades elásticas de capas adyacentes y por la deformación plástica 

causada por fluencia. La incompatibilidad de tensiones puede provocar el fallo mecánico de una 

sola celda y tener consecuencias dramáticas en toda la pila. Por lo tanto, el conocimiento de las 

propiedades mecánicas de cada componente es una cuestión esencial para la integridad mecánica 

y el desarrollo de las SOFCs (Capítulo 1). 

El objetivo de esta tesis doctoral es la fabricación y caracterización estructural, 

microestructural y mecánica del Silicato de Lantano y Zirconato de Bario dopado con Itrio. Con este 

fin, se prepararon cerámicas de alta densidad (d > 97%) mediante sinterización convencional o 

asistida por descarga eléctrica pulsada a partir de nanopolvos sintetizados mediante rutas químicas. 

Los detalles de las rutas de síntesis y las condiciones de sinterización se describen en el Capítulo 2. 

Los nanopolvos y masivos obtenidos fueron caracterizados estructural y microestructuralmente por 

difracción de rayos X, análisis de tamaño de partícula por difracción láser y microscopía electrónica 

de barrido y transmisión en el Capítulo 3. 
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Los cerámicos densos se caracterizaron mecánicamente a diferentes temperaturas. En 

primer lugar, se examinaron las propiedades mecánicas de los compuestos LSO y BZY mediante 

diferentes técnicas a temperatura ambiente en el Capítulo 4.  Nanoindentación, microindentación, 

espectroscopía de resonancia ultrasónica, ensayos de compresión y cálculos DFT fueron usados 

para determinar sus constantes elásticas, su dureza y su tenacidad de fractura. A continuación, se 

estudió la evolución de las propiedades termoelásticas de ambos materiales con la temperatura en 

el Capítulo 5. En este capítulo también se realizaron simulaciones numéricas de elementos finitos 

para caracterizar el estado de tensión y predecir la fractura en el Silicato de Lantano. 

Posteriormente, se evaluó la respuesta mecánica de ambos materiales electrolíticos mediante 

ensayos mecánicos de compresión a temperaturas de funcionamiento de las pilas de combustible 

de óxido sólido (700 ° C) y en diferentes atmósferas (Capítulo 6). Además, este capítulo también se 

dedica al estudio de los mecanismos de fractura y deformación plástica de estos compuestos a alta 

temperatura por medio de experimentos de fluencia. 

Finalmente, el Capítulo 7 resume las conclusiones más relevantes derivadas de este trabajo. 

 

Palabras clave: Pilas de combustible de óxido sólido, materiales electrolíticos, propiedades 

mecánicas, fluencia. 
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1.1  FUEL CELLS 

In order to cope with the climate change environmental threat and the exhaustion of fossil 

fuel reserves, the development of sustainable, more effective and cleaner energy sources becomes 

in a major global challenge. Among the different solutions, fuel cells have stood out in the last years 
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as one of the most promising alternatives for sustainable energy production and one that is 

compatible with preservation of the environment [1-3]. They are electro-chemical devices that 

convert chemical energy present in fuels into electricity and heat. Moreover, fuel cells are the only 

technology of energy-production potentially fed by renewable fuels which can be used for 

stationary and mobile applications [4].  

The operating principle of a fuel cell is similar to that of a battery in the sense that both 

generate electrical energy through electrochemical processes, however, in a fuel cell the chemical 

energy is provided by an oxidant and a fuel supplied from external sources. Therefore fuel cell 

electricity generation cannot run out while fuel is continuously supplied, in contrast to the 

characteristic charge - discharge cycles of the batteries [4].  

A single fuel cell presents a sandwich type geometry and consists of three main 

components: cathode, electrolyte and anode. An oxidant and a fuel are fed to the cathode and 

anode, respectively, where the oxidant is reduced and the fuel oxidized (Figure 1.1). These half-

reactions generate a chemical potential gradient of ions from one side of the electrolyte to the 

other and therefore, direct-current electricity is produced in the external circuit.  

 

Figure 1.1. A schematic representation of a working fuel cell. 

 

 1.1.1 Solid Oxide Fuel Cells (SOFCs) 

Among all types of fuel cells, those based on solid oxides have been considered as a leading 

technology for future power generation. SOFCs have received special interest because of their low 

levels of pollutant emissions, fuel flexibility and high efficiency [3-5]. Solid Oxide Fuel Cells require 

oxidant reactants such as air or oxygen, and fuel such as hydrogen to electrochemically react and 

generate electricity. Schematics representations of SOFCs based on oxide-ion conducting and 

proton conducting electrolytes are shown in Figure 1.2. In a conventional SOFC utilizing oxide-ion 

conducting electrolyte, the oxygen is partially reduced at the cathode giving rise to O2-
 anions which 

migrate across the electrolyte to the anode side, where they react with H2 to form water and 
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generate an electrical voltage. In Proton Conducting Fuel Cells (PCFCs), hydrogen is oxidized at the 

anode giving rise to H+
 ions that are transported to the cathode side across the proton conducting 

electrolyte. H+
 ions then react with O2 to form water. The main advantage of PCFCs compared to 

the classical SOFCs lies in the fact that H2O is produced at the cathode instead of at the anode. This 

allows the hydrogen to be completely utilized without compromising the system overall efficiency 

[4].  

 

Figure 1.2. Schematic representations of the reactions taking place in a SOFC during operation for (a) 

oxide-ion conducting electrolyte, and (b) proton conducting electrolyte. 

In contrast to other fuel-cell types, SOFCs are composed of solid-state ceramics and require 

operating temperatures ranging between 500 and 1000 °C. The best established SOFC systems are 

those based on an Yttria-Stabilized Zirconia (YSZ) electrolyte, which requires operating 

temperatures between 800 - 1000 °C [5-7] to achieve sufficient ionic conductivity in order to assure 

the efficient transport of O2-.  These high operating temperatures are directly linked to the main 

limitations of SOFCs, which lie mainly in their unsatisfactory durability and reduced lifetime. These 

problems are caused by the difficulty of maintaining the sealing of the cells, by the too short-term 

stability of the materials and by the mechanical incompatibility between electrodes and electrolyte 

due to the thermal cycling to which the SOFCs components are subjected during operation [8]. To 

overcome such disadvantages, lowering the working temperature to 500 - 700 °C becomes an 

important challenge in improving SOFC technology. For this purpose, there has been huge interest 

in the development of new electrolyte materials which exhibit high ion conductivities at 

intermediate temperatures combined with low electronic conductivity, high density and good 

chemical stability [3]. 

 

a) b) 
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 1.1.2 Electrolyte materials for SOFCs 

In the attempt to search for an alternative to replace YSZ electrolytes, different candidates 

have emerged. On the one hand, materials science research has been mainly focused on developing 

new oxygen ion conducting electrolytes for intermediate-temperature solid oxide fuel cells (IT-

SOFC) [9-11]. In particular, several families of oxide-ion conductors have attracted considerable 

interest and are being widely investigated; some of them are: fluorite oxides such as Ceria-Gadolinia 

[12], perovskite oxides such as Strontium and Magnesium doped Lanthanum Gallate [13, 14],  

LAMOX oxides [15, 16] and apatites such as Lanthanum Silicate  [17-20]. On the other hand, proton-

conducting perovskite materials have recently received increasing attention for SOFC electrolyte 

applications because of the higher mobility of protons with respect to the oxygen ions , which 

allows for safe reduction of the operating temperature of SOFCs (450 - 700 °C) without degrading 

performance [3, 21-24]. The most interesting proton conducting materials for electrolytes are 

doped Barium Cerate [25-31] and doped Barium Zirconate [21, 22, 24, 32-37].  

Figure 1.3 shows a plot of the conductivity of Yttria-Stabilized Zirconia together with the 

new families of oxide-ion and proton conductors electrolytes discussed above. It can be observed 

that all the ceramics exhibit higher conductivities than YSZ at temperatures ranging from 500 to 

700 °C, what explains the growing interest that these materials have received since they could be 

successfully used to reduce the SOFC operating temperatures.  

 

Figure 1.3. Comparison of (ZrO2)0.92(Y2O3)0.08 (YSZ) total conductivity with others oxide ion and proton 

conductors electrolytes as a function of temperature [3]: La2Mo2O9 (LAMOX), Ce0.8Gd0.2O1.9 (CGO), 

La0.9Sr0.1Ga0.8Mg0.2O2.85 (LSGM), La10(SiO4)6O3 (Si-Apatite), BaCe0.9Y0.1O3 (BCY), and BaZr0.8Y0.2O3 (BZY). 
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This thesis was focused on the mechanical characterization of two of these materials:  

Lanthanum Silicate and Yttrium-doped Barium Zirconate, since their ion conductivities at 

intermediate temperatures together with the lack of electronic conductivity and chemical stability, 

required for electrolyte application in SOFC, contributed to the consideration of these compounds 

as two of the most promising materials to be used as SOFC electrolytes. Their characteristics, crystal 

structure and ion-conductivity are briefly described below.  

1.1.2.1 Lanthanum Silicate  

Rare-earth-based oxy-apatites La9.33+xSi6O26+3x/2 have been considered as a potential 

alternative to Yttria-Stabilized Zirconia (YSZ) to be used as electrolyte material for intermediate and 

low temperature Solid Oxide Fuel Cells due to their high oxide-ion conductivity, chemical stability, 

thermal properties and low conductivity activation energy [18, 38-40]. 

The oxy-apatite structure usually shows hexagonal symmetry and can be described in the 

P63/m space group. It involves two non-equivalent positions for La ions, one for Si, and four 

positions for O ions (Figure 1.4) [41],  where O1 - O3 ions form SiO4 tetrahedra with La2 located in 

two cavity sites, one 7-coordinated and another 9-coordinated, and O4 ion arranged along the c 

axis, forming the O4 column along which oxide ions can migrate. These channels are presumed to 

be responsible for the high oxide ion conduction of this material [42-44].  

 

Figure 1.4.  Crystal structure of La9.33Si6O26 oxy-apatite [41]. 

Lanthanum Silicates with this apatite-type structure are of great interest, exhibiting 

conductivities even higher than those of the well-known oxide ionic conductor YSZ at intermediate 

temperatures [17, 20, 42, 45, 46]. For example, Nakayama et al. [18] have reported that the 
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conductivity of Lanthanum Silicates is 4.3 × 10–3 Scm–1 at 500 °C, whereas for YSZ it is 1.1 × 10−3 

Scm−1  at 500 °C [5]. 

1.1.2.2 Yttrium-doped Barium Zirconate  

Yttrium-doped Barium Zirconate is another attractive material to be used as electrolyte 

material for intermediate temperature SOFCs because it combines a high proton conductivity with 

high chemical stability in CO2 containing atmospheres [21, 26, 47, 48].  

Y-substituted Barium Zirconate structure shows a cubic perovskite symmetry, similar to 

BaZrO3 (Figure 1.5), which can be described in the Pm3̅m space group. Yttrium is considered as one 

of the most suitable dopants for Barium Zirconate to achieve the highest proton conductivity [21, 

22, 37] (for doping content up to 20% of Y), presumably as a result of the good matching between 

Zr4+ and Y3+ ionic radii (0.72 Å and 0.90 Å [49], respectively). The fast proton mobility and the 

entropic stabilization of protonic defects through water incorporation lead to the high proton 

conductivity of this material [21, 22, 50].  

 

Figure 1.5. Crystal structure of Barium Zirconate [51]. 

Electrical measurements of BZY demonstrated very high bulk proton conductivity, in 

particular, Pergolesi et al. [35] have found that the conductivity of grain boundary-free Yttrium-

doped Barium Zirconate thin films is 0.11 S cm−1 at 500 °C. However, the proton conductivities 

reported in the literature by other authors vary by more than one order of magnitude [52-54]. This 

poor reproducibility of the conductivity properties is due to the difficulty of fabricating dense 

compounds [21]. Moreover proton conductivity seems to be strongly affected by grain size, Ba 

evaporation and secondary phases. 
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1.2  IMPORTANCE OF MECHANICAL PROPERTIES IN SOFCS 

Aside from the characterization of the chemical and electro-chemical behaviour of ceramic 

SOFC materials, which has been addressed in numerous studies since this property gives the 

functionality to these materials, it also is essential to characterize their mechanical behaviour 

because SOFCs are subjected to long-term operation and thermal cycles that may cause mechanical 

degradation. Therefore, different mechanical phenomena, such as micro-cracks, creep, electrode-

electrolyte delamination, microstructural evolution, etc., can compete with other chemical or 

electro-chemical effects that limit the overall performance of the device and potentially lead to its 

ultimate failure. 

In order to understand the origin of these mechanical phenomena it is necessary to know 

the arrangement of the different materials in a functional SOFC system. As mentioned above, a 

single cell is composed of an electrolyte in intimate contact with an anode and a cathode. Moreover, 

stacking of several single cells is required to generate an applicable amount of electricity for real 

applications. In this configuration, an interconnect plate is always installed between neighbouring 

fuel cells to provide the electronic contact [55], while a sealant is required to obtain gas tightness 

[56].  In order to maximize the electrode-interconnect contact, these stacks are subjected to a 

minimum compression pressure of 64 - 74 kPa [57]. A schematic representation of SOFC stack is 

shown in Figure 1.6.  

 

 

Figure 1.6. A schematic representation of planar SOFC stack [58] under compression. 
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The problems associated with durability and reliability are the major hurdle to overcome 

for improving SOFC technology. Due to this, there is a growing research effort which aims at 

understanding the different degradation mechanisms affecting SOFCs [59]. The manufacturing 

process of these devices (material sintering, components assembly and staking, sealing procedure 

and reduction of the anode [60]) together with repeated thermal cycles and prolonged exposure 

to aggressive environments during their operation are responsible for physical-chemical alterations 

at the interfaces, creep deformations, thermo-elastic mismatch between the different materials 

and uneven temperature distribution. 

1. Physical-chemical alterations: The high temperature and the aggressive environment 

characteristic of SOFC operation entails detrimental alterations at the interfaces 

between the different ceramics [60-62], such as grain growth [63, 64], modifications of 

the composition [65, 66] and development of new phases [67, 68], which can alter the 

mechanical response of SOFC materials and cause their weakening [69, 70].  

 

2. Creep deformations:  The elevated temperature operation together with the 

mechanical compression load to which SOFCs are subjected due to the stacking and 

sealing procedure by means of compressive gaskets or glass sealant induce active and 

permanent deformations at the stack components [71]. 

 

3. Thermo-elastic mismatch: The incompatibility between the thermo-elastic properties 

of the different layers is responsible for much of the degrading forces originated in the 

system [57, 72, 73]. 

 

4. Uneven temperature distribution: During operation, gradients of temperature 

between gas-inlet and -outlet of about 100 °C occur in the SOFC system [74]. These 

gradients may result in an uneven distribution of the thermo-mechanical strains [75], 

the electro-chemical potentials and  current density in the cell [74-76].  

All these undesirable phenomena induce stresses in the system, which could reach critical 

values and cause the mechanical failure of a single cell because of an improper choice of its 

components, since mismatched stresses between the different layers can result in problems of 

delamination or micro-cracking in the layers or interfaces during fabrication and operation [55, 72, 

77-79].  

Delamination consists of the separation of one of the electrodes from the electrolyte and 

has dramatic consequences on cell performance, since it impedes the transport of ions between 
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the electrode-electrolyte in the delaminated area inducing a harmful current density redistribution 

[80, 81]. Another important problem is cracking, micro-cracks in the electrode layers also break the 

electronic/ionic conduction pathways with the corresponding local performance loss [71], while 

cracking of electrolyte does not only impede the transport of ions between the electrodes but also 

allows leakage of the fuel to take place from the anode side to the cathode side that lead to the 

end of life of the cell [77]. 

These problems could cause the mechanical failure of a single cell and have dramatic 

consequences on the whole stack, since the mechanical degradation of a single repeating unit lead 

to a series of detrimental effects that end the life of the stack [71]. Thus, knowledge of the 

mechanical properties of all the cell components is required (i) for a comprehensive residual stress 

analysis of the multi-layered system, (ii) for an effective mitigation of the foregoing issues, (iii) to 

ensure the mechanical integrity of the stack and (iv) to success in the development of SOFCs. In 

particular, the elastic properties, the coefficient of thermal expansion and the creep behaviour of 

the different components are necessary to characterize the state of stresses in a SOFC during 

operation. These properties are discussed in depth in the following sections. 

Moreover, for the purpose of analysing the risk of failure of SOFC compounds it is also 

necessary the knowledge of their strength and fracture toughness. Strength strongly depends on 

the manufacturing defects and acts as a concentrator of stresses, while fracture toughness is used 

to determine the amount of stress which is critical to give rise to opening and propagation of cracks. 

 

1.2.1 Thermo-elastic properties  

Owing to the fact that a single cell is composed of individual brittle layers, which differ 

widely in their mechanical properties, and presents a sandwich type geometry, the mismatch in the 

elastic properties and coefficient of thermal expansion of the successive layers during fabrication 

and operation may act as a detrimental source of stress and cause the fast mechanical failure of 

the cell [72, 73]. Therefore, knowledge of the thermo-elastic properties of the different 

components and their evolution with temperature are needed to estimate the stress fields in the 

SOFC stack.  

During manufacturing process, the multi-layered system cools down from the sintering 

temperature to room temperature, that inducing residual stresses which arise from the disparity in 

the thermal expansion coefficient of the adjacent layers and depends on their elastic properties 

[71, 82]. Moreover, the reduction reaction that takes place in the anode during the first cycle of 
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operation introduces mismatch stresses in the other cell components [78, 83] which could impair 

the SOFC structural integrity and reliability.  

During stack operation, the high-temperature, thermal cycles and temperature gradients 

characteristic of SOFC devices give rise to internal stresses and their redistribution due to a disparity 

in the thermo-elastic response of the different components [75, 78, 84]. 

Due to this, SOFC components must have similar thermal expansion coefficients and elastic 

properties in order to avoid the development of these stresses between the different layers that 

could affect adversely to the mechanical integrity of a single cell during fabrication and operation 

[55, 77]. In this context, the compatibility of the thermo-elastic behaviour of SOFC components 

becomes one of the most important design criteria in order to ensure durability and reliability of 

SOFC technology [72].  

 

1.2.2 Creep behaviour  

In order to complete the stress characterization in SOFC materials, it is essential to include 

their creep behaviour. The active, local and permanent deformation generated by creep can act as 

source of stress relaxation under constant operating conditions, as well as induce additional 

stresses and changes in the stress distribution. These modifications of the state of stress in the 

SOFC components can cause local loss of contact pressure with the ensuing cell failure [76].  

Creep can be described as the set of microscopic mechanisms responsible for continuing 

plastic deformation under a constant stress [85]. Therefore, the interest in studying the creep 

deformation of SOFC materials lies not only in their technological applications, but also in the 

understanding of the atomistic mechanisms responsible for this phenomenon. In addition, it is 

sometimes possible to extract very valuable information on the transport processes of the slowest 

moving ionic species in the compound, which is currently unknown: diffusion coefficients, 

activation energy for creep, etc. Such information is essential for other mass transport-related 

processes, such as sintering and grain growth. 

The most relevant theoretical models used to explain plastic deformation are briefly 

described below. They were employed to discuss the atomistic mechanisms that govern the high-

temperature deformation of the studied compounds. The intra-granular mechanisms, by creation 

and movement of dislocations, are not included, because they are not relevant in fine-grained 

polycrystalline ceramic materials. 
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1.2.2.1 Diffusional creep  

In this case, the plastic deformation is controlled by mass transport through atomic 

diffusion processes between grain boundaries, without participation of dislocations. There are two 

possible diffusion paths in ceramics: through the bulk (Nabarro-Herring creep) and along the grain 

boundaries (Coble creep).  

At very high temperatures (T ≃ 0.9 Tf, where Tf  is the melting point) and low stress, creep 

occurs by mass transport through bulk diffusion as shown in Figure 1.7a. Considering a single crystal 

under an uniaxial tensile stress, Nabarro [86] suggested that vacancies would move from tensile to 

compressive regions. This flow of vacancies is equivalent to a counter-flow of atoms in the opposite 

direction resulting in a macroscopic deformation of the crystal. 

 

Figure 1.7. Schematic representation of vacancies (open dots) and atoms flow (solid dots) in a single 

crystal under a uniaxial stress for: (a) Nabarro-Herring creep by lattice diffusion, and (b) Coble creep by 

grain boundary diffusion [87]. 

C. Herring [88] refined the suggestion of Nabarro taking into account the grain geometry 

and the grain boundary compatibility. For the Nabarro-Herring model, the steady-state strain rate 

is given by:  

 lat

2
B

BΩσ
ε =   D

k Td
 (1.1) 

where B is a constant which depends on the grain geometry and stress distribution , Ω is the atomic 

volume, σ is the applied stress, Dlat is the self-diffusion coefficient for mass transport through the 

crystal lattice, kB is the Boltzmann constant, T is the absolute temperature and d is the grain size.  

At lower temperature and for fine grained ceramics, the dominant diffusion paths for mass 

transport may be along the grain boundaries as shown in Figure 1.7b. In this case, the process is 

termed Coble creep [89], and the creep rate is: 

a) b) 
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  gb

3
B

150 Ωσ
ε =   δD

π k Td
 (1.2) 

where Dgb is the self-diffusion coefficient for mass transport along the grain boundaries and δ is the 

grain boundary thickness.  

The activation energy for grain boundary diffusion is generally lower than for the lattice 

(Qgb ≃ 0.6 - 0.7Qlat), thus Coble creep is favoured over the Nabarro- Herring creep at lower 

temperatures. Moreover, it is noted from Equation 1.2 that creep rate varies inversely with d3, so 

that Coble creep is also favoured over Nabarro- Herring creep at very fine grain size. 

Diffusional creep occurs both through the bulk of the grains and along the grain boundaries, 

since Nabarro-Herring and Coble creep are independent processes and can take place in parallel. 

Combining Equations 1.1 and 1.2, the total diffusional creep rate is given by: 

 
 
 

lat gb

2
B

BΩσ πδ
ε =   D + D

dk Td
 (1.3) 

The models of Nabarro-Herring and Coble consider the creep deformation of a single grain. 

When applied to a polycrystalline material, the macroscopic deformation comes from the shape 

change of the grains generated by mass transport. In order prevent the formation of voids between 

the grains, a relative movement of the neighbouring grains is necessary. Otherwise, cracks along 

the boundaries aligned with the tension axis would be opened and the polycrystal would fracture. 

This movement is carried out by a local grain boundary sliding (GBS) of the neighbouring grains, 

called Lifshitz sliding [90]. This process is illustrated in Figure 1.8.  

 

Figure 1.8. Relative movement of the grains by diffusion processes to maintain the cohesion of the 

crystal [87]. (a) Un-deformed grains with marker line. (b) Diffusion creep without GBS resulting in the 

formation of voids. (c) Diffusion creep with GBS preventing the formation of voids. 
 

a) b) c) 
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1.2.2.2 Grain boundary sliding   

In the aforementioned conditions of diffusional creep, a polycrystal of equiaxed grains 

would exhibit a morphological evolution of the grains equivalent to the macroscopic deformation 

of the material. However, this grain elongation has not been generally observed in ceramics, which 

preserve an equiaxed shape even after undergoing large strains [91-94]. There is a deformation 

mechanism by grain boundary sliding that takes into account this fact: the Rachinger sliding [95]. 

This mechanism is based on a grain rearrangement process in which the grains change their relative 

position to one another, thus obtaining large and permanent macroscopic deformations of the 

aggregate without requiring any substantial grain elongation. 

Grain boundary sliding generates stresses at grain boundary triple-points and irregularities. 

The stress relaxation or accommodation process is generally believed to control the strain rate of 

GBS [96, 97]. The most relevant mechanisms of accommodation are either diffusional flow or 

dislocation climb in the vicinity of grain boundaries or through the grain. 

 

1.2.2.2.1 Diffusion-accommodated process: Ashby-Verrall model 

Ashby and Verrall [98] proposed a grain-switching mechanism which requires a 

combination of grain boundary sliding and diffusional creep. This model is similar to Nabarro-

Herring and Coble creep from a mechanical point of view but differs in a topological sense.  In 

particular, Ashby and Verrall model accounts for: the absence of changes in the form factor of the 

grains which retain their equiaxed shape even after very large strains; the absence of significant 

creep transients before the establishment of the steady-state regime; and a proper prediction of 

the magnitude of the strain rates (or flow stresses). Assuming that the mass transport takes place 

simultaneously through the bulk and along the grain boundaries, the steady-state strain rate in the 

Ashby-Verrall model is given by [98]:  

   
   
 
 

 

lat gb

2

B

98Ω 0.72Γ πδ
ε = σ - D + D

d dk Td
 (1.4) 

where   is the grain boundary free energy. This equation is similar to the classical diffusional creep 

(Equation 1.3) with the exception of the term involving 0.72/d, which corresponds to a threshold 

stress that comes from the fluctuations of boundary area when the grains pass through the necking 

position (Figure 1.9b). This term can be usually neglected because it is very small (< 1 MPa) 

compared to the applied stress σ. 
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Figure 1.9. Grain deformation according to Ashby and Verrall model [98]. (a) Initial state, (b) 

intermediate state: necking, and (c) final state. 

Equation 1.4 predicts a steady-state strain rate about an order of magnitude faster that 

Equation 1.3, since less matter diffusion is needed for a given strain than in the Nabarro-Herring 

and Coble models, and the diffusive paths length are shorter [98]. This model explains successfully 

the mechanical and microstructural features observed in different ceramic materials with grain 

sizes between 1 and 10 µm, such as UO2 [99], NiO [100], YSZ [101], YBCO [102], and YAG [103]. Yet 

despite the success of the Ashby-Verrall model, it has been criticized because of its 2D nature, 

which leads to unrealistic diffusion paths. Spingarn and Nix [104] modified the topology of the grain-

switching process to produce a more realistic transient configuration during the change of the grain 

shape, but leading to the same final grain configuration.  

 

1.2.2.2.2 Dislocation-accommodated process 

Another mechanism that can account for the accommodation of grain boundary sliding is 

the movement and multiplication of dislocations. Numerous models have been proposed for this 

accommodation mechanism [97, 105-109], although none of them is able to completely explain the 

deformation process in polycrystalline materials. In general, all these models lead to a steady-state 

strain rate equation as follows: 

   
     
   B

p n
Gb b σ

ε = A
k T d G

D  (1.5) 

where A is a constant, G is the shear modulus, b is the Burgers vector, D a diffusion coefficient and 

p and n the exponents of grain size and stress, respectively. Some models introduce a threshold 

stress 0 necessary to iniciate the sliding, modifying the Equation 1.5 with the effective stress  - 

0. Dislocation-accommodated grain boundary sliding mechanisms can be based on stacking of 

dislocations or movement of individual dislocations. 

a) b) c) 
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1.2.2.3 Interface-reaction creep 

The aforementioned models are based on the assumption that grain boundaries act as 

perfect sources and sinks for vacancies. If this assumption is not satisfied, the creep rate will be 

controlled by interface reaction [110], i.e. by the processes of absorption/emission of vacancies by 

grains boundaries. Burton [111] for the case of diffusional creep, and Ashby and Verrall [98] and 

Burton [112] for the case of GBS, developed models to account for this process. 

 

1.2.2.3.1 Diffusion creep controlled by interface-reaction 

The operation of sources and sinks for vacancies at grain boundaries is required by 

diffusional creep as shown in Figure 1.7. Considering that dislocations having a component of their 

Burger's vector perpendicular to the grain boundary can act as sinks and sources by climbing along 

the boundary, Burton [111] model led the process of diffusion creep controlled by interface-

reaction in the case of bulk diffusion, defining the creep rate as: 

  2

B

lat
jP σ

ε =
8πEdk T

Z -1 b ΩD
 (1.6) 

where Pj is the probability of finding a jog on a dislocation, Z the coordination number and E the 

energy per unit length of a dislocation line.  

 

1.2.2.3.2 GBS creep controlled by interface-reaction 

Burton [112] introduced the characteristic-area concept as the product of the grain 

diameter and the spacing between linear defects at the interfaces. Taking into account the same 

considerations than in the case of diffusional creep, the strain rate equations for the grain boundary 

sliding accommodated by interface-reaction are given by: 

   
     
   B

2

latGb b σ
ε = A

k T d G
D  

   
     
   B

2 2

gbGb b σ
ε = A

k T d G
D  

(1.7) 

 

 

(1.8) 

In both equations A  Pj/, where Pj has a meaning analogous to the previous case and   

is a constant  1. 
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In a similar way to Burton’s development, and assuming that there is a viscous force 

opposing the movement of dislocations along the grain boundaries, Ashby and Verral propose the 

following equation: 


2βbM σ

ε =
0.84ΩG d

 (1.9) 

where M is the mobility of the boundary dislocation and   a constant of the order of unity. 

Consideration of the IRC process leads to an increase of one unit in the stress exponent n and a 

decrease also in one unit of the exponent of grain size p with respect to the original expressions 

1.2.2.4 Phenomenological relationships for superplasticity   

Many different models have been developed to explain superplasticity based in different 

relaxation processes of the stresses generated by the sliding of the grains on each other: dislocation 

motion inside the volume of the grains or along the grain boundaries, diffusional flow, interface-

reaction-controlled diffusion (i.e. boundaries are not perfect sources and sinks for point defects), 

grain boundary migration or cavitation. None of them, however, is able to explain successfully the 

body of experimental data in superplastic materials. Sherby et al. [113] carried out a 

phenomenological study of fine-grained superplastic metals taking into account the following 

considerations: (i) most fine-grained metal materials under superplastic conditions exhibit an stress 

exponent n =2 (   2); (ii) the temperature-dependence of strain rate corresponds to the atoms 

diffusion by either along the grain boundaries (   Dgb) or through the volume of the grains (   

Dlat); (iii) for grain boundary diffusion, the strain rate is    d-3 while for lattice diffusion is                    

   d-2. With these considerations, the authors proposed the following phenomenological 

relationships: 

   
    
   

   
    
   

2 2

6 lat

B

3 2

5 gb

B

Gb b σ
ε = 8x10 D

k T d G

Gb b σ
ε = 2x10 D

k T d G

 

(1.10) 

 

 

(1.11) 

The strain rate values predicted by these expressions reproduce the experimental results of all 

the studied materials within an order of magnitude. Equation 1.10 has been shown to account for 

the superplastic deformation of fine-grained Yttria-Stabilized tetragonal Zirconia with a grain size 

smaller than 1 µm [91] and Equation 1.11 for fine-grained YBa2Cu3O7-x superconductor [114].  
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1.2.3 Previous results in SOFC electrolytes 

Although the knowledge of the mechanical properties of SOFC components have received 

a growing interest in recent years, the available data still remain scarce. In the present section a 

brief literature review is performed in which previous results concerning the mechanical 

characterization of electrolyte materials are presented. 

1.2.3.1 Yttria-Stabilised Zirconia 

8 mol% Yttria-Stabilised Zirconia (8YSZ) is the SOFC electrolyte material more used and 

studied due to its excellent electrical and thermal properties. The evolution of the coefficient of 

thermal expansion of 8YSZ has been evaluated in different works by dilatometry from room 

temperature to 1273 K [115-118].  The results obtained were very closed and in the range of 10.0  

- 11.0 x 10-6 K-1. On the other hand, various studies have been devoted to investigate the elastic 

properties of 8YSZ using different techniques at room temperature and all of them reported 

comparable values between  190 and 223 GPa [119-123]. For example, Selçuk et al. [124] 

determined the elastic constant of 8YSZ by the impulse excitation technique (IET) and found values 

of Young’s modulus (E) and Poisson ratio (ν) in the ranges of 219 - 223 GPa and 0.319 - 0.321, 

respectively. Similarly, Radovic et al. [125] reported values of 216 GPa and 0.315 measured by 

Resonant Ultrasound Spectroscopy for the same composition at room temperature. The 

temperature dependence of Young`s modulus for 8YSZ has been also addressed in several studies, 

and all of them showed similar results [121, 123, 126]. Selçuk et al. [126] found an average value of 

E of 216 ± 5 GPa at 298 K and 155 ± 8 GPa at 1173 K. They also determined the fracture toughness 

by double-torsion loading at the same temperatures obtaining values of 1.61 ± 0.12 MPa·m1/2 at 

room temperature and 1.02 ± 0.05 MPa·m1/2 at 1173 K.  

Concerning the creep behaviour, data on bending tests in the temperature range of 1223 - 

1563 K for 8YSZ with a grain size between 2.4 - 6.9 µm led to a stress exponent close to the unity 

and an energy activation ≃ 400 kJ/mol, indicating that grain boundary sliding accommodated by 

diffusion is the main deformation mechanism [122, 127].  

1.2.3.2 Lanthanum Silicate 

To our knowledge, very few studies have reported mechanical properties of apatites 

compounds. Santos et al. [128] obtained La9.33Si2Ge4O26 compounds through different sintering 

temperatures and evaluated their mechanical properties by means of nano and microindentation 
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tests. They reported values of Young’s Modulus, nanohardness and microhardnes in the ranges of 

106 - 135 GPa, 7.3 - 9.6 GPa and 2.9 - 5.8 GPa, respectively. These results showed a strong 

dependence of the mechanical properties on the microstructure and the experimental condition 

used. On the opposite, the values of fracture toughness remained practically constant (3.5 to 3.9 

MPa·m1/2) with the sintering temperature. In the same line, Suarez et al. [129] measured the 

microhardness of different La9.33Si6O26 ceramics obtaining values between 6.99 and 7.57 GPa. They 

concluded that higher densifications lead to higher values of microhardness while an increase in 

the grain size tend to decrease this property. Concerning the temperature dependence of the 

coefficient of thermal expansion  in LSO compounds, Iwata et al. [130] reported a value of                   

9.4 x 10-6 K-1 for La9.33Si6O26 measured by high-temperature X-ray diffraction (HT-XRD) in the range 

of temperature from 295 to 1073 K, and Jiang et al. [131] found values between 9.7 x 10-6 and 10.3 

x 10-6 K-1 for La10Si6O27 compounds by thermo-mechanical analysis at temperatures between 298  

and 1173 K. Unlike the case of the elastic properties and hardness, the coefficient of thermal 

expansion was found to be independent of the processing method and material microstructure. 

1.2.3.3 Yttrium-doped Barium Zirconate 

The data available in the literature about mechanical properties of BZY is even scarcer than 

for Lanthanum Silicate compounds. To our knowledge, there is no information about the elastic 

properties and creep behaviour of these material. Only one previous work by Sazinas et al. [132] 

studied the hardness and fracture toughness of BaZr1-xYxO3-x/2 (x = 0.1 and 0.2) by microindentation. 

They found values of microhardness and fracture toughness ranging from 675 to 1005 Hv and 1.49 

to 2.43 MPa.m1/2, respectively, for different hydration/dehydration conditions. On the other hand, 

Han et al. [133] measured the thermal expansion coefficient by HT-XRD on 2 to 30 at% yttrium-

doped Barium Zirconate from room temperature to 1273 K. They found values from 8.47 x 10-6 K-1 

to 10.2 x 10-6 K-1 increasing the doping level. Whereas, Lyagaeva et al. [134] reported a mean 

thermal expansion coefficient of BZY compounds of 8.2 x 10-6 K-1 in the temperature range of 323 - 

1173 K.  
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2.1 INTRODUCTION 

This chapter outlines the experimental procedures followed for the preparation of the 

different materials studied during this thesis and the results obtained. The initial parameters of the 

different stages (synthesis, calcination and sintering) have been taken from previous studies carried 

out in our research group [1-3].  

In this work, two different materials for SOFC electrolytes have been studied: Lanthanum 

Silicate and Yttrium-doped Barium Zirconate.  
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2.2 LANTHANUM SILICATE 

Densification is a serious challenge in the fabrication of La9.33+xSi6O26+3x/2 compounds. Many 

efforts have thus been made to prepare fully dense ceramics for SOFC electrolyte applications, 

where flow gas impermeability and thus low porosity (which greatly limits the electrical 

performance [17]) are required.  The most widely technique used for the preparation of these 

compounds is via conventional solid-state reaction methods, where very high temperatures (> 1600 

ºC) are necessary to obtain relative densities higher than 90% (Table 2.1).  The sol-gel route has 

been also proposed to decrease the formation temperature of the oxy-apatite phase; this 

technique however, leads to densities lower than 95% after conventional sintering (Table 2.1).  

Table 2.1. Preparation techniques, sintering temperatures and relative densities for La9.33Si6O26 oxy-

apatite. 

Technique Sintering temperature ( °C) Relative density (%) Reference 

Solid-state reaction 1500 - 1500 70 - 80 [18] 

Solid-state reaction 1600-1700 > 90 [19] 

Solid-state reaction 1600 97 [20] 

Solid-state reaction 1700 95 [15] 

Sol-gel 1400 69 [21] 

Sol-gel 1400 66 [22] 

Sol-gel 1450 92 [23] 

Sol-gel 1500 90 [6] 

Freeze drying + 

Conventional sintering 
1500 > 95 [1, 2] 

Freeze drying + Spark 

plasma sintering 
1250 100 [1, 2] 

In this context, previous works of our research group have shown two strategies to achieve 

excellent results in the densification of Lanthanum Silicate by combining highly dispersed 

nanopowders obtained by freeze drying with conventional or spark plasma sintering, which 

resulted in densities between 95 % and 100 % [1, 2]. Therefore, in this work, these two routes have 

been followed to prepare fully dense materials. 
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2.2.1 Commercial starting precursors for LSO nanopowders preparation 

Two high purity commercial precursors were used as starting materials: lanthanum acetate 

sesquioxide La(CH3COO)3·1.5H2O and tetraethoxysilane (TEOS, Si(OC2H5)4, their characteristics are 

summarized in Table 2.2. 

Table 2.2. Commercial precursors used for the preparation of La9.33Si6O26. 

Precursor Vendor Purity (%) Molecular weight (g/mol) 

La(CH3COO)3·1.5H2O Alfa-Aesar 99.9 343.05 

Si(OC2H5)4 Alfa-Aesar 99.9 208.33 

Stoichiometric amounts of precursors were used to form the La9.33Si6O26 compound 

according to the following equation: 

9.33La(CH3COO)3 ·1.5H2O + 6Si(OC2H5)4 + 128O2  La9.33Si6O26 + 104CO2 + 116H2O 

 

2.2.2 Freeze-drying synthesis 

Freeze-drying allows the preparation of a large variety of high purity powders with an 

accurate control of the composition [24, 25]. It consists in the instant freezing of a solution and the 

further ice sublimation under vacuum conditions [26], resulting in highly dispersed precursor 

nanoparticles. A subsequent conventional thermal treatment is necessary to remove the organic 

ligands and form the desired phase.  

La9.33Si6O26 (LSO) was synthesized by the freeze drying method following the experimental 

process presented in Figure 2.1. Firstly, lanthanum acetate was dissolved in 200 ml of ultra-pure 

water with magnetic stirring until a transparent solution was obtained. Then, TEOS was put in 

another beaker, and acetic acid and a small amount of deionized water were added. The mixture 

was stirred, resulting in a clear transparent solution. Acetic acid acts as a double agent since it 

catalyzes and controls the TEOS hydrolysis reaction. The volumetric ratio, r = Vacetic acid/ VTEOS, was 

set to 4 [1, 2]. The two aforementioned solutions were then mixed, and ultra-pure water was added 

up to a total volume of 600 mL, with a pH value close to 4. The resulting solution was sprayed in a 

liquid nitrogen bath to form a “snow” containing water and the precursors. Due to the 

instantaneous freezing, the homogeneity of the original solution was retained in the solid phase. 

These frozen droplets were transferred into the freeze-dryer chamber, where the dehydration 

process was carried out in a Christ Alpha 2-4 LSC apparatus under vacuum (≤1 Pa). By maintaining 
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the temperature of the condenser at -47 °C for 48 hours, water was continuously removed by 

sublimation and the temperature of the powder increased up to +4 °C. Finally the precursor was 

progressively warmed up to +50 ºC to get rid of the adsorbed water. The resulting powder was a 

whitish amorphous precursor. 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1. Freeze-drying synthesis process for La9.33Si6O26 nanopowders. 

Calcination is a thermal treatment by which a set of chemical reactions of decomposition 

produce a new compound. It is commonly used in the production of simple oxide powders from 

carbonates, hydroxides, nitrates, sulfates, etc. This step of the fabrication process is essential to 

remove any residual carbon species and form pure oxy-apatite nanopowders. After freeze-drying, 

the precursors contain a high amount of organic residues and ligands, which decompose between 

room temperature and 900 °C, this decomposition being associated with an important weight loss 

(∼45%). The thermal treatments at T > 900 °C lead to well crystallised powder without any parasitic 

phase [2]. In this work, freeze-dried powder calcination was carried out at 1000 °C for 4 hours, with 

heating/cooling rates of 5 °C/min, in air.  

Precursor

La9.33Si6O26 

nanopowders

Clear transparent solution

(pH = 3.8)

La(CH3COO)3·1.5H2O + ultra-pure water Si(OC2H5)4 + acetic acid + ultra-pure water

Frozen solution  - "snow"

SPRAY FREEZING 

Calcination 
1000 ºC / 4h, air 

FREEZE DRYING 
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2.2.3 Compaction of LSO nanopowders 

Cold mechanical compaction increases the cohesion between particles in the powder and 

allows to obtain easy-to-handle compact pellets, which are later on subjected to sintering at high 

temperature. In this work, a double pressing system was used, consisting of: 

· Uniaxial pressing: A pre-compaction of the nanopowders was performed on a uniaxial 

press under 100 MPa for 3 min in a 20 mm diameter cylindrical steel die filled with about 6 g of 

powder. After pressing, pellets of 20 mm in diameter and 7 mm in height were obtained. 

· Isostatic pressing: These pellets were vacuum-packed in plastic bags using a domestic 

vacuum sealer and then isostatically pressed at 750 MPa for 10 min.  Pellets of 19 mm in diameter 

and 6 mm in height were finally obtained.  

 

2.2.4 High-temperature sintering 

In order to prepare fully dense materials from the freeze-dried nanopowders, two different 

sintering routes have been used: conventional and spark plasma sintering. 

2.2.4.1 Conventional sintering 

Conventional sintering is the pressureless sintering of a previously pressed powder. Powder 

compacts were placed on an alumina crucible covered previously with a layer of Lanthanum Silicate 

powder and then sintered at 1500 °C for 12 h in air. Very slow heating/cooling rates were used, 

2 °C/min, in order to avoid possible internal residual stresses which could cause the formation and 

propagation of cracks. After sintering, the pellets dimensions decreased to approximately 15 and 5 

mm in diameter and height, respectively.  

2.2.4.2 Spark Plasma Sintering 

Spark plasma sintering (SPS) is a powerful technique to sinter powders applying an external 

pressure and an electric field simultaneously. It allows a faster densification at lower temperatures 

than conventional sintering methods [27], giving rise to materials with higher densities, smaller 

grain sizes, cleaner grain boundaries, in addition to other interesting properties [28]. SPS has been 

carried out in a Dr. Sinter SPS furnace (Plateforme frittage flash, Thiais, France) (Figure 2.2) which 

allows the recording of the shrinkage, shrinkage rate, temperature, current, voltage and pressure 

in real time.  

https://en.wikipedia.org/wiki/Spark_plasma_sintering
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Before SPS treatment, a 20 mm-diameter high-strength graphite mold/dies ensemble was 

filled with about 6 g of calcined LSO powder. To minimize heat losses, the mold was lined with a foil 

of graphite and surrounded by a blanket of graphite (Figure 2.7). The mold/die/powder assembly 

was then put into the sintering chamber and a thermocouple was inserted into the graphite die to 

measure the temperature. The assembly was progressively heated up to 1250 °C under a constant 

pressure of 100 MPa. Firstly, the temperature was increased up to 600 °C at a rate of 200 °C/min. 

After this first step, the target temperature of 1250 °C was reached at a heating rate of 50 °C/min 

and maintained for 5 min. After that, both the heating and pressure were rapidly released. The 

system took around 10 min cooling-down naturally. The whole sintering process, from sample 

preparation until final cooling, lasted less than 1 h. The pellets were finally submitted to a 

conventional thermal treatment at 800 °C in air for 24 h to burn all residual carbon species. 

 

 Figure 2.2. Spark-plasma sintering system: (a) Hot press furnace (left), unit control (center) and power 

unit (right). (b) Detail of the chamber interior during sintering. (c) Die, blanket and graphite foil used in 

the process.  

 

2.3 YTTRIUM-DOPED BARIUM ZIRCONATE 

In order to prepare fully dense and pure BaZr1-xYxO3-δ compounds, several approaches have 

been developed. High sintering temperature (> 1700 °C) and long sintering time enable density 

values higher that 90%. For example,  Iguchi et al. [41] obtained   ̴97% dense BaZr0.95Y0.05O3 at 1700 

to 1800 °C, while  Duval et al. [42] reported densities of about 91% at 1720 °C for BaZr0.9Y0.1O3, 

which unfortunately also lead to variation in chemical composition due to Barium evaporation and 

the emergence of parasite phases, which have a detrimental effect on the proton conductivity [39, 

 

 

b) a) 

c) 
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41, 43]. To overcome the disadvantages, wet chemical methods were adopted to obtain high 

quality nanopowders and the desired perovskite compound [44, 45].  

In the present work, Y-substituted Barium Zirconate has been synthesized by the modified 

EDTA-citrate complexing method, and sintered at high temperature by conventional sintering 

following the suggestion of Babilo et al. [46]. It has been also used a commercial NiO-added BZY 

sintered pellet, as explained below. 

 

2.3.1 Commercial starting precursors for BZY nanopowders preparation 

High purity commercial precursor powders of Barium Nitrate Ba(NO3)2, Yttrium Nitrate 

(Y(NO3)3·6H2O) and Zirconium Nitrate (ZrO(NOx)·yH2O) were used as starting materials . Their 

characteristics are summarized in Table 2.3. 

Table 2.3. Commercial precursors used for the preparation of BaZr0.85Y0.15O2.925. 

Precursor Vendor Purity (%) Molecular weight (g/mol) 

Ba(NO3)2 Alfa-Aesar 99.95 261.35 

Y(NO3)3·6H2O 

ZrO(NO3)2·5.69H2O 

Alfa-Aesar 

Strem chemicals 

99.9 

99.9 

383.01 

231.23 

Stoichiometric amounts of precursors were used to form the BaZr0.85Y0.15O2.925 compound 

according to the following equation: 

Ba(NO3)2 + 0.15Y(NO3)3·6H2O + 0.85ZrO(NO3)2·5.69H2O  BaZr0.85Y0.15O2.925 + 2.08N2 + 5.19O2 +5.74H2O   

  

2.3.2 Modified EDTA-citrate complexing synthesis 

The modified EDTA–citrate complexing method is a successful wet chemical route used to 

synthetize a large variety of oxide materials [47]. Due to the EDTA-citrate combination, several 

metal ions present in a solution are chelated to make up metal complexes which undergo poly-

esterification, when heated, to form a polymer with the metal ions uniformly distributed 

throughout [48] . As a result, ultrafine powders of high purity and homogeneity are obtained [49, 

50]. Taking into account the advantages of this method, BaZr0.85Y0.15O2.925 (BZY) was prepared by the 

modified EDTA-citrate complexing synthesis following the experimental process presented on 

Figure 2.3.  
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Figure 2.3. Microwave-assisted citric acid-EDTA synthesis process of BaZr0.85Y0.15O2.925  nanopowders. 

 First of all, the necessary amounts of nitrates were dissolved in 150 ml of ultra-pure water 

with magnetic stirring until a transparent solution was obtained. Afterwards, citric acid and EDTA 

were added as chelating agents. The cooperation of citrate and EDTA allows  obtaining more stable 

chelate complexes [50].  The mole ratio of (EDTA acid): (citric acid): (total metal ions) was fixed at 

1.5:1.5:1. Then, aqueous ammonia was added to the solution to facilitate the EDTA dissolution, 

forming a water-soluble ammonium salt [3] with a pH value adjusted to about 8. Solution was 

heated up under continuous stirring to obtain a viscous gel. Then, dry gel combustion was carried 

out into a domestic microwave for 2 h, obtaining a black porous precursor.  

After this synthesis step, the precursor was calcined to obtain a pure crystalline phase. It 

was first ground into an agate mortar and placed in an alumina crucible. Then, calcination was 

carried out at 1000 °C for 5 h in air, with heating/cooling rates of 3 °C/min. Once finished the 

thermal treatment, the black precursor became a whitish powder (Figure 2.4). 

Ba(NO3)2 + Y(NO3)3 · 6H2O + ZrO(NO3)2 · 5.69H2O

EDTA + Citric acid

Clear transparent solution

(pH = 8)

Precursor

(black powder)

BaZr0.85Y0.15O2.925     

nanopowders

Grinding / 
Calcination 

Heating 100 °C /  
Microwave 2h 

NH3·H2O for 
increasing pH 
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Figure 2.4. (a) Black porous sponge-puffy stuff; (b) Black milled precursor; (c) Whitish powder after 

calcination. 

 

2.3.3 Compaction of BZY nanopowders 

Cold mechanical compaction was used to obtain compact pellets of BZY15, which were later 

on sintered at high temperature. Firstly, a pre-compaction of nanopowders was performed by 

means of a uniaxial press. For this propose, a powder amount of 6 g was loaded into a 20 mm-

diameter cylindrical steel mold and pressed at 100 MPa for 3 min, obtaining pellets of 20 mm in 

diameter and 8 mm in thickness. These pellets were vacuum packed in plastic bags using a domestic 

vacuum sealer and subsequently isostatically pressed at 750 MPa for 10 min. 17 mm-diameter and 

7 mm-height pellets were obtained.   

 

2.3.4 High temperature sintering 

High temperature pressureless sintering was carried out after powder compaction to 

obtain a fully dense material. The pellets were placed in an alumina crucible and fully covered by  

BZY powder with a 10 wt%-excess Barium carbonate, as suggested by Babilo et al. [46] (Figure 2.5), 

to avoid Barium evaporation found at temperatures above 1550 °C [43, 51] . Conventional sintering 

was performed at 1600 °C during 24 h in air, with very slow heating/cooling rates of 3 °C/min.  

 

 
 

 

Figure 2.5. Sintering configuration: BaZr0.85Y0.15O2.925 green pellet covered with a powder mixture of 

BYZ and BaCO3 (10 wt%) [46]. 

(a (b (c 

BaZr0.85Y0.15O2.925 powder + 10 wt% BaCO3 powder 

Alumina 
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Alumina 
tube 

BaZr0.85Y0.15O2.925 
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2.3.5 Commercial Yttrium-doped Barium Zirconate 

In order to overcome the low sinterability of Barium Zirconate, a new approach based on 

the use of additives (mostly transtision metal oxides: NiO, ZnO, CuO, …) during the fabrication 

process has been  recently proposed [52-54]. It results in dense materials with grain sizes of typically 

2 - 4 µm, and therefore limited grain-boundary resistance. Yttrium-doped Barium Zirconate was 

prepared through this strategy starting from stoichiometric amounts of simple precursors (ZrO2, 

Y2O3 and BaCO3 or BaSO4) with 1-2 wt% transition metal oxide addition. The overall mixture was 

ball-milled during 24 h, pressed into a pellet and sintered at 1400 - 1550 °C for 24 h.  The resulting 

compounds have densities higher than 90 %. In this sense, Nikodemski et at. [54] have reported 

densities higher than 98% in 20% Yttrium-doped Barium Zirconate with 1 wt% NiO sintered at 

1500 °C for 24 h; the grain size was in the 3 - 5 µm range. Different explanations have been 

proposed to explain the efficiency of such a process [54]. With NiO addition, it has been suggested 

that low melting point intermediate phases, such as BaY2NiO5 or BaNiO4, are formed, enhancing 

the sintering rate through the presence of a liquid phase [53]. This material also shows a high total 

proton conductivity, similar to that of bulk material [53].  

In this study, BaZr0.85Y0.15O2.925 with 1 wt% NiO-content provided by NorecsTM
 in the form of 

large pellets of 20 mm in diameter and 5 mm in thickness has been studied. 

 

NiO-extraction 

In order to study the influence of Nickel on the mechanical properties, the mechanical 

characterization was also carried out on the BZY commercial samples after NiO-extraction. 

For NiO-extraction, commercial ceramics were placed in an alumina crucible and 

surrounded with a powder mixture of BZY15 with 10 wt% excess of barium carbonate, as shown in 

Figure 2.5. Then, a firing cycle was carried out at 1600 °C for 120 h in air, with very slow 

heating/cooling rates of 3 °C/min. NiO extraction is based on the NiO diffusion along grain 

boundaries towards the sample surface, where it sublimes and is captured by the surrounding BZY 

powder [55]. 
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3.1 INTRODUCTION 

This chapter presents the different techniques used for the characterization of the 

nanopowders and sintered materials: particle size analysis by laser diffraction, structural analysis 

by X-Ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron 

microscopy (TEM). The experimental results are also presented and compared to literature data.  

 

3.2 CHARACTERIZATION TECHNIQUES  

3.2.1 X-Ray Diffraction 

X-ray diffraction is a highly accurate, versatile and non-destructive structural 

characterization technique, which has been used to identify the crystalline phases present in both 

the prepared powders and the fabricated materials. XRD analysis was performed in air at room 

temperature using a Bruker Advance D2 diffractometer (X-ray Laboratory, SPMS, CentraleSupelec, 

France) in a Bragg-Brentano configuration and equipped with x-flash detector for X-ray 

fluorescence (XRF) measurements. The wavelength used was Cu-Kα (λ = 1.54060 Å) filtered with 

nickel. Data were collected in the 2θ region between 20° and 130° with a step size of 0.02° and 10 

s/step of acquisition. 

The crystalline phases were identified with the aid of EVA 2 (Bruker AXS) and the database 

PDF-2002 (International Centre for Diffraction Data, ICDD). Table 3.1 shows the XRD patterns used 

in this work. Then, XRD spectra were analyzed by the Le Bail refinement method [1] using the TOPAS 

4.2 Bruker AXS software package.  

Table 3.1. X-ray diffraction patterns used in the identification of the crystalline phases (PDF-2002). 

In the Le Bail method, the lattice parameters and the space group of the material must be 

predetermined since they are required for the fitting. The parameters to be fitted are the unit cell 

ID pattern Space group 
Cell parameters 

Volume (Å3) 

a (Å) b (Å) c (Å) 

49-0443 La9.33Si6O26 
Hexagonal 

P63/m 
9.71 - 7.19 587.08 

04-015-2511 BaZr0.8Y0.2O3-δ 
Cubic 

Pm3̅m 
4.22 - - 75.18 

41-0463 BaY2NiO5 
Orthorhombic 

Immm 
3.76 5.76 11.33 245.47 

04-0835 NiO 
Cubic 

Fm-3m 
4.18 - - 72.87 
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dimensions, the instrumental zero error and the peak shape/width; the reflection intensities are 

however not calculated from the cell content but adjusted automatically at each refinement step. 

Once these magnitudes have been refined, the intensities at each point are determined, and used 

in turn as input intensities for the next fitting cycle. The number of free variables for the Le Bail 

fitting procedure is, therefore, independent of the number of reflections in the diffraction pattern, 

significantly shortening the calculation time. 

The refinement quality is assessed by different R-factors, which measure how well the 

calculated model fits the observed intensities and how well the background, diffraction positions 

and shape of peaks have been fitted. The commonly used R-factors in the refinement are [2, 3]: 

· R - weighted pattern, Rwp: reflects the progress of the refinement (the numerator of this 

expression is precisely the residue function to be minimized). It is defined by: 

 

 



 
 
 
 





1
2 2obs calc

¡ ¡¡
wp 2obs

¡¡

w¡· Y Y
R  

w¡· Y
 (3.1) 

where w¡, Y¡
obs and Y¡

calc are the statistical weight , observed intensity at the ith step and calculated 

intensity at the ith step, respectively.  

· R - expected, Rexp: reflects the quality of the experimental data. It is defined by: 

 

 



 
 
 
 

1

2

exp 2obs
¡¡

N P
R

w¡· Y
 (3.2) 

where N and P are the number of points and number of parameters, respectively. 

 

· Goodness of Fit, GOF or X2: reflects the overall goodness of the fit, and it is given by: 

 ¡ ¡¡
¡·

 



 
   
 
 


1

2 2obs calc

wp2

exp

w Y YR
GOF X

R N P  (3.3) 

This factor is unity for an ideal model.  

· R-Bragg factor, RBragg: reflects the quality of the agreement between the observed and 

computed reflections and it is defined by: 

 




obs calc
k kk

Bragg obs
kk

Y Y
R

Y
 (3.4) 
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where Yk
obs and Yk

calc are the observed and calculated intensities of the kth reflection at the 

completion of refinement procedure, respectively. Good agreement between observed and 

computed reflections results in a small value of the RBragg index. 

 

3.2.2 Particle size 

The particle size distribution of the calcined powders was measured using a Malvern 

Zetasizer Nano ZS particle size analyzer (Functional Characterization Service, CITIUS, University of 

Sevilla, Spain), which allows the determination of particle diameters in the range 0.6 nm - 6 µm. 

This equipment uses the low angle laser light scattering technique to measure particle sizes through 

the intensity and angle of the dispersed beams by the suspended particles in a given medium. For 

the measurements, a suspension of 0.5 g of calcined powder in 25 ml of ethanol was prepared 

under 30 min-ultrasonication. 

 

3.2.3 Density 

The density of the sintered compounds was determined by two different ways. On the one 

hand, by direct measurement of mass and dimensions, using a balance and a caliper, respectively. 

On the other hand, using the Archimedes’ method, by means of an analytical balance equipped 

with a hydrostatic weighing accessory. The measurements were performed at ambient conditions 

using distilled water as immersion medium. The density was then calculated by the following 

equation: 

2 d   H O

 w   i  

W · ρ
ρ =

W - W
 (3.5) 

where Wd, Ww and Wi are the weight in dry, wet, and immersion conditions, respectively, and ρH2O 

is the water density at room-temperature. 

Finally, the relative density was obtained from the theoretical density.  

 

3.2.4 Electron microscopy analysis  

The microstructural characterization of the materials was performed using a high-

resolution FEI Teneo scanning electron microscope, equipped with an X-ray dispersive energy 

microanalysis system (EDS, Energy Dispersive X-ray Spectroscopy), and also with a FEI Talos 

transmission electron microscope operating at 200 kV voltage (Microscopy Service, CITIUS, 

University of Seville).  

 

http://www.malvern.com/en/support/product-support/mastersizer-range/mastersizer-2000/
http://www.malvern.com/en/support/product-support/mastersizer-range/mastersizer-2000/
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3.2.4.1 Preparation of samples 

For SEM observations, sintered samples were carefully polished using SiC papers (1500 grit 

and 2500 grit, Buehler), and then ultrasonically cleaned in acetone for 15 min. After polishing, and 

in order to reveal grain boundaries, the samples were thermally etched at a temperature 20% 

below the sintering temperature for 3 hours and then mounted on aluminum holders using carbon 

paper. It was not necessary to deposit any conductive coating on the surface of the sample due to 

the low voltage used (1 - 5 kV). 

For TEM observations, the samples were cut into thin slices of less than 100 µm-thickness 

using a high precision diamond saw. Afterwards, the slices were polished down to 50 µm and then 

dimpled using a dimple grinder to less than 20 µm-thickness in the center of the disc. Finally, the 

slices were ion-milled using argon at low incidence angles until a hole was formed. 

 

3.2.4.2 Morphological parameters 

The most relevant morphological parameters taken into account for the microstructural 

characterization of the different materials were the grain size d, the form factor F and the 

orientation angle θ of the grains. These parameters were measured from SEM micrographs using 

the Image J semiautomatic image analyzer software averaging over more than 500 grains on each 

material. 

3.2.4.2.1 Grain size  

The grain size has been taken as the equivalent planar diameter d, defined by:          

 
 
 

1
 
24·Area

d =
π

 (3.6) 

where Area is the measured grain surface. 

It has been found (see later in this Chapter) that the grain size distributions are consistent 

with a lognormal law, as found in many other ceramics [4]. The lognormal distribution law is given 

by [5, 6]:  

  
 
  

2

22

ln1 1
(d|µ,σ)= exp -

d 2

d/

σ2

μ

πσ
f  (3.7) 

with the normalization condition: 
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 
0



 (d|µ,σ)d d =1f  (3.8) 

The parameters μ and σ are related to the mean grain size 𝑑̅ and its standard deviation σd 

by: 


 
 
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2σ
d = µ exp

2
   ;     

1

2



 
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 

2

2
d

σ
σ  = µ exp exp σ -1

2
 (3. 9) 

 The parameters μ and σ of the lognormal distribution that best fit a set of experimental 

results are easily obtained from the representation of the accumulated fraction of grains n versus 

grain size d. This fraction is given by:  

 
0

d

n = x dxf  (3.10) 

which, for a lognormal distribution, results: 

  
 
  


d 2

22
0

ln x /µ1 1
n = exp - dx

x 2σ2πσ
 (3.11) 

By making the substitution: 

 
 

 
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 

1 x
u x = ln

σ µ
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x

1
du = dx

σ
 (3.12) 

Equation 3.11 is rewritten as: 

 














u d '2

 
-

1 u
n = exp du

22π
 (3.13) 

Equivalently: 

  
  

  

1 d
n = Z ln

σ µ
 (3.14) 

where Z(y) is the error function given by: 

 


 
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 


y 2

 

 
-

1 u
Z y = exp - du

22π
 (3.15) 

Inverting this equation, finally results in:  
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   
 
 
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-1 1 d 1 1
Z n = ln =  lnd-  lnμ

σ µ σ σ
 (3.16) 

The plot of Z-1 (n) versus ln(d) is therefore a straight line, called Henry's line, which can be 

written as: 

   -1  Z n = A  ln d +B       
1

σ =
A

  ;   
 
 
 

 
B

µ = exp -
A

 (3.17) 

where ln(µ) is the average value of ln(d), 𝑙𝑛⁡(𝜇) = 𝑙𝑛⁡(𝑑)̅̅ ̅̅ ̅̅ ̅, and σ is the standard deviation of ln(d). 

The mean value of 𝑑̅  and its standard deviation σd (Equation 3.9) can also be easily 

expressed as a function of the parameters A and B of the Henry's line: 

 
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B 1
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3.2.4.2.2 Form factor  

The form factor is a dimensionless parameter which gives quantitative information of the 

grain shape. It is defined as: 

 
2

4 π Area
F =

Grain perimeter
 (3.19) 

It has a maximum value of 1 for a circle and 0 for a segment. For polygonal grains with N 

sides, it is easily found that: 

 

π /N
F =

tg π /N
 (3.20) 

3.2.4.2.3 Orientation angle 

The orientation angle of a grain, θ, is defined as the orientation of the largest diameter of 

the grain relative to a direction of reference. For non-circular grains, the distribution of this 

parameter gives information about the preferential alignment of the grains. 
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3.3 EXPERIMENTAL RESULTS 

3.3.1 Lanthanum Silicates 

3.3.1.1 Density 

By using the theoretical density of La9.33Si6O26, 5300 kg/m3, relative density values higher 

than 95% (required for the desired application) were achieved by the two different routes chosen 

for the material preparation. 

Table 3.2. Relative densities of La9.33Si6O26 compounds.  

Material Synthesis Sintering 
Relative density (%) 

Mass / volume Archimedes 

LSO-CS Freeze-drying CS at 1500 °C 97.1 ± 0.8 96.7 ± 0.2 

LSO-SPS Freeze-drying SPS at 1250 °C 99.6 ± 0.4 100.0 ± 0.2 

Table 3.2 shows that the combination of freeze-drying and spark plasma sintering yields 

higher densities than conventional sintering and allows to obtain fully dense compounds (almost 

100% of the theoretical density). These results are in accordance with what was reported by 

Chesnaud et al. [7] in a previous work following the same fabrication routes. 

  

3.3.1.2 X-Ray Diffraction analysis 

Calcined nanopowders 

Identification of the crystalline phases was performed at room temperature using X-ray 

diffraction (XRD) and the diffraction patterns of the PDF-2002 database collected in Table 3.1. 

Figure 3.1 displays the XRD pattern of the powder obtained after calcination. Comparison 

with PDF-2002 reference patterns confirms the presence of La9.33Si6O26 single phase (P63/m). The 

crystallites size was estimated to be about 80 - 90 nm from the diffraction peaks width by using the 

Scherrer equation. 
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Figure 3.1. XRD pattern of calcined LSO powder (black). PDF-2002 XRD pattern of La9.33Si6O26 (red). 

Le Bail fitting of diffraction patterns was carried out using the space group P63/m and the 

initial unit cell parameters a = 9.728(6) Å and c = 7.190(4) Å  reported by León-Reina et al. [8].  

Table 3.3. Refined cell parameters of La9.33Si6O26 calcined powders. 
 

Material a (Å) b (Å) c (Å) V (Å3) Rwp GOF RBragg 

La9.33Si6O26 9.729(3) - 7.183(2) 588.76(4) 11.12 1.10 0.415 

Refined cells parameters, gathered in Table 3.3, are similar to those found in the literature 

for the calcined powder. For example, Célérier et al. [9] reported unit cell parameters for La9.33Si6O26 

of  a = 9.726(3) Å and c = 7.184(5) Å, while Kolisch et al. [10] have presented values of a = 9.713(5) 

Å and c = 7.186(5) Å. 

 

Sintered ceramics 

After sintering, both LSO-CS and LSO-SPS materials present a single lanthanum silicate 

crystalline phase. In order to obtain a more detailed structural information, Le Bail fitting of the 

diffraction patterns was carried out in the P63/m space group taking into account once again the 

structural description given by León-Reina et al. [8]. Figure 3.2 shows XRD patterns of LSO-CS and 

LSO-SPS sintered ceramics. Bragg angle positions corresponding to the structure are indicated by 

red vertical bars.  

I PDF 49-0443 La9.33Si6O26 Lanthanum Silicate 
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Figure 3.2. X-ray diffraction diagram for La9.33Si6O26 sintered ceramics. 

The refined parameters deduced from the Le Bail method are summarized in Table 3.4, 

which are in good agreement with literature data for La9.33Si6O26 ceramics [7, 10-13]. For instance, 

Sansom et al. [14] found a = 9.721(3) and c = 7.187(3), similar to the present results.  

Table 3.4. Refined cell parameters of La9.33Si6O26 sintered compounds. 
 

Material  a (Å) b (Å) c (Å) V (Å3) Rwp GOF RBragg 

LSO-CS  9.724(5) - 7.186(4) 588.49(3) 12.22 1.38 0.627 

LSO-SPS  9.723(6) - 7.183(4) 588.01(8) 11.32 1.30 0.542 

It can be thus conclude that the two sintered materials, LSO-CS and LSO-SPS, exhibit 

indentical lattice parameters, which are indeed the same as in the original calcined powder (Table 

3.3). 

 

3.3.1.3 Particle size 

Figure 3.3 shows the particle size distribution of the La9.33Si6O26 as-obtained nanopowders 

after calcination, of five measurements, which yields an average particle size of 550 ± 60 nm, much 

larger than the mean value of 85 nm obtained by XRD. This difference, along with the 

microstructural results of the sintered material (presented later in section 3.3.1.4), which shows an 

average grain of about 200 nm, suggest that the sizes measured by the laser diffraction technique 

correspond to powder agglomerates and not to individual single-crystallite particles. To confirm 
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this result, an additional analysis of the powders was performed by transmission electron 

microscopy (TEM). To this end, several drops of the same suspension were placed on carbon-coated 

copper TEM grids (200 mesh). Observations were then performed on a Philips CM200 microscope 

(Microscopy Service, CITIUS, University of Sevilla, Spain) operating at 200 kV.   

 

Figure 3.3. Particle size distribution of La9.33Si6O26 as-obtained nanopowders after calcination. 

The morphology of the La9.33Si6O26 nanopowder is shown in Figure 3.4. It can be seen 

agglomerates of 300 - 800 nm, which consist of irregular particles of average size of about 100 nm. 

This value correlates well with the crystallite sizes calculated from XRD analysis, confirming the 

nanometric nature of the LSO powder. On the other hand, the size of the agglomerates observed 

by TEM agrees with the value measured by laser diffraction.  

  

Figure 3.4. TEM micrographs of La9.33Si6O26 as-obtained nanopowders after calcination. 

100 nm 200 nm 
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3.3.1.4 Microstructural analysis  

Figure 3.5 shows SEM micrographs of La9.33Si6O26 sintered in air through conventional 

sintering at 1500 °C for 12 h. These images clearly reflect a homogenous and dense microstructure 

consisting of equiaxed grains with average sizes of about 1 μm and delimited by well-defined grain 

boundaries. Porosity is small in agreement with density measurements.  

  

Figure 3.5. SEM micrographs of sintered LSO-CS compounds. 

  

Figure 3.6. SEM micrographs of sintered LSO-SPS compounds. 

Figure 3.6 shows SEM micrographs of La9.33Si6O26 sintered in vacuum through spark plasma 

sintering at 1250° C for 5 min. These materials present a fine-grained microstructure consisting of 

equiaxed grains with grain sizes in the range 100 - 500 nm, with practically no porosity.  

These results show a large difference in grain size between both materials, indicating the 

influence of the sintering method on the microstructure. The lower temperature and shorter 

sintering time used during SPS restrict strongly the grain growth.  

5 µm 1 µm 

5 µm 1 µm 
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Figure 3.7. Morphological distributions of La9.33Si6O26 compounds made from conventional sintering 

(LSO-CS) and Spark plasma sintering (LSO-SPS): (a) Grain size; (b) Henry’s lines for the grain size 

distribution; (c) Form factor; (d) Orientation angles. 

The morphological parameters d, F and θ of the different materials were measured from 

SEM micrographs and are summarized in Table 3.5 and displayed in Figure 3.7. Though the grain 

size of LSO-CS is larger than LSO-SPS materials, they exhibit similar grain size-scaled distributions, 

corresponding to a lognormal law. Regarding the form factor F, both materials have equiaxed grains 

with average values of 0.8, which means a stable grain distribution. The absence of preferential 

directions in the polycrystal is also reflected in the orientation angle formed by the maximum 

diameter of the grain with an arbitrary direction. Average values, close to 90° and standard 

deviation near 45°, indicate the absence of preferred directions in grain populations.  
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Table 3.5. Morphological parameters of La9.33Si6O26 compounds: grain size d, grain size lognormal 

distribution parameters µ, σ, form factor F and orientation angle θ. 
 

Material d̅ (µm) µ (µm) σ (µm) F̅ θ (°) 

LSO-CS 1.1 ± 0.6 0.86 0.37 0.8 ± 0.1 90 ± 51 

LSO-SPS 0.2 ± 0.1 0.18 0.32 0.8 ± 0.1 84 ± 47 

TEM observations were carried out on both materials to complete the microstructural 

characterization. Figure 3.8 and Figure 3.9 show typical images of the internal structure of the grains 

in LSO-CS and LSO-SPS compounds, respectively. In both cases, the grains are generally free of 

defects, with clean and straight grain boundaries and well-defined triple points. No dislocations and 

secondary phase pockets were observed. 

  

Figure 3.8. TEM images of sintered LSO-CS compounds. 

 

  

Figure 3.9. TEM images of sintered LSO-SPS compounds. 

 

1 µm 50 nm 

200 nm 40 nm 
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3.3.2 Yttrium-doped Barium Zirconate 

3.3.2.1 Density 

By using the theoretical density of 15% Yttrium-doped Barium Zirconate (6166 kg/m3), the 

relative densitiy of the BZY compound fabricated in this work is 97% (Table 3.6). The commercial 

material prepared with NiO as sintering aid shows a higher density, practically 100%, reveling the 

influence of sintering aids in densification, as it was already tested by Tong et al. [15] and 

Nikodemski et al. [16].  

Table 3.6. Relative densities of BaZr0.85Y0.15O2.925 compounds.   
 

Material 
Relative density (%) 

Mass / volume Archimedes 

Home-made BZY 97.0 ± 0.5 97.2 ± 0.2 

Commercial BZY-NiO 99 (Norecs TM) 

 

 

3.3.2.2 X-ray diffraction analysis 

Calcined nanopowders 

Crystalline phase identification was performed using X-ray diffraction and the diffraction 

patterns of the PDF-2002 database collected in Table 3.1. XRD diagrams of the nanopowders 

obtained after calcination show the presence of the single Y-doped BaZrO3 perovskite phase (Figure 

3.10) with the Pm3̅m space group. From peaks width, the crystallites size, estimated once again 

from the Scherrer law, is about 15 - 20 nm.  

Le Bail fitting of these diffraction patterns was carried out using the Pm3̅m space group and 

the initial unit cell parameters a = 4.221(3) reported by Nomura et al. [17]. Refined lattice 

parameters, gathered in Table 3.7, are comparable to the values found in the literature for 

substituted Barium Zirconate with a 15 % Y content calcined powders. For example, Iguchi et al. 

[18] found a cubic cell parameter a = 4.216(1) Å slightly higher than the results of this work, while 

Duval et al. [19] have reported values slightly lower, a = 4.19(3) Å. 
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Figure 3.10. XRD diagram of BaZr0.85Y0.15O2.925 calcined powder (black). Bragg peaks positions of 

BaZr0.8Y0.2O3 (red). 

 

Table 3.7. Refined cell parameters of BaZr0.85Y0.15O2.925 calcined powder. 
 

Material a (Å) V (Å3) Rwp GOF RBragg 

BaZr0.85Y0.15O2.925 4.203(1) 74.26(8) 12.74 1.36 0.854 

 

Sintered ceramic 

For the structural study of BaZr0.85Y0.15O2.925 sintered ceramics, first of all, the crystalline 

phases were identified by using the reference diffraction patterns gathered in Table 3.1 and then, 

Le Bail fitting was applied to analyze the XRD data. Figure 3.11 shows the diffraction data of the 

different materials. Bragg angle positions corresponding to the different structures are indicated 

by vertical bars. Whereas lab-made BZY exhibits only the single crystalline phase of yttrium-doped 

barium zirconate (Pm3̅m), BZY-NiO also contains BaY2NiO5 (Immm) as shown in Figure 3.11. The 

overlap of BZY peaks with those of NiO makes difficult the identification of this last phase, however 

its presence should not be excluded. 

I PDF 04-015-2511 BaZr0.8Y0.2O3 Barium Yttrium Zirconium Oxide 
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Figure 3.11. X-ray diffraction diagram for BaZr0.85Y0.15O2.925 sintered ceramics. 

The lattice parameters deduced from LeBail method are summarized in Table 3.8, which 

are in good agreement with the BaZr0.85Y0.15O2.925 cell parameters reported in the literature (from 

4.210 Å [20] to 4.2317(1) Å  [21]). This seems to indicate that the NiO content slightly reduces the 

lattice structure of BZY. In this regard, Shafi et al. [22] also found a decrease in the cubic unit cell 

parameter with increasing in NiO content.  

Table 3.8. Refined cell parameters of BaZr0.85Y0.15O2.925 sintered compounds. 
 

Material a (Å) V (Å3) Rwp GOF RBragg 

BZY 4.223(2) 75.317(2) 10.09 1.20 0.656 

BZY-NiO 4.212(6) 74.737(3) 13.11 1.32 1.027 

Furthemore, it has been found an increase in the lattice parameters from a = 4.203(1) Å in 

the calcined powder (Table 3.7) to a = 4.223(2) Å after sintering (Table 3.8).  A similar evolution of 

the lattice parameter was reported by Duval et al. [19] which was associated to the fact that, below 

1250 °C, the formation reactions may not be completed leading to a BZY precursor with a smaller 

cell parameter after calcination at 1000 °C [23]. 
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3.3.2.3 Particle size 

The particle size of the calcined nanopowder was measured by laser diffraction and TEM.  

Figure 3.12 shows the particle size distribution of the BZY powder obtained by laser diffraction from 

five measurements, yielding an average particle size of 530 ± 60 nm. 

 
Figure 3.12. Particle size distribution of BaZr0.85Y0.15O2.925 nanopowders as-obtained after calcination. 

On the other hand, TEM analysis (Figure 3.13) shows that the nanopowders were strongly 

agglomerated. These agglomerates, of about 500 nm in size, consist of by very small spherical 

particles between 10 and 40 nm. This particle size agrees with the value of the crystallite sizes 

calculated from XRD, confirming the nanometric nature of this powder.  

 

Figure 3.13. TEM micrographs of BaZr0.85Y0.15O2.925 as-obtained nanopowders after calcination. 

 

 

200 nm 100 nm 
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3.3.2.4 Microstructural analysis  

Figure 3.14 shows SEM micrographs of BZY sintered in air by conventional sintering at 

1600 °C for 24 h. The material presents a fine-grained microstructure consisting of equiaxed grains 

with grain sizes of about 200 nm. Porosity is small, according to density measurements, and 

consisted in small pores below 100 nm in size, preferably located at multiple grain junctions. 

  

Figure 3.14. SEM micrographs of sintered lab-made BZY compounds. 

  

Figure 3.15. SEM micrographs of sintered commercial BZY-NiO compounds.   

Figure 3.15 shows SEM micrographs of BZY-NiO commercial material. These images clearly 

reflect a homogenous and dense microstructure consisting of equiaxed grains with average sizes in 

the range 1 - 2 μm and delimited by well-defined grain boundaries, with practically no porosity.  

These results show a large difference in grain size between both materials, indicating the 

influence of the additive in the diffusion process. Tong et al. [24] suggested that the enhancement 

of densification could be ascribed to the formation of BaY2NiO5 second-phase and its role as a 

sintering aid (see Section 2.3.5), while the significant grain growth is as a result of the melting of 

the BaY2NiO5 phase [24]. 

5 µm 2 µm 

5 µm 2 µm 
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Figure 3.16. Morphological distributions of BaZr0.85Y0.15O2.925 compounds: (a) Grain size; (b) Form 

factor; (c) Orientation angles; (d) Henry’s lines for the grain size distribution. 

The morphological parameters d, F and θ of the different materials were measured from 

SEM micrographs and are summarized in Table 3.9 and displayed in Figure 3.16.  All the compounds 

exhibit similar distributions, corresponding to a lognormal law. Regarding the form factor F, they 

have equiaxed grains with average values of 0.8, which means a stable grain size distribution. The 

absence of preferential directions in the polycrystal is also reflected in the orientation angle formed 

by the maximum diameter of the grain with an arbitrary direction. Average values close to 90° and 

standard deviation near 45°, indicate the absence of preferred directions in grain populations.  
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Table 3.9. Morphological parameters of BaZr0.85Y0.15O2.925 compounds: grain size d, grain size lognormal 

distribution parameters µ, σ, form factor F and orientation angle θ. 
 

Material d̅ (µm) µ (µm) σ (µm) F̅ θ (°) 

BZY (lab-made) 0.2 ± 0.1 0.18 0.22 0.8 ± 0.1 84 ± 52 

BZY-NiO (commercial) 1.6 ± 0.6 1.37 0.27 0.8 ± 0.1 85 ± 52 

Finally, in order to complete the microstructural characterization, TEM observations were 

carried out on all the materials. Figure 3.17 and Figure 3.18 show typical images of the internal 

structure of the grains in the different compounds. Lab-made BZY grains are often very stressed, 

with dislocations arranged in dense tangles and also forming pile-ups and low-angles sub-

boundaries. On the opposite, BZY-NiO grains are generally free of defects, with clean and straight 

grain boundaries and well-defined triple points.  

  

  

Figure 3.17. TEM images of sintered lab-made BZY compounds. 
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Figure 3.18. TEM images of sintered commercial BZY-NiO compounds. 

 

3.3.3 Yttrium-doped Barium Zirconate after NiO-extraction 

3.3.3.1 Density 

By using the theoretical density of 15% Yttrium-doped Barium Zirconate (6166 kg/m3), the 

relative density of BZY after NiO-extraction was 95.4 ± 0.9 % which contrast with the value of 99% 

of the material before the extraction process. This decrease in density reveals the influence of 

sintering aids in densification as it was already tested by Tong et al. [15] and Nikodemski et al. [16].  

 

3.3.3.2 X-ray diffraction analysis 

In order to ensure that the extraction process did not modify the Yttrium-doped Barium 

Zirconate crystalline phase, X-ray diffraction was performed and the data obtained were compared 

with that of BZY-NiO. Figure 3.19 shows the XRD patterns of the different commercial BZY-NiO 

compounds where it can be observed that, in /BZY after NiO-extraction, all the peaks of the 

BaZr0.85Y0.15O2.925 cubic phase are present. Moreover, in comparison with BZY-NiO, the extra peaks 

of BaY2NiO5 which come from the NiO used as additive in the sintering step have disappeared, as 

can be more easily observed in the magnified pattern of the Figure 3.19. The lattice parameter 

deduced from the Le Bail method for the material after NiO-extraction was 4.223 (3) Å, the same 

value found for BZY and slightly higher than for BZY-NiO (Table 3.8).  

 

2 µm 5 µm 
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Figure 3.19. X-ray diffraction diagram of commercial BZY sintered ceramic. Full (upper) and 

magnified (lower) patterns.  

Simultaneously with XDR, X-Ray Fluorescence (XRF) measurements were collected for BZY-

NiO and BZY after NiO-extraction to identify the elemental composition of the samples. Figure 3.20 

shows the XRF spectra of both materials. No evidence of Ni after the NiO-extraction process was 

found, in agreement with the XRD measurements. 
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Figure 3.20. X-ray fluorescence analysis of BZY-NiO (a) before and (b) after NiO-extraction.  

A magnetometry technique has been used in order to quantify any possible residual nickel 

content after NiO-extraction, not detected by XRD or XRF. This technique allows the measurement 

of ferromagnetic elements down to the parts per million level. To this end, the samples were 

annealed in a reducing atmosphere of 5% H2/Ar at 800 °C for 24 hours, and then analyzed in a 

MPMS 5 Quantum Design magnetometer (Plateforme Technique de l’ICMMO, Magnetic 

measurements service, France) at 300 K under an uniform field of -60000 Oe to 60000 Oe. 

Figure 3.21 shows the magnetization curves for the commercial material before and after 

the NiO-extraction. NIST standard of 54.888 emu/g-Ni was used to determine the amount of 

metallic Ni in the samples. In this way, the BZY-NiO after annealing had a magnetic moment of 0.155 

emu/g-Ni, corresponding to an amount of metallic Ni of about 0.3 wt%, which is in roughly 

agreement with the NiO content of 1 wt% introduced in the process. On the contrary, the 

specimens after NiO-extraction exhibited a null magnetic moment, indicating the absence of Ni and 

therefore the success of the extraction process. 
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Figure 3.21. Magnetization curve for BZY-NiO before and after NiO-extraction. 

 

3.3.3.3 Microstructural analysis  

Figure 3.22 shows back-scattered electron images of BZY ceramic after NiO-extraction. This 

material presents a microstructure with equiaxed and large grains (from 2 to 20 µm).  

 

  
 

  

Figure 3.22.  Back-scattered electron micrographs of BZY after NiO-extraction (left) and their 

equivalent images with secondary electrons detector (right).  
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A comparison with the original material with NiO, which exhibited a grain size of 1.6 µm 

with no pores (Figure 3.15), these images reflect a significant grain growth as well as an increase in 

porosity during the NiO-extraction. Coarsening of the BZY microstructure has been also reported 

by Coors et at. [25] after subjecting BZY-NiO compounds to a similar NiO-extraction process; in this 

case, they used a heat treatment at 1600 °C for 16 hours and observed an increase in the average 

grain size from 5 to 6.5 µm. Due to the fact that the amount of time required for a total extraction 

depends on the dimensions of the samples, it has been tested that 120 hours were necessary for a 

successful NiO-extraction in the case of specimens of 3 x 3 x 5 mm3. This long high-temperature 

heat treatment favoured a significant grain growth as well as an increase in porosity.  As evidenced 

by Figure 3.22, the black regions are porosity, which consisted in cavities of about 10 µm preferably 

located at multiple grain junctions.  

The morphological parameters d, F and θ of BZY after NiO-extraction were measured from 

Back-scattered electron micrographs and are summarized in Table 3.10.  This material exhibits 

similar distribution, form factor and angle orientation than the others BZY compounds (Table 3.9) 

which means a stable grain size distribution with absence of preferential directions in the 

polycrystal. However, these results show a large difference in grain size with respect to the other 

ceramics, confirming the influence of the long firing cycle in the microstructure as just commented 

above.  

Table 3.10. Morphological parameters of BZY after NiO-extraction: grain size d, grain size lognormal 

distribution parameters µ, σ, form factor F and angle orientation θ. 
 

Material d̅ (µm) µ (µm) σ (µm) F̅ θ (°) 

BZY after NiO-extraction 9 ± 3 8.32 0.23 0.8 ± 0.1 87 ± 53 

Finally TEM observations were carried out on the materials. Figure 3.23 shows typical 

images of the internal structure of the grains, where most of them display large densities of 

dislocation and other defects, not seen in the original material (Figure 3.18). 
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Figure 3.23. TEM images of sintered BZY compounds after NiO-extraction. 
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4.1 INTRODUCTION 

The main purpose of this chapter is to investigate and compare the mechanical properties, 

including Young's modulus (E), hardness (H), Poisson ratio (ν) and facture toughness (KIC), of 

Lanthanum Silicate and Yttrium-doped Barium Zirconate by means of different experimental 

techniques at room temperature. Another objective is to explore the precision and reliability of 
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these techniques to see whether they could be developed for high temperature measurements. 

Finally, for the sake of completeness, theoretical calculations by Density Functional Theory (DFT) 

was carried out to determine the full elastic tensor of materials, evaluate the potential differences 

in the elastic properties between polycrystalline and single crystal compounds in order to identify 

possible sources of internal stress and compare with the experimental results. 

 

4.2 EXPERIMENTAL CHARACTERIZATION OF ROOM-TEMPERATURE MECHANICAL PROPERTIES 

4.2.1 Experimental procedure 

The experimental mechanical parameters were determined considering the polycrystals to 

be elastic isotropic materials. The relationship between stress σ and strain ɛ can be described by 

the Hooke's law for an isotropic material and is given by: 


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where E and ν are the Young’s modulus and the Poisson ratio, respectively. This matrix relating  𝜎̿  

to  𝜀̿  is called the compliance matrix (the inverse relation involves the use of the stiffness tensor). 

It will be seen in section 4.3 dedicated to Density Functional Theory calculations, that, for single 

crystals, the compliance matrix has to be modified to take into account the inherent symmetries of 

the structure and the fact that crystals are by definition not isotropic. 

In this study, the Young’s modulus and hardness were first analyzed by nanoindendation 

and the results were interpreted by the Oliver and Pharr method. Besides, fracture toughness was 

calculated from the cracks information on the residual indents using the method of Palmqvist. Then, 

E and v were also measured by mechanical compression tests together with an optical marker 

tracking method and by Resonant Ultrasound Spectroscopy (RUS). Finally, the fracture toughness 

and hardness were also determined from classical microindentation tests. The different 

experiments were carried out in air at room temperature in specimens of approximately 5 x 3 x 3 

mm3 in size which were cut from the sintered pellets with a low-speed diamond saw. After cutting, 

the samples were rectified to eliminate imperfections and to ensure completely flat-parallel 

surfaces which is essential to avoid a wrong estimation of the mechanical properties. The different 

techniques used in this work are briefly described below. 
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4.2.1.1 Nanoindentation 

Nanoindentation tests were performed on polished surfaces using a Nano Indenter XP 

system (Mechanical testing laboratory, MSSMAT, CentraleSupelec, France) with a Berkovich 

diamond indenter to evaluate the mechanical properties at the nanometer scale [1]. The 

nanoindentations were carried out under the control load mode at room temperature. Mechanical 

properties depend on surface defects such as roughness, porosity, dislocations or cracks, which 

create an Indentation Size Effect (ISE). Because such an effect increases when the nanoindentation 

size decreases [2], different loads were applied: 10, 30, 60, 100 and 500 mN. ISE is stronger when 

the applied load is very small because the influence of surface defects at low penetration could 

introduce errors at the contact point and therefore in the estimation of E and H. For this reason, 

higher loads are required to determine the global mechanical properties. The loading/unloading 

and hold times at the maximum load were 30 s, which were kept constant for all indentations. In 

order to have significative average values for the evaluated properties, 100 indentation tests were 

performed on each material. The experimental results were interpreted by the Oliver and Pharr [2] 

and Doerner and Nix [3] methods which were developed to measure E and H from the experimental 

load-displacement curve obtained during the loading and unloading of isotropic materials.  

Figure 4.1 shows a schematic illustration of a typical curve obtained with a Berkovich 

indenter. During loading it is assumed that the deformation is not only elastic but also plastic due 

to the residual impression that remains in the surface after the indentation. During unloading, only 

the elastic deformations are recovered and, so this section of the curve is used to extract the 

Young´s modulus and hardness [4].   

 

Figure 4.1. Schematic representation of a load-displacement curve [4]. 
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From this curve (Figure 4.1), three important parameters can be extracted: the maximum 

load, Pmax, the maximum displacement, hmax, and the contact stiffness, S, which is defined as the 

slope of the initial stage of the unloading part [2]:    

  


r

dP A
S 2 E

dh
 (4. 1) 

where  is the indenter geometric coefficient (with a constant value for pyramidal Berkovich 

diamond indenter of 1.034 [4]), A is the contact area of the indentation under the maximum load 

and Er is the reduced modulus defined as:  

 
 

2 2
  i

r   i

1 11

E E E
 (4. 2) 

The reduced elastic modulus is a combination of the indenter elastic constants (Ei, vi) and 

those of the specimen (E, v). The diamond indenter tip Young’s modulus is 1141 GPa and the 

Poisson’s ratio is 0.07 [2].  Er can be thus rewritten as:  

r

π S
E ·

2β A
 (4. 3) 

Another important parameter is the final depth, hf, which is the permanent depth of the 

impression after the indenter is withdrawn (Figure 4.1 and Figure 4.2). Figure 4.2 displays a 

schematic illustration of a cross section of an indentation, where a is the radius of the contact circle, 

hc is the contact penetration and hs is the surface displacement at the perimeter of the residual 

impression. 

 

Figure 4.2. A schematic representation of loading-unloading process [4]. 

Hardness can be estimated from the relationship between the contact area and load 

according to the following equations [2]:  
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where 𝜖 is a correction factor which depends on the geometry of the indenter (for the Berkovich 

indenter, 𝜖 = 0.75 [2]).  

4.2.1.2 Mechanical compression tests with optical imaging 

Uniaxial mechanical compression tests were performed on parallelepipedic specimens 

using an Instron 4482 machine (Mechanical testing laboratory, MSSMAT, CentraleSupelec, France) 

with a 10 kN load cell. The cross-head displaced down at aconstant speed of 5 µm/min 

(corresponding to a strain rate of 1.8 x 10-5 s-1). The experiments were carried out at room 

temperature, using loading/unloading cycles of 2.5/1 kN for Lanthanum Silicate compounds and 

6/1 kN for Y-doped Barium Zirconate ceramics, to remain within the range of elastic behavior. The 

load level was chosen after a first test to rupture for each material.  

Together with the mechanical compression machine, an optical marker tracking method 

(Figure 4.3) was used to measure in a precise way the strain in the specimen during the test. The 

image acquisition system consists of a Canon 60D DSLR camera with a long distance optical 

microscope, Questar QM100, which was used to record images of the specimen during the 

compression test with an acquisition frequency of one image per 2 s. The maximum resolution of 

the camera is 2500 x 1700 pixels. The optical system was located at 0.3 m from the sample, 

therefore one pixel corresponds to about of 2-2.5 µm depending of the adjustment.  
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Figure 4.3. Compression test setup and optical acquisition system. 

In order to measure accurately the displacements between successive images, the 

specimen was marked along its longitudinal and transversal axes, which allowed to obtain the 

evolution in the position of each marker between the first image and the deformed ones, and 

determine the strain along both axes.  

As indicated at the beginning of this chapter, the Young’s modulus and Poisson ratio were 

determined by considering the materials to be elastic isotropic. In 2D, the isotropic elastic strain-

stress relationship (y-axis being axis of symmetry) can be written as: 
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where ɛij and σij are the strain and the stress tensor respectively, and the parameters E, ν and G are 

the corresponding elastic properties that can be determined from 2D experiments. 

In a mechanical compression test, a uniaxial stress σ is applied, then the stress vector can 

be written as: 
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Considering a prismatic specimen of section S under a load F, the applied stress σ is defined 

by the following equation:  

Load Cell 
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Therefore, from Equation 4.7 only two elastic constants can be determined, the Young´s 

modulus E and Poisson ratio ν, which are defined as follows: 


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During the image acquisition, the longitudinal ɛyy and transversal ɛxx strains were calculated 

in real time both during the loading and unloading steps.  

4.2.1.3 Resonant Ultrasound Spectroscopy 

These experiments were carried out using a typical RUS setup (SPMS Laboratory, 

CentraleSupelec, France) which was used to determine the elastic properties with a very high 

accuracy. The RUS method is based on the measurement of the resonant frequencies of vibration 

of a specimen with well-defined geometry. A parallelepipedic sample was placed between two 

piezoelectric transducers, one of them being used to excite the mechanical resonances of the 

specimen, whereas the opposite transducer is used to detect them (Figure 4.4). The frequency was 

swept between 0.2 and 2 MHz allowing to activate the sample’s resonant modes. When the 

frequency corresponds to one of the own resonance frequencies of the specimen, a large response 

is detected at the receptor transducer and appears as a peak in the resonance spectrum [5].   

The mechanical resonance of a given solid depends on its elastic constants, density and 

geometry [6]. Therefore by measuring a large quantity of resonant modes on one sample, the 

elastic constants can be then determined by solving two processes: the direct and inverse problems. 

The direct problem implies the calculation of the mechanical resonance from known material 

properties while the inverse problem is based on finding the best fit between the measured and 

the calculated (direct process) frequencies to determine the elastic components. 

 

 

 
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Figure 4.4. (a) A schematic representation of a typical RUS setup and (b) several resonant frequencies 
of vibration for a prismatic specimen [5]. 

 

Direct process 

In the direct problem, the natural resonant frequencies ω of an elastic solid can be 

calculated if the elastic tensor Cijkl, volume V, and density ρ are given. This procedure seeks 

stationary points of the Lagrangian L for a freely vibrating elastic body [6]. 

   
 

2 2
i ijkl i,j k,l

V

1
L u C dV

2
u u  (4.12) 

where ui is the ith component of the displacement field and the indices following a comma denote 

differentiation with respect to that coordinate. ui is expanded in a complete set of basis functions 

 , following the Rayleigh-Ritz method: 

 i iu a  (4.13) 

where aiα is the expansion coefficient. The   are chosen depending on the geometry of the 

specimen and, for parallelepipeds, the Legendre polynomials are selected [5]. Substituting in 

Equation 4.12, this can be rewritten in a matrix form as: 
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where a is the vector containing the expansion coefficients, and M and   are the mass and stiffness 

matrices, respectively, of the vibration problem. Equation 4.12 is stationary if the displacements ui 

are solutions of freely vibrating elastic body, therefore by setting δL=0, the equation turns to: 

 2  a Ma  (4.15) 

Thus, the natural resonant frequencies of an elastic solid can be determined 

straightforward if the geometry, density and elastic tensor of the specimen are well known. 

 

Inverse process 

In the inverse problem, the elastic components are generally estimated through an 

optimization process in which the stiffness components are adjusted until the best fitting between 

the measured and computed frequencies is found [7]. The cost function is defined and minimized 

as: 
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where fn
meas are the frequencies measured, fn

pred  are the frequencies predicted and Cij  are the 

stiffness constants. The main difficulty in this procedure is to obtain a good pairing between 

calculated and measured modes. 

  

Determination of the elastic constants 

Assuming that the material behavior is isotropic, only two elastic constants are required to 

define the elastic tensor: 
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where C11 is also defined as the longitudinal modulus L, and 


11 12

2

C C
 as the shear modulus G. These 

two constants are related to the Young’s modulus and the Poisson ratio by the following equations: 
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Therefore, E and ν determination can be performed once the elastic tensor is extracted by 

the inverse problem.  

4.2.1.4 Microindentation 

Mechanical properties were also investigated by microindentation using a Wolpert Teswell 

indenter (Mechanical Testing Laboratory, MSMAT, CentraleSupelec, France) equipped with a 

Vickers diamond tip. The experiments were performed on polished surfaces at room temperature. 

A load of 2 N and A hold time at the maximum load of 10 s were selected and kept constant for all 

indentations. At least 10 indentation tests were performed on each material. The Vickers hardness, 

Hv, was calculated using the following equation:  

V 2

P
H = 1.8544

d
 (4.19) 

where P is the applied load (kg) and d is the mean length of the diagonals (mm) (Figure 4.5). The 

hardness values were converted in GPa for comparison with the nanoindentation measurements.  

 

Figure 4.5. A schematic representation of Vickers microindentation. 

The fracture toughness KIC was estimated by applying the normalized Niihara’s expression 

[8]:  
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where a  and c  are half of the indentation diagonal (d) and radial crack length, respectively (Figure 

4.5). Due to the criterion c / a > 2.5, the Niihara’s equation was used to determine the fracture 

toughness. 

The measurement of the diagonals of the residual indents and of the radial-crack diameters 

were done with an optical microscope Alicona InfiniteFocus (Microscopy Resource Centre, 

MSSMAT, CentraleSupelec, France).  

 

4.2.2 Experimental results 

4.2.2.1 Room-temperature mechanical properties of Lanthanum Silicate 

4.2.2.1.1 Nanoindentation 

Typical load-displacement curves for the different oxy-apatite compounds are shown in 

Figure 4.6  along with SEM micrographs of their respective indentations performed at 500 mN. 

Based on the upper one-third sections of these curves, the Young’s modulus and nanohardness 

were determined as a function of the applied load (Table 4.1). The results for each material 

represent the mean value of all the indents and the associated error is the standard deviation of 

the values. 

 

a) 
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Figure 4.6. (a) Load-depth indentation curves from La9.33Si6O26 materials at 500mN. SEM micrographs 

of indents performed at 500 mN for (b) LSO-CS and (c) LSO-SPS. 

Table 4.1. Young's modulus E, hardness H and fracture toughness KIC of La9.33Si6O26 compounds as a 

function of the applied load. 

 

The results gathered in Table 4.1 for the LSO-CS compounds show a slight decrease with 

increasing load. This tendency is due to the ISE [2] and has been also reported in other studies on 

mechanical properties by nanoindentation [9-11]. For applied loads higher than 100 mN, the values 

show a stabilization because the penetration depth is larger (100 and 500 mN correspond to 

penetration depths of 750 and 1750 nm, respectively) and the influence of the surface defects is 

therefore lower. In order to study the overall mechanical properties of a polycrystalline material, it 

is essential to control the indent size according to the grain size of the sample [12]. For this, the 

contact diameter of the indenter must be one order of magnitude larger than the average grain 

size. In LSO-CS samples, the grain size is 1.1 ± 0.6 µm, therefore an indentation depth of 1750 nm, 

which would result in an equivalent contact diameter of about 12 µm, appears to agree with the 

requirements for determining the macroscopic mechanical properties. Figure 4.6b shows the 

contact area of an indentation performed at 500 mN in which it is possible to compare the grain 

size of the ceramic with the residual imprint of the indenter. 

Applied load 
(mN) 

 LSO-CS  LSO-SPS 

 E (GPa) H (GPa)  E (GPa) H (GPa) 

10  147 ± 10 11 ± 2  132 ± 5 10.3 ± 0.7 

30  142 ± 8 10.2 ± 0.6  133 ± 5 10.1 ± 0.7 

60  143 ± 6 10.5 ± 0.7  131 ± 4 9.9 ± 0.6 

100  138 ± 6 9.8 ± 0.8  131 ± 3 9.8 ± 0.5 

500  138 ± 3 9.5 ± 0.4  129 ± 3 9.8 ± 0.4 

10 µm 10 µm 

b) c) 
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In contrast with the LSO-CS results, the Young’s modulus and the hardness of the LSO-SPS 

material remain practically constant with the different loads. This could be explained by the high 

relative sample density (99.6 ± 0.4 %) with practically no porosity and very small grain size (0.2 ± 

0.1 μm). For an applied load of 10 mN, the penetration depth is 230 nm, which corresponds to an 

equivalent contact diameter of about 1.6 µm, i.e., one order of magnitude larger than the grain size, 

indicanting that, even at the minimum load, reliable values of the macroscopic mechanical 

properties can be obtained. 

Similar values of H were determined for both materials, however the Young’s modulus of 

LSO-SPS is slightly lower than that of the LSO-CS. To the author’s knowledge, only one previous 

work deals with the mechanical properties by nanoindentation of similar Lanthanum silicates 

compounds [13]. In this case, it was reported a Young’s Modulus of 135 GPa and a nanohardness 

of 9.6 GPa for the samples with the highest density, which are in good agreement with the results 

obtained in this work. 

4.2.2.1.2 Mechanical compression tests with optical imaging  

The mechanical parameters such as the Young’s modulus and Poisson ratio were 

determined by the stress and strain measurement within the elastic range of specimens. The 

experimental results, summarized in Table 4.2, show similar values of ν for both materials while E 

is slightly higher for LSO-CS. The uncertainty is given by the standard deviations of the values from 

the different loading/unloading cycles. 

Table 4.2. Young's modulus E and Poisson ratio υ of La9.33Si6O26 compounds determined by mechanical 
compression tests. 

 

Material E (GPa) ν 

LSO-CS 141 ± 22 0.31 ± 0.07 

LSO-SPS 136 ± 16 0.32 ± 0.08 

 

 

4.2.2.1.3 Resonant Ultrasound Spectroscopy  

Table 4.3 shows the experimental results obtained by RUS with an extremely low 

uncertainty, which comes from the error between the experimental and computed frequencies. 

With this technique both Young’s modulus and Poisson ratio for LSO-CS were slightly higher than 

those for LSO-SPS. 



Chapter 4. Room-temperature mechanical characterization 

104 

Table 4.3. Young's modulus E and Poisson ratio ν of La9.33Si6O26 compounds determined by RUS. 
 

Material E (GPa) ν 

LSO-CS 135 ± 1 0.31 ± 0.01 

LSO-SPS 129 ± 1 0.28 ± 0.01 

 

4.2.2.1.4 Microindentation 

Typical Vickers indents of the La9.33Si6O26 compounds are shown in Figure 4.7. In both cases 

symmetrical pyramid indents were observed in which a single crack propagates from each corner. 

Based on these indentations, Vickers hardness and fracture toughness were determined for each 

ceramic (Table 4.4).  

    

Figure 4.7. SEM images of Vickers microindentations on the surface of (a) LSO-CS and (b) LSO-SPS.   

Table 4.4. Vickers hardness HV and fracture toughness KIC of La9.33Si6O26 compounds. 

Material HV HV (GPa) KIC (MPa m1/2) 

LSO-CS 744 ± 24 7.3 ± 0.2 1.2 ± 0.1 

LSO-SPS 787 ± 12 7.7 ± 0.1 1.3 ± 0.1 

Table 4.4 summarizes the experimental results obtained by microindentation where HV is 

also given in GPa for comparison with the values measured by nanoindentation (Table 4.1). Similar 

values of fracture toughness were obtained for both materials, however LSO-SPS presents a slightly 

higher hardness than LSO-CS. Several parameters can affect the hardness of a ceramic material 

such as chemical bond strength, grain size, porosity and applied load among others [12]. The Hall-

Petch law describes the relationship between the yield strength Y
  and the grain size and predicts 

20 µm 

a) b) 

20 µm 
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that Y
  is inversely proportional to grain growth.  On the other hand, Vickers hardness can be 

directly related to the yield strength through the following equation [14]: 

YHV = 3σ  (4.21) 

Therefore a decrease in grain size implies an increase in hardness because the grain 

boundaries block the dislocations generated by the indenter [12]. Then, hardening of LSO-SPS could 

be attributed to the higher grain boundary density due to its smaller grain size in comparison with 

LSO-CS (0.2 and 1.1 µm, respectively).  

Concerning these oxy-apatites, only one previous work deals with the mechanical 

properties of similar compounds by microindentation [15]. In this case, it was reported a Vickers 

hardness of 7.57 ± 0.24 GPa for La9.33Si6026, which agrees with the results obtained in this work. 

 

4.2.2.1.5 Comparison of the different techniques  

From the comparison of the mechanical parameters determined using the different 

techniques, the values of Young’s modulus obtained were in the range of 135 - 141 GPa for LSO-CS 

and 129 - 136 GPa for LSO-SPS, while the values of Poisson ratio obtained were in the range of 0.29 

- 0.32 for both materials. Although all the techniques showed similar results of the elastic 

parameters for the two compounds, it worth mentioning that, compression tests showed the values 

with the highest uncertainty while RUS was the most precise technique.   

Concerning hardness, the values obtained by nanoindentation were 9.6 and 9.8 GPa for an 

applied load of 500 mN, whereas by microindentation they were 7.3 and 7.7 GPa at 2 N for LSO-CS 

and LSO-SPS, respectively. As expected, microhardness is significantly lower than nanohardness 

because of the differences in load.  These values are in concordance with the well-known hardness 

dependence on the applied load, as found in other ceramics [10, 11, 16].  

4.2.2.2 Room-temperature mechanical properties of Yttrium-doped Barium Zirconate 

4.2.2.2.1 Nanoindentation 

Figure 4.8 shows typical load-displacement curves obtained from sintered Yttrium-doped 

Barium Zirconate compounds at the maximum applied load of 500 mN together with SEM 
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micrographs of their respective indentations. Based on the first part of the unloading curves, 

Young’s modulus and nanohardness were extracted as a function of the applied load (Table 4.5).  

 
 

   

Figure 4.8. (a) Load-depth indentation curves for BaZr0.85Y0.15O2.925 compounds at 500mN. SEM 

micrographs of indents performed at an applied load of 500 mN for (b) BZY; (c) BZY-NiO and (d) BZY 

after NiO-extraction. 

The experimental results of E obtained for the different compounds did not show significant 

differences as a function of the applied load, although the values for BZY after NiO-extraction 

present a higher uncertainty. At the maximum load of 500 mN, the penetration depth in BZY was 

about 1600 nm, 1700 nm in the case of BZY-NiO and 1900 nm for BZY after NiO-extraction (Figure 

4.8a), which results in equivalent contact diameters of about 10, 11 and 12.5 µm, respectively 

(Figure 4.8). The requirements for determining the macroscopic mechanical properties are then 

fulfilled except for the commercial material after NiO-extraction because of its large grain size             

d = 9 ± 3 µm. This feature might explain the higher uncertainty in the experimental results.  

10 µm 10 µm 10 µm 

c) d) 

a) 

b) 
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Table 4.5. Young's modulus E and hardness H of BaZr0.85Y0.15O2.925 compounds as a function 

of the applied load. 
 

Applied 
load 
(mN) 

 BZY  BZY-NiO  BZY after NiO-extraction 

 E (GPa) H (GPa)  E (GPa) H (GPa)  E (GPa) H (GPa) 

10  201 ± 6 10.6 ± 0.8  214 ± 10 10.2 ± 0.6  201 ± 12  10 ± 1 

30  204 ± 6 10.7 ± 0.5  206 ± 6 10.3 ± 0.5  194 ± 11 9 ± 1 

60  203 ± 6 10.5 ± 0.8  208 ± 6 9.9 ± 0.3  201 ± 9 8 ± 1 

100  200 ± 5 10.2 ± 0.5  208 ± 4 9.3 ± 0.3  205 ± 12 8 ± 1 

500  200 ± 3 10.1 ± 0.3  207 ± 4 9.0 ± 0.3  206 ± 6 6.7 ± 0.3 

Concerning the hardness, the values obtained show a decrease with increasing load. This 

trend is more noticeable in BZY after NiO-extraction probably because of the influence of its larger 

porosity (a documented ISE, Section 4.2.1.1) in the measurements.  

Table 4.5 shows similar values of E for all the materials, those for commercial materials being 

slightly higher than for home-made BZY. However, concerning nanohardness, the results reflect 

larger differences which are directly related with the differences found in the load-depth curves. 

As the Equation (4.6) indicates, hardness is inversely proportional to the contact area, thus the 

deeper the penetration, the bigger the contact area and the lower the hardness. This difference in 

hardness was also found by microindentation tests (see Section 4.2.2.2.4 below) and may be 

explained by the relationship between hardness and grain size. 

 

4.2.2.2.2 Mechanical compression tests with optical imaging  

Young’s modulus and Poisson ratio were determined by the stress and strain measurement 

within the elastic range of specimens. The experimental results obtained for the different ceramics 

are gathered in Table 4.6 and show similar values of E for the commercial materials while that of 

BZY is slightly lower. The Poisson ratio was found to be in the range of 0.27 - 0.31.  
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Table 4.6. Young's modulus E and Poisson ratio ν of BaZr0.85Y0.15O2.925 compounds determined by 

mechanical compression tests. 
 

Material E (GPa) ν 

BZY 186 ± 14 0.27 ± 0.13 

BZY-NiO 198 ± 24 0.29 ± 0.06 

BZY after NiO-extraction 191  ± 10 0.31 ± 0.05 

 

 

4.2.2.2.3 Resonant Ultrasound Spectroscopy  

Table 4.7 shows the experimental results obtained by RUS. With this technique both the 

Young’s modulus and the Poisson ratio of home-made BZY were lower than those for commercial 

materials, being the elastic constants of BZY after NiO-extraction slightly higher than those of BZY-

NiO. 

Table 4.7. Young's modulus E and Poisson ratio υ of BaZr0.85Y0.15O2.925 compounds determined by RUS. 
 

Material E (GPa) ν 

BZY 195 ± 1 0.24 ± 0.01 

BZY-NiO 207 ± 1 0.26  ± 0.01 

BZY after NiO-extraction 211 ± 3 0.32  ± 0.02 

 

 

4.2.2.2.4 Microindentation 

Figure 4.9 and Figure 4.10 show back-scattered electron micrographs of a typical Vickers 

indentation on the surface of the different compounds. For BZY, symmetrical pyramid indentations 

were observed in which a single crack propagated from each corner along the grain boundaries. 

For BZY-NiO and BZY after NiO-extraction, no well-defined indentations were observed with many 

cracks around them which propagated both along grain boundaries and through the grains.  

Based on these indentations, Vickers hardness was determined for all the compounds. 

However fracture toughness could not be calculated for the commercial materials due to the 

presence of circumferential cracks surrounding the residual imprints which prevent a reliable 

determination of KIC. [17]. Table 4.8 summarizes the values obtained where HV is also given in GPa 

for comparison with the nanohardness measured by nanoindentation (Table 4.5).    
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Figure 4.9. Back-scattered electron micrographs of a Vickers microindentation and cracks 

on the surface of BZY. 

    
 

Figure 4.10.  Back-scattered electron micrographs of a Vickers microindentation and cracks on the 

surface of (a) BZY-NiO and (b) BZY after NiO-extraction. White lines indicate the outline of the imprint. 

Table 4.8. Vickers hardness HV and fracture toughness KIC of BaZr0.85Y0.15O2.925 compounds. 

Material HV HV (GPa) KIC  (MPa m1/2) 

BZY 781 ± 22 7.7 ± 0.2 1.59 ± 0.06 

BZY-NiO 713 ± 30 7.0 ± 0.3 - 

BZY after NiO-extraction 483 ± 17 4.7 ± 0.2 - 

These results show a large difference in hardness for the different materials. Considering 

the Hall-Petch law which predicts that yield strength is inversely proportional to grain size and the 

relationship between Vickers hardness and yield strength (Equation 4.21 [14]), the hardening of the 

20 µm 20 µm 

b) a) 

 

 
20 µm 4 µm 
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home-made BZY could be ascribed to its smaller grain size in comparison with the commercial BZY-

NiO (0.2 ± and 1.6 µm, respectively). It also would allow explaining the softening of the BZY after 

NiO-extraction since the grain size increased from 1.6 to 9 µm after extraction, resulting in a 

significant reduction of hardness. However, others factors as the increase in porosity also 

contributes to decrease this magnitude [12].  

Concerning Y-doped Barium Zirconates, only one previous work deals with the mechanical 

properties of similar compounds by microindentation [18]. In this case, it was reported a Vickers 

hardness of 742 ± 7 and a fracture toughness of 1.58 ± 0.13 MPa m1/2 for BZY10, in agreement with 

the present results. 

 

4.2.2.2.5 Comparison of the different techniques 

The values of the Young’s modulus obtained by the different techniques were in the range 

of 179 – 211 GPa. E values from RUS were always larger than those obtained by compression tests 

and very similar to nanoindentation tests although with a lower uncertainty. On the contrary, the 

values of the Poisson ratio obtained by compression tests were slightly higher than those obtained 

by RUS, displaying also a higher dispersion. The elastic properties of Y-doped Barium Zirconate have 

not been studied previously. At least for the mechanical properties, this material may be compared 

with undoped- Barium Zirconate. For example, Vassen at al. [19] reported values of E of 181 GPa 

for BaZr03 which is comparable with the results obtained in this work. Regarding hardness, the 

values obtained by nanoindentation were significantly lower than those obtained by 

microindentation, as expected due to the hardness dependence with applied load. For Yttrium-

doped Barium Zirconate,  Sazinas et al. [18] found a value of HV = 7.3 GPa, which agree with the 

results reported in this study. 

4.3 DENSITY FUNCTIONAL THEORY CALCULATIONS  

Density Functional Theory (DFT) is an approach to compute the electronic structure of 

atoms, molecules and materials. DFT allows to determine the ground-state properties of a system 

by means of functionals, i.e. functions of another function that depends on electron density. Thus, 

the name of this theory derives from the use of electron density functionals. DFT is currently one 

of the most popular and versatile techniques in Physics of Condensed Matter. In particular, this 

theory has been widely used in Solid State Physics since the 1970s. In Chemistry, however, it was 

considered not to be a theory precise enough for calculations until the 1990s, when the 
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approximations were refined in order to better model the exchange and correlation interactions. 

One of the main advantages of DFT is its computational cost, which is relatively low in comparison 

to conventional methods. Details on the method are not given here but can be found in the specific 

literature [20-22]. The obtained results have been used in a forthcoming part (Chapter 5). 

 

4.3.1 DFT calculation procedure: Elastic coefficients determination  

DFT was carried out to calculate the elastic properties of Lanthanum Silicates and Yttrium-

doped Barium Zirconate, in particular to determine possible elastic anisotropies in oxy-apatites and 

to understand the effect of hydration in Barium Zirconate. Calculations were performed by G. 

Dezanneau (SPMS / CNRS - CentraleSupelec) and G. Geneste (CEA/DAM) for oxy-apatites and 

Barium Zirconates compounds, respectively.  

The process starts by performing a precise structural relaxation of the original structure to 

a zero-stress state which corresponds to the most stable state at 0 K. Then, the lattice vectors are 

subjected to perturbations, and DFT allows to calculate the resulting stress tensor and the 

associated energy. Subsequently, the relationship between stress and strain from linear elasticity 

is used to fit the full elastic tensor. Finally, aggregate properties can also be derived and compared 

to measurements of elastic properties in ceramics. 

More concretely, two kinds of formula can be used to determine the elastic tensor from 

DFT calculations. The first approach follows: 


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Where the elastic coefficients Cij are determined from the knowledge of the applied strain chosen 

by the operator and the associated stress, calculated through DFT calculations. The strength of this 

approach is that strain can be chosen arbitrarily so it is possible to study specific components of the 

elastic matrix.  

The second formulation uses the Taylor expansion till the second order of the unit cell 

energy with strain: 
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 (4.22) 

where E(0) refers to the equilibrium configuration, the first derivatives being zero. According to this 

equation, the elastic constants can then be obtained by evaluating the energy as a function of 

strain.  

In both approaches, several perturbations are used in order to fit the linear behaviour of 

the stress with applied strain with a significant amount of points (typically 10 points are used thus 

10 DFT calculations are made to determine one elastic coefficient Cij). In all cases, the maximum 

applied strain was limited to 1% in order to respect the laws presented before. 

4.3.1.1 DFT Calculations details for Lanthanum Silicate oxy-apatites  

For the determination of the elastic tensor in oxy-apatite, calculations were performed 

using the commercial program VASP. The interactions between electrons and ions were described 

by the potential Projector Augmented Wave (PAW) method [23] within the generalized gradient 

approximation (GGA). The wavefunctions are then expanded in terms of a discrete plane wave basis 

set, which is truncated at a predefined maximum cut-off energy, the rest of the coefficients in the 

expansion are set to zero. A careful analysis of the convergence of the calculated total energy, 

within a given tolerance, with the cut-off energy was firstly conducted, showing that a value of 800 

eV was adequate enough to ensure stress and energy values convergence. The k-point mesh for 

the Brillouin zone integration was selected according to the Monkhorst–Pack scheme with 6*6*6 

Brillouin zone sampling. 

The nominal composition La9.33Si6O26 supposes that it exists one lanthanum vacancy in the 

structure per 3 unit cells. The presence of this lanthanum vacancy complicates the analysis since it 

breaks the overall symmetry. Thus, in order to keep the hexagonal symmetry to calculate the elastic 

properties, the lanthanum sites were thus kept fully occupied which leads to a nominal composition 

of La10Si6O26 per unit cell. From a solid state chemistry point of view, this corresponds to a situation 

where the original compound La10Si6O27 would have lost 1 oxygen atom (ideally the interstitial one), 

for instance in reducing conditions. The main advantage of such an approach is that, all along the 

analysis, we can perform the calculations in the original hexagonal cell with unit cell parameters a 

≃ 9.8 Å and c ≃ 7.2 Å and thus keep a simplified elastic tensor. The elasticity tensor for a hexagonal 
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phase only presents 5 independent elastic coefficients, while null and coupled coefficients exist due 

to symmetry as represented in Figure 4.11: 

  

Figure 4.11. Simplified scheme of the elastic tensor in hexagonal phase, where 
( ) / 11 12X C C 2

  
[24]. 

4.3.1.2 DFT calculations for Yttrium-doped Barium Zirconates 

Calculations were performed using the code ABINIT. The interaction of electron-ion was 

taken into account here in the same form than for oxy-apatite. The wave functions were expanded 

in a set of plane waves up to a kinetic energy cut-off of 680 eV, which ensured a good convergence 

of energy and stress values. The k-point meshes were selected according to the Monkhorst-Pack 

scheme. Depending on the size of the system, containing respectively 5, 40 and 135 atoms, the 

Brillouin zone sampling was adapted to be 6*6*6, 4*4*4 and 2*2*2, respectively. Several 

calculations were performed to take into account the presence of defects like dopant ions, oxygen 

vacancies and protons. The main difficulty here lies in the choice of a system of limited size that 

would be representative of the whole disordered material. In particular, it is clear that the 

introduction of these defects breaks the original cubic symmetry of BaZrO3.  

4.3.2 DFT calculation results 

4.3.2.1 Elastic properties of Lanthanum Silicate 

Prior to the calculations of the elastic coefficients, we determined the ground state of the 

La10Si6O26 composition through DFT calculations. Lattice constants and internal positions in the 

perfect unit cell were fully optimized until the free energy difference between two optimisation 

runs was below 10-6 eV. We verified that the values of the stress components for this configuration 

were smaller than 0.005 GPa. The refined cell parameters after relaxation were a = 9.8259 Å and c 

= 7.2651 Å, which are in very good agreement (error ~1%) with the cell parameters a = 9.7248 Å 

and c = 7.1895 Å measured for La9.33Si6O26 at room temperature [25] and with a = 9.7393 Å and c = 

7.2071 Å measured for La10Si6O27 [26]. 
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The elastic coefficients were then calculated considering 10 configurations for each of the 

specific stress-strain configurations. The resulting elastic tensor is the following: 

  ij

66.4(4) 84.6(9) 0 0 0
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55.6

a
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)  

These calculations reveal a slight anisotropy of the elastic tensor, in particular a ~8% 

difference for the elastic longitudinal response between a, b axes and c axes. We will see in the 

following chapter that this anisotropic elastic tensor coupled to the anisotropic thermal expansion 

is at the origin of the presence of residual stresses in oxy-apatites polycrystalline materials, in 

particular after sintering. Table 4.9 shows the elastic properties of lanthanum silicate polycrystals 

calculated by DFT calculations, which are comparable to the elastic coefficients mentioned above. 

Table 4.9. Elastic properties of lanthanum silicate polycrystals deduced from the elastic tensor 

calculated by DFT calculations. 
 

Averaging 
scheme 

Bulk modulus 
(GPa) 

Young’s modulus 
(GPa) 

Shear modulus 
(GPa) 

Poisson’s ratio 

Voigt 112.8 134.4 51.6 0.301 

Reuss 111.7 133.6 51.4 0.300 

Hill 112.0 134.0 51.5 0.301 

4.3.2.2 Elastic properties of Y-doped Barium Zirconate 

Firstly, pure Barium Zirconate has been modelled. The material has cubic symmetry and 

the cell parameter as refined to be a = 4.235 Å. Different Y-doping levels have been then tested, 

where the compensating charge (usually oxygen vacancy) was in this case defined as a charge 

spreading over the whole supercell (jellium). Elastic properties were not calculated for dry BZY i.e. 

when the yttrium-dopant is compensated by an oxygen vacancy because it supposes to use a much 

bigger supercell. And more important, symmetry properties are fully lost in this case making the 

elastic tensor determination very complex (if not meaningless). BZY properties were nevertheless 

calculated in its wet state i.e. when the dopant is compensated by a proton, the oxygen lattice being 

in this case fully occupied. For wet BZY, the doping level was 12.5% and the proton was set at its 
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more stable position, the first neighbour position in reference to the dopant as shown in previous 

calculations. The resume of these calculations are reported in Table 4.10. 

Table 4.10. Results of calculated cell parameters and elastic parameters for pure and Y-doped Barium 

Zirconate (the actual supercell has orthorhombic symmetry with a = 4.267 Å, b = 4.234 Å, c = 4.279 Å; 

the actual Young’s moduli along a, b and c axes are respectively 207, 209, 230 GPa). 
 

Doping level 
a cell 

parameter (Å) 
Young’s 

modulus (GPa) 
Poisson’s 

ratio 

Bulk modulus 

(GPa) 

Shear Modulus 
(GPa) 

0 % 4.235 259 0.215 150.8 107 

3.7 % 4.251 253 0.213 142.9 104 

12.5 % 4.284 231 0.207 130.4 96 

12.5% + H+ 4.260£ 215¥    

These results clearly show that the doping with Yttrium tends to diminish the elastic 

coefficients, keeping almost constant the Poisson ratio. Moreover, the presence of protons tends 

to reduce even more the Young’s modulus. Further works are nevertheless needed to determine 

more efficiently and more precisely the elastic coefficients for large supercells, that would keep the 

observed cubic symmetry. This goes well beyond the objective of the current work. It seems 

nevertheless clear from these calculations that dry and wet BZY compounds should present 

different elastic coefficients.  
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5.1  INTRODUCTION 

This chapter studies the influence of the temperature on the mechanical properties, including 

the coefficient of thermal expansion and elastic constants, of Lanthanum Silicates and Yttrium-doped 

Barium Zirconate. Besides the characterization of the materials as a function of temperature, this 

information is useful to simulate their behaviour and understand their mechanical response, which is 

particularly interesting in the case of oxy-apatite because of its anisotropic thermo-elastic properties. 

The last part of this chapter is therefore focused on studying the residual stress state of this material 

by finite elements numerical simulations, in order to get a deeper understanding of the potential failure 

mechanisms and to improve the fabrication processes and applications. 

 

5.2  EXPERIMENTAL CHARACTERIZATION OF THERMO-MECHANICAL PROPERTIES 

5.2.1 Experimental procedure 

In this study, the coefficient of thermal expansion was experimentally determined at atomic 

and macroscopic scales by high-temperature XRD and thermo-mechanical analysis, respectively, while 

the temperature dependence of Young’s modulus, Poisson ratio and shear modulus was measured by 

high-temperature RUS. The macroscopic temperature dependence of the thermal expansion 

coefficient and elastic constants of samples was determined considering the materials to be isotropic, 

as the grains are randomly oriented in the samples. However, HT-XRD allows to evaluate the possible 

anisotropic evolution of the coefficient of thermal expansion at the crystal scale, which is especially 

interesting in the case of the Lanthanum silicate due to its anisotropic nature. Experiments were carried 

out in air on specimens of approximately 5 x 3 x 3 mm3 in size which were cut from the sintered pellets 

with a low-speed diamond saw. After cutting, the samples were rectified to eliminate imperfections 

and to ensure completely flat-parallel surfaces to avoid wrong estimations of the mechanical 

parameters.  
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5.2.1.1 High-temperature X-Ray diffraction 

The linear thermal expansion coefficient (α) of the different materials was measured by means 

of high-temperature X-Ray diffraction. XRD analysis was carried out on a Bruker D8C diffractometer (X-

ray Laboratory, CITIUS, University of Seville, Spain) with Ni-filtered Cu-Kα radiation (λ = 1.54060 Å) in 

Bragg-Brentano configuration and equipped with an Anton Paar XRK 900 high-temperature chamber. 

Measurements were carried out on LSO calcined nanopowders and BZY sintered ceramics from room 

temperature up to 900 °C with heating and cooling ramps of 10 °C/min. Data were collected every 50 °C 

at constant temperature during the heating/cooling ramps in the 2θ region between 20° and 90° in 

steps of 0.02° and an acquisition time of 0.2 s/step. Recorded XRD spectra were analyzed by the Le Bail 

refinement method [1] using the TOPAS 4.2 Bruker AXS software package .  

The coefficient of thermal expansion was determined from the relative change in unit cell 

parameter with temperature: 

 XRD
o

1 Δa
α =

a ΔT  

(5. 1) 

where Δa is the variation of the unit cell parameter corresponding to a temperature change ΔT, and ao 

is the lattice parameter at room temperature. In the case of LSO, both cells parameters a and c can be 

evaluated with this method in order to study the anisotropic thermal behaviour of a single crystal.  

 

5.2.1.2 Thermo-mechanical analysis 

The thermal expansion coefficient was also evaluated by thermo-mechanical analysis, a 

technique used to measure macroscopic dimensional changes of a material as a function of 

temperature. Measurements were performed using a TMA Q1000 Thermo-mechanical analyzer 

(Functional Characterization Laboratory, CITIUS, University of Sevilla, Spain) from room temperature 

up to 1000 °C with heating/cooling ramps at 5 °C/min. Measurements were carried out at a constant 

load of 500 mN. 

For the macroscopic case, bulk specimen is isotropic, and Equation 5.1 can be rewritten as: 

TMA
0

 
1 ΔL

α =  
L ΔT

 (5.2) 
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where Lo is the initial sample length and ΔL is the change in specimen length for a given ΔT. 

Sample mass and dimensions were measured before and after tests to check the validity of the 

results. 

 

5.2.1.3 High-temperature Resonant Ultrasound Spectroscopy 

The temperature dependence of the elastic constants was determined using a high-

temperature RUS setup (Department of Earth Sciences, University of Cambridge, UK) equipped with a 

controlled-atmosphere system. A prismatic sample was placed between the tips of the alumina rods 

(Figure 5.1), while transducers were glued to the other ends of the rods and used as emitters and 

receivers of the ultrasonic excitation; the rods are used as ultrasonic transmission lines to allow the 

piezoelectric emitter-receiver to be located in the cold zone. Temperature was monitored by a 

thermocouple placed close to the sample. Spectra were collected every 50 °C at constant temperature; 

a 20 min-dwell was used at each measurement to achieve thermal equilibrium. 

 

Figure 5.1. High-temperature Resonant Ultrasound Spectroscopy system at the University of Cambridge 

[2]. 

Measurements were carried out from room temperature up to 1100 °C at resonant frequencies 

of vibration between 0.1 and 2 MHz. Fundamentals and procedures of RUS were already addressed in 

Section 4.2.1.3. Measurements were performed at Professor Michael A. Carpenter’s group at 

Department of Earth Sciences of the University of Cambridge while the analysis of data was realized by 
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X. Bril from SPMS laboratory. It is worth noting here that the dimensions of the sample used in the 

analysis were those at room temperature and were not corrected for thermal expansion. A more 

precise analysis would include the sample dimensions variation in the analysis. It is important noting 

here that sample dimensions vary by ~1% for the explored range of temperature, which is significantly 

smaller (but not negligible) compared to the elastic constants variation for the same range of 

temperatures. 

 

 5.2.2 Experimental results 

5.2.2.1 Thermo-mechanical properties of Lanthanum Silicate 

5.2.2.1.1 Coefficient of thermal expansion 

As indicated before, the coefficient of thermal expansion was evaluated by two methods. On 

the one hand, it was calculated from the expansion of the lattice volume with temperature measured 

by HT-XRD. Figure 5.2 shows the evolution of cell parameters a and c with temperature for oxy-apatite 

nanopowders. We deliberately chose a nanopowder and not a bulk ceramic to avoid internal stress 

effects. As evidenced by Figure 5.2, the lattice parameters increase linearly with temperature. 

 

Figure 5.2. Variation in lattice parameters a and c of oxy-apatite calcined nanopowder as a function of 

temperature. 
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The thermal expansion coefficient of calcined nanopowders was calculated, following Equation 

5.1, as the slope of the plot of expansion (Δa/ao) vs temperature. The value of XRDα along the a-axis 

obtained in the temperature range from 323 to 1173 K was 9.5 x 10-6 K-1, while along the c-axis was 8.2 

x 10-6 K-1.  These results reveal a slight difference in the oxy-apatite thermal expansion coefficients 

between a and c axes confirming the anisotropy of its thermal behaviour. Moreover, the isotropic 

thermal expansion was calculated from the variation of the volume cell with temperature, yielding a 

value of 9.2 x 10-6 K-1.  These values are very different to those obtained by Fokuda et al. [3] for 

La9.33Si6026 in the temperature range from 298 K to 1473 K. They found a thermal expansion coefficient 

of 4.8 x 10-6 K-1 and 1.8 x 10-6 K-1 along the a-axis and c-axis, respectively, with a mean value of                    

3.8 x 10-6 K-6.  

On the other hand,   was also determined from macroscopic changes in sample length with 

temperature measured by TMA. For the temperature interval of 298 to 1173 K, an identical value of 

TMAα = 9.1 x 10-6 K-1 was estimated for both LSO-CS and LSO-SPS (Figure 5.3).  

 
 

Figure 5.3. Relative thermal expansion of LSO-CS and -SPS as a function of temperature.  

The isotropic results obtained by both methods agree very well to each other, and are 

comparable to the thermal expansion coefficients of LSO reported in the literature. Iwata et al. [4] 

K-1 

K-1 
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reported a value of 9.4 x 10-6 K-1 for La9.33Si6O26 from 295 to 1073 K.  Similarly, in La10Si6O27 compound, 

Jiang et al. [5] found values of   between 9.7 x 10-6 and 10.3 x 10-6 K-1 at temperatures between room 

temperature and 1173 K. The coefficient of thermal expansion found here is independent of the 

processing method and material microstructure. It is worth also mentioning that the  values for oxy-

apatite are very similar to those found in other electrolyte materials, e.g. 10.0 x 10-6 K-1 for YSZ [6] and 

11.8 x 10-6 K-1 for Ce0.8Gd0.2O2 [7]. 

 

5.2.2.1.2 Elastic constants 

HT-RUS measurements were carried out to determine the elastic constants, Young’s modulus 

E, Poisson ratio  and shear modulus G, of the materials as a function of temperature. The shear 

modulus measured here will be used later to deduce the effective diffusion coefficients of the fine-

grained materials from creep data (Chapter 6).  

 

Figure 5.4. Temperature dependence of (a) Young’s modulus, (b) Poisson ratio and (c) shear modulus of 

LSO-SPS. The uncertainty is about 4% in the Young’s modulus, 6% in the Poisson ratio and 0.2% in the 

shear modulus. 

Figure 5.4 shows the evolution of Young’s modulus, Poisson ratio and shear modulus of LSO-

SPS with temperature. As can be observed the Young’s modulus decreases linearly from 129 to 113 
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GPa in the range of temperatures from 298 to 1353 K, which means a drop of about 12% (Figure 5.4a). 

The same tendency is observed for the shear modulus, which also exhibits a reduction of 12% (from 51 

to 45 GPa) in the same range of temperatures (Figure 5.4c). These results are in agreement with the 

rule of thumb for ceramics which predicts a decrease in E and G of about 1% for every 100 K-increase 

in temperature [8]. On the other hand, the Poisson ratio has been found to be practically constant with 

temperature, with a value 0.275 ± 0.002. Temperature-dependent Poisson ratios have been 

reported in the literature for brittle materials [9, 10]. For example, Fukuhara et al. [11] found an 

increase in ν from 0.316 to 0.350 with increasing temperature from 295 to 1173 K in Yttria-stabilized 

Tetragonal Zirconia Polycrystals (YTZP), while a rather constant value of 0.27 was reported in the same 

study for ’-Sialon. Since the Poisson ratio is defined as:  

(E -2G)
ν =

2G
 (5. 3) 

the temperature dependence of ν is related to the relative change between E and G with temperature. 

Thus, due to the fact that both moduli exhibit exactly the same reduction, the Poisson ratio remains 

constant (Figure 5.4b).  

 

5.2.2.2 Thermo-mechanical properties of Yttrium-doped Barium Zirconate 

5.2.2.2.1 Coefficient of thermal expansion 

Figure 5.5 shows the temperature dependence of the unit cell parameter a for BZY and BZY-

NiO sintered ceramics measured by HT-XRD. As expected, the lattice parameter increases almost 

linearly with temperature. The thermal expansion coefficient was calculated by using Equation 5.1, 

resulting in a value of XRDα  obtained in the temperature range from 323 to 1173 K of 8.4 x 10-6 K-1 and 

8.1 x 10-6 K-1 for BZY and BZY-NiO respectively. 
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Figure 5.5. Variations in lattice parameter with temperature in dry air of (a) BZY and (b) BZY-NiO, 

measured by HT-XRD. 

On the other hand, α was also determined from changes in sample length with temperature 

measured by TMA in the same temperature range 298 - 1173 K (Figure 5.6). The values of TMAα  

obtained were 8.5 x 10-6 K-1 and 8.2 x 10-6 K-1 for BZY and BZY-NiO, respectively, in excellent agreement 

with those measured by at atomic scale by HT-XDR and close to the values reported for Barium 

Zirconate ceramics. They are also similar to the values reported in the literature. For undoped BaZrO3, 

α varies between 6.26 x 10-6 and 8.02 x 10-6 K-1 [12-15]. Regarding the Y-doping, Han et al. [12] 

measured the thermal expansion coefficient by HT-XRD on 2 to 30 at% yttrium-doped Barium Zirconate, 

finding values from 8.47 x 10-6 K-1 to 10.2 x 10-6 K-1 with increasing the doping level; a value of 9.25 x 

10-6 K-1 was reported for BZY15, the same nominal composition used in this work, under dry Ar 

atmosphere. Similarly, Lyagaeva et al. [16] reported a mean value of 8.2 x 10-6 K-1 in the temperature 

range of 50-900 °C, for BZY electrolytes. 
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Figure 5.6. Relative thermal expansion of BZY and BZY-NiO as a function of temperature. 

  

5.2.2.2.2 Elastic constants 

Figure 5.7 shows the variations of the Young’s modulus, Poisson ratio and shear modulus of 

home-made BZY with temperature. Both elastic moduli decrease with increasing temperature, while 

the Poisson ratio remains once more practically constant. The same behaviour was found in the oxy-

apatite. As can be observed in Figure 5.7a, the Young’s modulus decreases from 204 to 176 GPa in the 

range of temperatures from 288 to 1300 K, which means a drop of about 13%. The shear modulus 

decreases from 82 to 71 GPa, exhibiting also a reduction of 13% in the same range of temperatures 

(Figure 5.7c). These results are again in good agreement with the expected reduction of about 1% for 

each 100 K of temperature increase [8]. As discussed previously for the case of the oxy-apatite, the 

Poisson ratio follows the relative change between E and G with temperature (Equation 5.3), thus 

remaining constant with a value of 0.24 ± 0.01 (Figure 5.7b). This result is identical to that of BZY 

measured at room temperature in our laboratory (Chapter 4), confirming the excellent reproducibility 

of the results. 

 

K-1 

K-1 
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Figure 5.7. Temperature dependence of (a) Young’s modulus, (b) Poisson ratio and (c) shear modulus of 

BZY. The uncertainty is about 7% in Young’s modulus, 8% in the Poisson ratio and 0.3% in the shear 

modulus. 

 

5.3  NUMERICAL SIMULATION OF RESIDUAL STRESSES STATE IN LANTHANUM SILICATE 

Many physical phenomena that occur in a polycrystalline material are intimately related with 

the local mechanical fields developed in its microstructure. It is well-known that the distribution of 

these mechanical stress fields depend on the polycrystal morphology, orientation grain distribution and 

crystal behaviour of the material. These microstructural factors mainly control the global behaviours of 

the material and are generally used to predict local phenomena such as fracture [17]. 

In brittle materials, fracture is governed by the opening of local cracks which spread through 

the material causing the macroscopic failure. In some polycrystalline ceramics, such as Lanthanum 

silicate, crack initiation might be sensitive to the residual stress localization developed along the grains 

boundaries which come from the crystalline anisotropy of elastic constant and thermal expansion [18]. 

Therefore, it is of high relevancy to evaluate the stress fields developed between individual crystals in 

order to be able to predict the mechanical failure of the material. In this context, finite elements 
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method appears as a very efficient tool to simulate the mechanical behaviour of a polycrystalline 

aggregate taking into account microstructural and structural details of the material.  

The main objective of this section is to characterize the residual stress state and to predict the 

fracture probability in Lanthanum Silicates for a given thermo-mechanical conditions by using finite 

elements numerical simulation. This study uses methods proposed in the work of Kanit et al. [19], 

where finite elements numerical simulation was used to determine the effective properties of a specific 

random microstructure generated by Voronoi tessellations. 

 

5.3.1 Computation procedure 

In order to obtain realistic results of the state of stress in oxy-apatite ceramics from simulations 

which could be used to understand the experimental failure of the material, it was necessary to create 

a polycrystal as similar as possible to the original compound and to submit it to the “same conditions” 

of sintering and compression testing that were used experimentally. The model chosen for the 

description of microstructure, material properties and experimental conditions used in this study are 

briefly described below. 

 

5.3.1.1 Description of microstructure 

For the purpose of simulating microstructure, it may be possible to employ real microstructure 

obtained directly by experimental three-dimensional reconstructions from samples using Electron 

Back-Scatter Diffraction measurements [20-22] or Diffraction Contrast Tomography (DCT) [23-26]. 

However, these methods are lengthy and expensive since a sophisticated experimental facilities are 

required. As an alternative, computational methods have been developed to create artificial 

microstructures at a lower time-consuming and cost. It is in this point where finite element method 

based on the Voronoi cells was developed by Ghosh and Moorthey et al. [27].  

In this work, the representation of the grains in a polycrystal was performed by a three-

dimensional Voronoï mosaic. This choice was motivated by the fact that the oxy-apatite exhibits a 

simple microstructure with only one phase and a uniform distribution of the grains with defect-free 

and equiaxial grains as mentioned previously (see Chapter 3). 
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The principle of construction of the Voronoi tessellations is based on proximity to a given set 

of points to divide the space into regions. These points, called seeds, are randomly distributed in space. 

For a finite set of seeds S1, S2, S3 … it is possible to make partitions of the space into cells (grains) C1, C2, 

C3… depending on the distance that every point M in the volume has to the seeds, taking into account 

that M belongs to Ci if it is closer to Si  than to any Sj (j≠i). The points which are equidistant to the two 

nearest seeds form a line called half-space (grain boundary). The Voronoi cells Ci are defined by the 

intersection of several half-spaces as a polyhedron (Figure 5.8). 

 

Figure 5.8. 2D Voronoi mosaic of seven random seeds (S) with their corresponding cells.  

 

Figure 5.9. 3D Voronoi tessellations of 200 cells [17]. 
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In the generation of a polycrystal as Voronoi tessellation was necessary to define the number 

of grains, which were created according to a uniform distribution that was similar to the grain size 

distribution found for Oxy-apatite (Section 3.3.1.4). Then, the mesh size was imposed and the 

tessellation was optimized regarding to the element size by removing the smallest edges and faces in 

order to improve the quality of the mesh. The generation of polycrystals and meshing was conducted 

with Neper software [17]. 
 

 
 

5.3.1.2 Numerical simulations 

Based on the obtained polycrystal, the numerical simulations were performed using the finite 

element method. For each grain, was imposed a random orientation defined by Euler angles of a 

random isotropic crystallographic texture. Euler angles determine the orientation of one grain with 

respect to the reference system of the aggregate. Moreover, other input parameters were defined 

such as material properties (taking into account potential anisotropies) and loading and boundary 

conditions, which are briefly described below. The numerical simulations were conducted with Abaqus. 

 

5.3.1.2.1  Material properties 

As indicated in Chapter 4, Lanthanum Silicate can be approximately described as an orthotropic 

material due to the hexagonal symmetry of the oxy-apatite crystal structure (hexagonal cells can be 

also expressed in an orthotropic lattice by using a’ = a, b’ = 2b+a, c’ = c). In order to characterize the 

residual stresses state in LSO, its thermo-elastic properties had to be defined. For this purpose, the full 

elastic tensor was taken from DFT calculation at 0 K (Section 4.4.1) while the anisotropy thermal 

expansion coefficients were taken from literature date, where Fukuda et al. [3] found that the linear 

expansion coefficient of the a-axis was 6.8(3) x 10-6 K-1 and that of the c-axis was 2.9(4) x 10-6 K-1 in the 

temperature range of 298 to 573 K. The choice of these thermal expansion coefficients at low 

temperature was motivated by the fact that we did not perform yet HT XRD characterization when 

these computations were realized. The idea was then to make first simulations to evaluate the method 

and the order of magnitude of the results. Currently, new calculations are being done using our own 

data of thermal expansion and reasonable evolution of elastic tensor evolution with temperature based 

on our RUS data. Therefore, based on the results presented in Section 0 about the evolution of E and 

α of polycrystalline material with temperature, it must be clarified that the numerical simulations 
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presented here were carried out in the extreme case of the highest anisotropy in particular concerning 

thermal expansion coefficients.  

 

5.3.1.2.2  Loading and boundary conditions 

Two different loading conditions were applied to the aggregate in this work:  thermal (th) and 

thermal-mechanical loading (th-m). The interest of choosing these loadings lies in the fact that the 

material is subjected to these conditions during sintering and during its use as electrolyte for SOFCs. In 

order to analyze separately the effect of both loading conditions in the state of stress of LSO, two 

different steps were defined. In the first step, a decrease in temperature from 1500 °C was imposed to 

simulate the sintering process, while in the second step mechanical loading was applied, which 

consisted in a compression pressure of 450 MPa (similar to some of the working conditions for the 

electrolyte part in Solid Oxide Cells devices [28]).  

Considering a LSO polycrystal of a given volume element V, two types of boundary conditions, 

kinematic and uniform boundary conditions, were imposed in order to characterize its overall residual 

stresses state, since previous works showed that the actual behaviour lies between those induce by 

these two boundary conditions [29, 30]. The surfaces and the boundary conditions are summarized in 

Table 5.1. 

Kinematic boundary conditions (KBC):  

1. Thermal loading: The displacement u is imposed on all the surfaces. There is no 

displacement normal to surfaces S1, S2 and S3 (see Table 5.1 for the labels of surfaces). 

   1 2 3 i M S ,S ,S      u(M) n = 0  (5.4) 

where ni is the normal to surface Si. 

Besides, in order to keep all the surfaces plane and parallel to themselves during the loading, 

the following condition is imposed on the three other surfaces: 

    4 5 6 i iM S ,S ,S      u (M) n =u (A) n  (5.5) 

where A is the intersection of surfaces S4, S5 and S6.  
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Under this conditions a thermal loading was imposed: 

 M V     ΔΤ(M) = -1500  (5.6) 

2. Thermo-mechanical loading: Keeping the boundary conditions of the thermal step still 

applied, a pressure p of 450 MPa is added on surface S1: 

 1 1σ n = -p n  (5.7) 

 Static boundary conditions (SBC): 

1. Thermal loading: A pressure equal to 0 is imposed on all the surfaces: 

    iiM S      σ n = 0  (5.8) 

Then, the same thermal loading than in the previous case (Equation 5.6) was applied. 

 

2. Thermo-mechanical loading: A pressure of 450 MPa is added on surfaces S1 and S6 (keeping 

once again the boundary condition of thermal step applied): 

    i i i 1 61 6M S ,S       σ n = -p n     n =n ,n  (5.9) 

It is necessary to clarify that during these two steps and in order to avoid rigid body motion, on 

three points, B, C and D which correspond to three corners belonging to S6, the following displacements 

are also imposed: 

 



u (B) = 0

u (C) x = 0    u (C) y = 0

u (D) y = 0

 (5.10) 
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Table 5.1. Boundary conditions applied for the different loading steps. Kinematic (KBC) and Static 

boundary conditions (SBC). 

BC Thermal step Mechanical step 

K 

B 

C 

 

  

  

             

                  M V     ΔΤ(M) = -1500   M V     ΔΤ(M) = -1500  

S 

B 

C 

 

       

 

       

 

 

 

            

 
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   i iiM S     σ n = 0 n  

S1 

S3 S4 
S2 S5 

S6 

D 

B 
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

 
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5.3.1.3 Analysis of Stress fields: Localization and prediction of fracture 

5.3.1.3.1 Maximum principal stress theory 

The interest for studying the state of stress in a material lies in the possibility to determine a 

failure criterion. The stress state at a point M of a material is given by the stress tensor which is defined 

by only six independent stress components: three normal components which define the normal 

component of the stress vector applied to surfaces normal to X, Y or Z and three shear components 

which characterize the tangential components of the stress vector applied to the same surface (Figure 

5.10). Knowing this stress tensor, it is possible to calculate the stress vector applied on every surface 

passing through point M. Due to the local equilibrium, the stress tensor is symmetrical.  

 

 

 

Figure 5.10. Stress components. 

The values of these components depend on the coordinate system orientation in which the 

tensor is written so, for a particular orientation, it is possible to define a coordinate system (oriented 

to the eigen-vectors of σ ), in which σ  is given by: 

 
 
 
  

xx

yy

zz

σ 0 0

σ = 0 σ 0

0 0 σ

 (5.11) 

where the normal components become to the principal stresses. 

Normal components: 

, ,xx yy zz    

 

Shear components: 

, , , , ,xy yx xz zx yz zy       Z 

X 

Y 

M 
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For brittle materials, failure is governed by opening of cracks, which depends on the stress 

intensity factor applied to the crack and then, to the normal stress applied on the plane of the crack. 

There are numerous proposed theories to predict material failure. However the maximum principal 

stress is the criterion mostly used to predict the failure of brittle materials, since cracks initiate where 

the principal stress is maximum and typically propagate perpendicularly to the principal stress direction 

[31]. The maximum principal stress 
I  can be defined in 2D as:  

 
2

2
xx yy xx yy xyI

1 1
σ = (σ +σ )+ σ +σ +4τ

2 2
 (5.12) 

According to the maximum principal stress theory [32], failure occurs in brittle materials with 

a certain probability (modelled by Weibull theory) once the maximum principal stress exceeds the value 

of the maximum strength in simple tension. In this work, all the analyses of the state of stress in finite 

element numerical simulations were carried out according to this criterion.  

5.3.1.3.2 Stress intensity approach 

Stress localizations are usually discussed in terms in which a flaw is introduced into a body that 

was under uniform stress. In this context, the stress intensity factor K is one of the most fundamental 

parameters used in fracture mechanics [33, 34] to characterize the stress state near the crack-tip 

caused by an uniform load or residual stresses in a linear elastic material [34].  

 

 

 

 

 

Figure 5.11. Schematic representation of a through crack of length a in an infinite plane subject to an 

uniform stress σ. 
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The stress intensity factor for a through crack in an infinite plane subject to a uniform stress 

field (Figure 5.11) is given by the following equation: 

 I  IK = σ  π a  
(5.13) 

where a is the crack length and I
  is the stress applied. Assuming a local material failure at a critical 

level of principal maximum stress, then fracture occurs at a critical stress intensity KIC (fracture 

toughness). Therefore, considering KI as the driving force for fracture and fracture toughness as the 

measure of material resistance, crack propagation occurs when KI = KIC [34]. However, as defects of 

different lengths exist in the material, the probabilistic failure criterion has to be defined as (Weibull 

theory):  

f I  IK = σ  π a   (a)   
(5.14) 

In absence of information about the defect distribution, only the first term of this criterion was 

studied in this work.  

5.3.1.4 Strategy of Simulations 

5.3.1.4.1 Determination of the Mesh Size 

Numerical simulation requires a proper determination of the average number of finite 

elements necessary to mesh one Voronoi cell in order to determine properly the overall stress fields. 

For this purpose, the effect of the mesh size in the stress distribution was studied in a polycrystal of 

200 grains for six different mesh sizes, called rcl1, 05, 035, 032, 028, 024. All the computations were 

performed in the same aggregate and under the same conditions (thermal loading and SBC) having as 

only variable the mesh size. The number of elements increased from 21305 to 1278303 with mesh size 

varying from rcl1 to rcl024. The results plotted on Figure 5.12 show the convergence of the maximum 

principal stress distribution as function of the increased number of elements. As can also be observed 

in this figure, the roughest mesh sizes lead to wrong values of stresses, in such a way one must use 

mesh sizes smaller than rcl0.35 in order that stress values become “independent” of the mesh size (e.i. 

variations smaller than 10%). The final choice of the mesh size was based on a compromise between 

getting better precision of values and time of computation, due to this, the mesh size called rcl028, 
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with a number of elements equal to 779.848, was selected taking into account that it led to variations 

of stress distribution smaller than 2% with respect the values obtained with rcl024. 

 

Figure 5.12. Distribution of the maximum principal stress as function of the mesh size. 

 

5.3.1.4.2 Multiple realizations 

The effect of the different variables imposed on the simulations (grain orientation and 

boundary conditions) in the maximum principal stress distribution was studied in aggregates with 

different number of Voronoi cells, from 12 to 1000 grains. The objective of this section was to study 

how many realizations are necessary to define the representative volume elements (RVE) in order to 

obtain results independent of the grain orientation, boundary conditions and volume size. It is clear 

that only one realization of a small aggregate (one set of grains having each one a given orientation) is 

not sufficient to be representative for all the configurations encountered in the material. In these 

conditions, a question arises whether multiplying the realizations of this small aggregate is equivalent 

or not as to use a larger aggregate. In other words, does an aggregate size exist for which one realization 

is sufficient to have all the configurations and then predict stress localizations and distributions? These 

questions were answered in a previous work reported by Kanit et al. [19] for some effective properties. 

In the case of mean elastic properties and thermal conductivity of a biphase material, they found that 
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the size of the RVE depends on the property tested. However, the properties they studied depend on 

the mean value of the stress distribution, whereas the failure properties depend of the tail of the stress 

distribution. Therefore, it is necessary to adapt the method used by Kanit et al. In this work, twenty 

numerical simulations of small aggregates with different random orientations were computed in order 

to properly characterize the stress fields in a polycrystal.  

 

5.3.2 Computation results 

5.3.2.1 Distribution of stresses 

3D finite element computation for 200 grains are represented in Figure 5.13 and Figure 5.14. 

These computations show the maps of the maximum principal stress for the different boundary 

conditions and loadings, indicating that stresses are heterogeneously distributed not only at the 

macroscopic level but also inside the grains. Under static boundary conditions (Figure 5.13), stress 

localizations were observed after sintering and became stronger after the mechanical loading. As 

evidence in the images the largest stress gradients are located at grain boundaries and in particular 

near multiple grain junctions. This is a direct consequence of the anisotropic thermo-elastic behaviour 

of LSO and of the random crystallographic orientation of each crystal. 

In the case of Kinematic boundary conditions (Figure 5.14), the highest values of stress are also 

located along the grains edges showing the same tendency that for SBC, however the difference of 

stresses between the two different loadings seems to be lower. Figure 5.15 shows the maximum stress 

distribution as function of volume fraction of elements corresponding to the computations displayed 

in Figure 5.13 and Figure 5.14, confirming slightly smaller changes of the stress distribution with the 

different loading condition in the case of the KBC compared with those of the SBC.  
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Figure 5.13. Finite element computation for 200 grains of the maximum principal stress distributions for 

static boundary conditions for an applied (a) thermal loading of ΔT= 1500 °C followed by a (b) mechanical 

loading of σ = 450 MPa. 

 

 
Figure 5.14. Finite element computation for 200 grains of the maximum principal stress distributions for 

Kinematic boundary conditions for an applied (c) thermal loading of ΔT= 1500 °C followed by a (b) 

mechanical loading of σ = 450 MPa. 

 

a) b) 

a) b) 
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Figure 5.15. Maximum principal stress distribution in 200 grains as function of volume fraction of elements 

for the different loading (thermal (th) and thermo-mechanical (th-m) and boundary conditions: (a) static 

boundary conditions and (b) Kinematic boundary conditions. 

It is worth mentioning that, independently of the boundary conditions, certain grains seem to 

be more susceptible to stress localization (Figure 5.13 and Figure 5.14). In order to better understand 

the origin of these localizations, the normal stress to the grains boundaries were studied as function of 

the loading direction (Figure 5.16).  

 

Figure 5.16. Distribution of normal stress to grain boundaries as function of the angle between grain 

boundary and loading.  
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As evidence in Figure 5.16 for both boundary conditions, the maximum values are given by an 

angle of about 90 ° between the normal to the grain boundary and the loading direction and correspond 

to a positive normal stress in the range of 50 - 150 MPa. Due to Poisson ratio, a compression loading 

will induce a tensile loading along directions normal to the compression direction. This result indicates 

that a compression pressure will lead to intergranular cracks along the grains boundaries which are 

parallel to the loading direction. 

 

5.3.2.2 Prediction of failure 

Failure criterion are based on stress intensity factor, and indeed on maximum principal stress. 

Therefore, determining the maximal value of the maximum principal stress distribution could be an 

objective, however, due to the sharp gradients, stress become locally infinite. Thus, comparing their 

local values does not have any sense. Due to this, it is necessary to define what is called a “non-local” 

criterion, which is a stress value averaged over a certain volume. In this work, we considered as criterion 

the volume of elements in which the maximum principal stress was higher than 600 MPa.  

The objective of this study is to establish the size of the representative volume element 

corresponding to failure criterion, that is, the size of the volume simulated by finite elements 

representative for a small volume of a real fuel cell component.  The RVE has to behave as if it is 

embedded in the real material, its behaviour should be independent from the boundary conditions. 

Figure 5.17 displays for every aggregate size (based on the number of grains) the volume fraction of 

elements in which the maximal principal stress is over 600 MPa. For a same aggregate size, the mean 

value averaged over all the realizations and the standard deviation are plotted. Overall, it can be 

observed that: 

 Standard deviation of the results decreases with the increase of volume size for both 

boundary conditions. 

 Results depend on boundary conditions, it is not equivalent to impose displacements or 

pressure on the surfaces. 

 When the grain size increases, the differences between SBC and KBC calculations tend to 

vanish. Indeed boundary conditions modify the response of the grains which are near to 

the boundaries but it has less influence in the grains inside the bulk. This influence is 

typically of 2-3 grains sizes. When the number of grains increases, the volume fraction of 
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the bulk proportionally increases and the type of boundary conditions imposed is of less 

importance.  

 Results tend to converge towards the same values for large volumes, independently from 

the boundary conditions.   

 The probability of failure increase when the mechanical loading is applied, what are in good 

agreement with the stronger localizations after the mechanical step already analyzed in 

Figure 5.13 and Figure 5.14. 

 
Figure 5.17. Mean volume fraction of elements subjected to stresses higher than 600 MPa and standard 

deviation of mean values as function of volume size for the different boundary conditions. (a) thermal and 

(b) thermo-mechanical loading.  

Prediction of failure was performed from the stress intensity factor taking into account the 

criterion of 600 MPa and fracture toughness of Lanthanum silicate obtained experimentally in this work 

(section 4.3.1), where a value of KIC = 1.2 ± 0.1 MPa m1/2 were found. From Equation 6.1 a value of a = 

0.98 µm was determined, what indicates that any crack in the material of 1.96 µm in length (2a) could 

propagate and lead to material failure if the stress concentration near the crack-tip exceeded the 

criterion of 600 MPa.  

Another way of having a non-local approach to failure is to consider, not only the stress 

distribution of elements subjected to a high level of stress but also of grains. Stress tensor was averaged 

in every grain and the maximum principal stress of the mean stress tensor was calculated. Figure 5.18 

shows the volume fraction of grains in which the maximal principal stress is greater than 100 MPa for 

the different loading and boundary conditions as a function of volume size. Once again the standard 

deviation of mean value becomes smaller and the results converge towards the same value when the 

a) b) 
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volume size increases. Considering the total volume fraction of 1000 grains as 1, these results indicate 

that about 79% and 86% of grains were subjected to stresses higher than 100 MPa after the thermal 

and mechanical loading, respectively. A parallel study in the same conditions indicated that only about 

23% and 34% of grains were subjected to stresses higher than 200 MPa while it was not found stressed 

grains at stress levels higher than 400 MPa, due to this it was not possible to apply the same criterion 

used above for the volume fraction of elements. 

 

Figure 5.18. Mean values of volume fraction of grains subjected to stresses higher than 100 MPa and 

standard deviation of mean values as function of volume size for the different boundary conditions. (a) 

thermal and (b) thermo-mechanical loading. 

When considering stresses averaged over grains, the difference between the two loadings 

applied (thermal and thermal-mechanical loading) is very low. This averaging is probably too rough to 

be able to distinguish both contribution. Due to this, the first criterion should be kept in the future.  
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6.1  INTRODUCTION 

This chapter focuses on the study of the mechanical behaviour of Lanthanum Silicate and 

Yttrium-doped Barium Zirconate materials at intermediate and high temperatures. On one hand, 

compressive mechanical tests have been carried out in conditions similar to SOFC/PCFC operating 

conditions to check the response of the different materials for applications as electrolytes. On the 

other hand, creep experiments were performed to identify the atomistic mechanisms of plastic 

deformation and the origin of failure of these materials at high temperatures. 

 

6.2  WORKING CONDITIONS EXPERIMENTS (T = 700 °C) 

Mechanical essays in working conditions were performed with specimens of approximately 

5 x 3 x 3 mm3 in size which were cut from the sintered pellets with a diamond saw. After cutting, 

the samples were rectified to eliminate imperfections and to ensure that they were completely flat-

parallel.  

The experiments were carried out in compression on a universal deformation machine 

(Microtest, University of Seville, Spain) equipped with a controlled-atmosphere system and alumina 

cylindrical dies of 25 mm in diameter and 300 mm in height. The tests were performed under 

constant load at 700 °C in different atmospheres i.e. dry air, dry argon and dry 5% hydrogen in 

Argon (residual water is as much of few ppm). Nominal stresses between 100 and 550 MPa were 

applied to the samples, according to the stresses estimated for electrolytes in SOFC operating 

conditions [1, 2]  The atmosphere was controlled by monitoring the gas flow in the chamber, which 

was fixed at 400 ml/min, and the temperature of 700 °C was chosen as a typical operating 

temperature of PCFCs. The samples were heated in air at a rate of 10 °C/min up to the target 

temperature of 700 °C, where a 2 h dwell was used to ensure the equilibrium of the 

machine/sample assembly; a small load of 2 MPa was applied during the heating process to avoid 

the loss of contact between sample and alumina dies. Then, the samples were loaded at a constant 
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cross-head speed of 10 µm/min up to the desired final stress, where the atmosphere was 

successively changed from air to argon and finally to 5% H2/95% Ar. 

 

6.2.2.1 Mechanical response of Lanthanum Silicates in SOFC working conditions 

Both conventionally sintered and SPS oxy-apatites were subjected to this kind of 

experiments at 150, 300 and 450 MPa, and their stress responses are displayed in Figure 6.1. Both 

materials exhibit the same behaviour, remaining intact throughout the atmosphere changes, 

indicating that they did not undergo any significant mechanical-chemical degradation during testing. 

 

Figure 6.1. Stress response during compression tests at 700 °C under various atmospheres of (a) LSO-

CS, and (b) LSO-SPS. 

 

 

6.2.2.2 Yttrium-doped Barium Zirconate 

Figure 6.2 shows the results of the mechanical tests performed on BZY and BZY-NiO. The 

former material behaves identical to the oxy-apatites, remaining unaffected by the surrounding 

atmosphere. The same behaviour was also found in BZY-NiO at stresses lower than 300 MPa. 

However, when the stress level increased up to 350 MPa, the specimens stayed intact under air 

and argon, but failed catastrophically after about 10 min under H2 atmosphere. Identical behaviour 

was found at 560 MPa. The samples literally exploded into many small fragments. These results 

indicate that the commercial material underwent severe modifications under hydrogen 

atmosphere at 700 °C, which favours crack formation and propagation and final sample failure. This 
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point is crucial for fuel cell applications since the observed compressive stress at which failure 

occurs (350 MPa and above) is within the stress range estimated for the electrolyte part under 

typical SOFC operating conditions (from 140 [2] to 450 MPa [1]).   

 
Figure 6.2. Stress response during compression tests at 700 °C under various atmospheres for (a) BZY, 

and (b) BZY-NiO. 

In order to better understand the failure mechanism of these samples prepared with NiO 

additive, HR-TEM studies were carried out. Because of the lack of information by the supplier, the 

original BZY-NiO material was firstly investigated.  

  

   
 

Figure 6.3. EDS mapping of original BZY-NiO particles. (a) HAADF image, and EDS filtered images for 

elements: (b) Ni, (c) O, (d) Ba, (e) Zr and (f) Y. 

a) b) c) 

d) e) f) 

(1) 

(2) 

(3) 

(2) 
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Figure 6.3 shows an example of EDS image which helps identifying where the Ni element 

locates. Particle #1, as identified on the HAADF image, would correspond to BaZr0.85Y0.15O2.925 phase, 

while particles #2 and #3 contains only Ni and O species, and would correspond to NiO. EELS in 

STEM mode was used to obtain high-resolution information about the material composition. 

The fine electronic structure of Ni-rich particles was studied by EELS at Oxygen K edge and 

Nickel L2,3-edges. Figure 6.4b and c shows the O-K and Ni-L2,3 edge spectra after background 

subtraction obtained for the Ni-rich particle #3 in the area marked with a circle in Figure 6.4a. For 

an appropriate comparison, similar analyses were also performed on pure NiO (Sigma Aldrich), 

which has been used as a reference sample (Figure 6.4b and c). The O-K edge ELNES (electron 

energy loss near-edge structure) of NiO (Figure 6.4 b) consists of five major peaks at 532, 538, 541, 

547, and 562 eV. The first peak can be attributed to transitions from O 1s core states to the band 

mainly consisting of Ni-3d orbitals. The next three peaks at 535 - 550 eV correspond to transitions 

to the Ni-4sp band, and the last peak results from multiple scattering within oxygen shells [3, 4]. On 

the other hand, Ni-L2,3 edges ELNES (Figure 6.4c) consists of two peaks resulting from spin-orbit 

coupling: L3is the main and most intense peak and comes from 2p3/2 transitions; and L2 is the peak 

at higher energy loss and less intense, coming from 2p1/2 transitions. The position and shape of 

these contributions are sensitive to the oxidation state of the transition metals involved. As can be 

seen in Figure 5.4, the O-K and Ni-L2,3 fine structure (i.e., peak shapes and energy loss positions) of 

the selected area matches exactly with the NiO reference sample (as well as with literature [3]), 

confirming that these Ni-rich particles are indeed NiO.  

 

Figure 6.4. TEM characterization of as-received BZY-NiO. (a) HAADF and EDS-filtered image. Selected 

area for EELS analysis is marked with a red circle, (b) EELS spectra at Oxygen K-edge of BZY-NiO and 

NiO (reference sample) and (c) Idem at Ni L2,3-edge.  

In addition, Figure 6.5 shows the selected area electron diffraction pattern of particle #3, 

which was indexed in the Fm-3m space group with a cell parameter a ≃ 4.2 Å, very close to that of 

NiO. Similar analyses were performed on other particles, which showed that Ni only appeared at 

a) b) c) 

(1) 

(2) 

(3) 
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grain boundaries or in Ni-rich phases with typical sizes of few tens of nanometers. From these 

analyses, we identified these Ni-rich phases to be NiO. 

 
 

Figure 6.5. (a) HR-TEM image and (b) diffraction pattern of particle #3 which could be identified from 

indexation as NiO phase. 

The same studies were carried out on BZY-NiO after testing at a stress level of 560 MPa at 

700 °C under hydrogen atmosphere (Figure 6.2b). Ni-rich oxide particles were no longer observed, 

which were reduced to metallic Ni. Figure 6.6 shows an example of a metallic Ni particle located 

close to a BZY particle as evidenced from the EDS map.  

    

   
 

Figure 6.6. EDS mapping of BZY-NiO specimen after mechanical testing at at 700 °C in H2. (a) 
HAADF image. EDS-filtered images for elements (b) O, (c) Ni, (d) Ba, (e) Zr and (f) Y. 
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EELS characterization revealed a loss spectrum analogous to that of pure metallic nickel 

(Sigma-Aldrich, used as reference) without presence of oxygen (Figure 6.7). 

 

   

Figure 6.7. TEM characterization of particle in Figure 6.6. (a) HAADF and EDS-filtered image. Selected 

area for EELS analysis is marked with a red circle. (b) EELS spectra of the selected zone and metallic Ni 

(reference sample) at Oxygen K-edge. (c) Idem at Ni L2,3-edge.  

Figure 6.8 shows that metallic Ni is located mainly along the grain boundaries of BZY. Due 

to this location, the reduced material is much more prone to fracture under loading. The 

degradation of properties observed is probably not detrimental for laboratory scale-testing but 

would potentially become critical for fully-working devices. Indeed, as mentioned in previous 

articles [1, 2], the electrolyte is submitted during operation and after anode reduction to 

compressive stresses which can reach several hundreds of MPa. In these conditions, the reduction 

of Ni on the hydrogen side would lead to an embrittlement of the electrolyte membrane and 

potentially to an accelerated and premature cell failure. 

          
 

Figure 6.8. EDS mapping of BZY-NiO specimen after testing at 700 °C in H2. (a) HAADF image, (b) 

HAADF and EDS-filtered image, (c) EDS-filtered images for Ni. 

For these reasons, we also studied the NiO-extraction and the influence of residual nickel 

in the mechanical properties of BZY compounds. The NiO-extraction procedure and the structural 
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and microstructural characterization of the material after NiO-extraction have been already 

addressed in Chapter 2 and Chapter 3. 

Samples after NiO-extraction were submitted to the same SOFC operation-condition 

mechanical tests. As shown in Figure 6.9, the specimens remained intact under the different 

atmospheres at a low stress level. However, the samples failed catastrophically during loading in 

air at a stress level of about 300 MPa. 

 

Figure 6.9. Stress response during compression tests at 700 °C under various atmospheres of BZY 

after NiO-extraction. The “x” mark indicates sample failure. 

As shown in Section 3.3.3.3, the NiO-extraction process (120 h at 1600 °C) increased the 

material porosity and caused an important grain coarsening, along with a change in the chemical 

nature of the grain boundaries. These factors, which give rise to microcracking, explain the low 

mechanical resistance after NiO-extraction compared to the as-received material.  

 

6.3  CREEP EXPERIMENTS (T > 1000 °C)  

 

This study was carried out by means of compressive mechanical tests to evaluate the 

influence of strain rate, stress temperature and grain size on the mechanical behaviour of LSO and 

BZY compounds. The standard high-temperature power law for steady-state deformation is given 

by [5]: 
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n -p Q
ε= Aσ d exp(-  )

RT
 (6.1) 

where   is the steady-state creep rate, A is a parameter depending on the deformation 

mechanism, d is the grain size, n is the stress exponent, p is the grain size exponent, Q is the 

activation energy for flow and R is the gas constant. Q, p and n are usually termed creep parameters, 

and provide essential information about the atomistic mechanisms of plastic deformation.  

This section presents firstly the experimental procedure, defining the characteristic 

mechanical magnitudes and the different types of tests. Then, the experimental results obtained in 

LSO and BZY are presented, which are correlated with microstructural observations by scanning 

and transmission electron microscopy. The Chapter ends with the discussion of the probable 

underlying atomistic mechanisms responsible for plastic deformation and mass transport.  

 

6.3.1.1 Mechanical magnitudes 

Consider a specimen of initial height lo and initial section So. Under a uniaxial compressive 

load F, the sample will deform to an instantaneous length l(t) after a time t. The engineering (or 

nominal) strain ɛe and the engineering (or nominal) stress σe are given, respectively, by: 

 
    o

e
o o

Δl  t l  t - l
t = - = -ε

l l
 (6.2) 

and: 

e

o

F
σ =

S
 (6.3) 

The negative sign in Equation 6.2 corresponds to compression tests, in order to obtain 

positive values of ɛe. The engineering strain is not an additive magnitude, and is thus not useful in 

the characterization of large strains. The true strain ɛ is then introduced as: 

 
 
 

dl t
dε t = -

l t
 (6.4) 

Integrating this Equation, finally results in: 

 
 

 
 
  

olε t = ln
l t

 (6.5) 

This magnitude differs significantly from the engineering strain ɛe (Equation 6.2) for strains 

larger than 10%. 
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The instantaneous strain rate ɛ̇(t) is given by: 

 
 

 
 dε t dl  t1 

ε t  = = -
dt l t dt

 (6.6) 

which is a state variable in the steady-state deformation regime (secondary creep). 

 

On the other hand, the engineering stress σe (Equation 6.2) does not adequately describe 

the actual stress at which the sample is subjected during test because of the continuous increase 

in section S(t) as strain proceeds. Therefore, the true stress σ(t) is introduced as: 

 
 
F

σ t =
S  t

 (6.7) 

In general, correction of the specimen cross-section is not simple in compression tests 

owing to the fact that the samples do not usually deform uniformly. On the one hand, cracks or 

cavities may appear inside the material and, on the other hand, friction between the sample 

compression faces and the punching rods of the essays machine causes the barrelling of the sample 

[6]. In this work, pads of SiC were inserted between the specimen and the alumina punching dies 

to avoid, or at least to reduce, friction at the specimen-die interfaces. This variation in sample shape 

is not significant for small strains values (ɛ ≤ 10%), but it can be substantial for large strains such 

as those achieved in this work (ɛ ≥ 40%). 

The true stress σ can be related to the engineering stress σe assuming that the sample 

deforms at constant volume, i.e., elastic effects and material densification/degradation are not 

considered. In this case: 

   o oS l = S t ·l t  (6.8) 

The instantaneous cross-section S(t) is given by: 

 
  o
o o εt = = e

l t
· 

S l
S S  (6.9) 

where Equation (6.5 has been used. The true stress is then rewritten as: 

  e
o

F -ε -εσ e et
S

· = = σ  (6.10) 

In this work, the true stress and the true strain have been used to analyse the mechanical 

data. 
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6.3.1.2 High-temperature mechanical tests 

Compressive deformation tests were performed on specimens of about 5 x 3 x 3 mm3 in 

size which were cut from sintered pellets with a low-speed diamond saw. The experiments were 

carried out in air at temperatures between 1000 and 1400 °C. Temperature was monitored by a Pt-

Pt/10% Rh thermocouple placed close to the sample. Mechanical tests have been mainly conducted 

at constant cross-head speed, although some tests at constant load were also performed. Both 

types of tests are briefly described below. 

 

6.3.1.2.1 Constant cross-head speed tests 

These tests were performed in an EM1/FR universal machine (Microtest, University of 

Seville, Spain) equipped with polycrystalline alumina cylindrical rods of 25 mm in diameter and 300 

mm in height. The lower rod moves up at a constant cross-head speed vT between 5 and 50 µm/min 

(corresponding to initial strain rates 𝜀𝑜̇ of 1.7x10-5 and 1.7x10-4 s-1, respectively). The upper rod is 

connected to a load cell which instantaneously measures the load F(t) necessary to maintain the 

compressive speed vT. The recorded data, load F vs time t, were analysed in σ–ε curves. Tests were 

conducted in air at temperatures between 1000 and 1400 °C, with heating/cooling ramps of 

10 °C/min and a 2 h soaking time to achieve the thermal equilibrium of the assembly. A small load 

of 2 MPa was applied during the heating process to keep the sample in contact with the alumina 

rods. 

During a test at a fixed cross-head speed vT, the instantaneous sample length l(t) is given 

by: 

  o Ttl t = l - v  
 

(6.11) 

Therefore, the instantaneous strain and strain rate (Equations 6.5 and 6.6) are: 

 
   
   

  

o

o o
 

T

l 1
ε t = ln = ln

l -v t 1-ε t
 (6.12) 

and: 

   o  ε
T o 

o T o

ε
ε t = v = = ε · e

l - v t 1-ε t

1
 

(6.13) 

 

where 𝜀𝑜̇ is the initial strain rate: 
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o T

o

ε = v
l

1
 

(6.14) 

 

The stress-strain curves are obtained from Equations 6.10 and 6.12. It should be pointed 

out that the strain rate increases as the deformation proceeds (Equation 6.13) because of the 

continuous decrease in sample height. For example, for a strain of 50%,   (50%) = e0.50· o =1.6 o . 

 

6.3.1.2.2 Constant load tests 

These experiments are usually termed creep tests because the material deforms at its own 

rate under a given load. The tests were carried out in air at temperatures between 1100 and 1350 °C, 

under constant load at nominal stresses between 50 to 120 MPa. A manual deformation machine 

(Microtest, University of Sevilla, Spain) has been used, equipped with polycrystalline alumina 

cylindrical pistons of 25 mm in diameter and 400 mm in height. The load Q is applied by a lever 

coupled to the upper pull rod, while the lower rod displaces to balance the level arm. The recorded 

data, instantaneous sample length l(t) vs time t, were plotted as 𝜀̇-𝜀 curves on a semi-logarithmic 

graph. The true strain is given by Equation 6.5, and the strain rate 𝜀̇(t) is calculated by deriving the 

variation of sample height with time (Equation 6.6):  

 
 

 Δl  t1 
ε t -

l t Δt
 (6.15) 

The samples were sandwiched between SiC pads in order to reduce the friction with the 

alumina punching dies of the deformation machine. A contact load of 20 N was initially applied 

during the heating process, which was carried out at 10 °C/min followed by a dwell time of 2 h to 

ensure the thermal equilibrium of the assembly.  

 

6.3.1.3 Steady-state deformation 

In a constant load creep experiment, three stages of deformation can generally be 

distinguished. After the initial load application, the strain rate is relatively high, but slows with 

increasing time; this regime is called initial stage, primary creep or regime I, and depends on the 

previous history of the material. 

The following stage is characterized by a constant strain rate and is termed steady-state 

creep, secondary creep or regime II. It is described by the steady-state power-law creep equation 

(Equation 6.1), and only in this regime the creep parameters n, p and Q have a physical meaning. 

In fact, the steady strain rate is independent of time in constant stress tests. In constant load tests, 
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however, the true stress decreases because the sample cross-section increases continuously with 

time. In this case, it can be easily shown from Equations 6.1 and 6.10 that ln 𝜀̇ decreases linearly 

with 𝜀:  

where A is a parameter independent of 𝜀 and 𝜎o
  is the initial stress (the engineering stress).  

Finally, the third stage corresponds to a rapid increase in strain rate as a consequence of 

the nucleation and coalescence of cavities that eventually may lead to material failure. It is termed 

tertiary creep or regimen III. 

In the case of deformation tests at constant cross-head speed, the σ-ε curves exhibit an 

initial linear stage corresponding to elastic deformation, followed by a transitory regimen (regime 

I) before reaching the steady state (regime II). In a true constant strain rate test, the steady state is 

characterized by a constant creep stress (flow stress) with strain. In our tests at constant cross-head 

speed, however, the instantaneous strain rate increases with increasing strain because of the 

continuous decrease in specimen height, as noted in the previous Section. Combining Equations 

6.1 and 6.13, the flow stress increases with strain in the form: 

 ε/nσ e           
1

lnσ=B+ ε
n

 (6.17)  

where B is a parameter independent of 𝜀. In this case, the slope of the ln 𝜎-𝜀 curves gives the 

inverse of the stress exponent n in case of homogeneous deformation. This equation has been 

widely used in this work in the analysis of the stress-strain curves of LSO and BZY compounds to 

check the presence/absence of concurrent grain growth. 

 

6.3.1.4 Determination of creep parameters 

There are two basic methods for determining the creep parameters from the steady state 

equation (Equation 6.1): (i) comparing different experiments performed on a set of similar samples 

in which a single variable has been modified, keeping the others constant (method conventional); 

and (ii) modifying one variable during the test on the same sample, keeping constant the other 

conditions (differential method). Briefly, both methods are described below, in particular in relation 

with constant cross-head speed tests. 

 

 n n -nε
oε σ =σ .e  lnε=A-nε  (6.16)  



Chapter 6. High-temperature mechanical characterization 

162 

6.3.1.4.1 Conventional method 

For the determination of the stress exponent n, a set of isothermal tests was performed by 

varying the initial strain rate in constant compression cross-head speed tests. The slope of the best 

fit line of the log 𝜀̇ - log 𝜎 plot, for a given strain, is the stress exponent. Similarly, to determine the 

activation energy Q, a series of tests was performed at different temperatures maintaining the 

same initial strain rate. The slope of the best fit line of the log 𝜎 - 1/T plot, for a given strain, is 

proportional to the parameter Q. 

In this work the grain size exponent p was not determined because it requires a set of tests 

at the same temperature and strain rate on samples with different grain sizes. Although LSO 

polycrystals with different grain sizes have been obtained, different deformation mechanisms were 

found for fine- and large-grained materials, preventing a proper determination of p. 

The conventional method has two drawbacks: firstly, it requires an large number of 

reproducible samples, prepared under the same conditions, which is not always possible; and 

secondly, it does not take into account the possible evolution of the microstructure with 

experimental conditions, so it is likely that wrong values of the creep parameters can be obtained 

when the microstructure is unstable. 

 

6.3.1.4.2 Differential method 

To determine the stress exponent n, a test is initially performed at a temperature T1 and at 

initial strain rate 𝜀̇1. After reaching the steady-state, characterized by a flow stress σ1, the strain 

rate is suddenly changed to 𝜀2̇. After the corresponding transient stage, a new steady-state flow 

stress σ2 will be reached. By using the power-law creep equation (Equation 6.1), the stress exponent 

is given by: 

 
 





2 1

2 1 T,d ε

ln  ε  /ε  ε
n =

σ ln  σ  /σ
 (6.18) 

The extrapolation of the flow stresses at the time (strain) of the strain rate change ensures that the 

exponent n is determined under conditions of constant microstructure. 

In the case of constant load tests, the procedure is very similar. Once the steady-state strain 

rate 𝜀̇1 is reached at T1 and σ1, the load is suddenly changed to σ2, resulting in a new steady-state 

strain rate 𝜀̇2. The stress exponent n can be thus estimated from Equation 6.18. 
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The determination of the activation energy Q by the differential method requires the 

change of the testing temperature during the steady-state deformation, keeping constant the other 

experimental conditions. Once the new steady state has been reached, the comparison of the flow 

stresses before and after the temperature change in a constant cross-head speed test leads to the 

activation energy Q:  

 
 



2 1

2 1
εσ,d

ln  ε  /ε  lnε
Q = -R -R 

1 / T 1 / T  -1 / T  
 

(6.19) 

 

Similarly, in a constant load creep test, Q is given by: 

 
 



2 1

2 1
εε,d

 ln  σ  /σlnσ
Q = nR nR

1 / T 1 / T  -1 / T  
 (6.20) 

Unlike the determination of the stress exponent n, where the strain rate or load changes 

are instantaneous, the determination of the activation energy Q requires a stabilization time after 

the temperature change. To this end, the sample was unloaded for the temperature change (a small 

load of 2 MPa was remained to avoid the loss of contact between sample and alumina dies) and 

then re-loaded once the new thermal equilibrium was reached. Moreover, the steady-states of 

deformation are generally linked to the point defect population in the material [5], so it is necessary 

to wait until the new point defect equilibrium concentrations, corresponding to the new 

temperature, are reached before proceeding with deformation. This re-equilibration time depends 

on the chemical diffusion coefficient of the various ionic species in the compound, which are not 

known. For the temperature range used in the present study, we have verified that re-equilibration 

times of 2 h are adequate to reach the new equilibrium conditions. 

 

The fragile-ductile transition and the steady-state creep parameters obtained in the high-

temperature deformation tests are presented below for each material. The atomistic mechanisms 

involved in the deformation process are then discussed and compared to literature data. 

 

6.3.2.1 High-temperature mechanical behaviour of LSO-CS  

6.3.2.1.1 Fragile-ductile transition 

Figure 6.10 shows typical curves of the variation of the true stress σ with true strain ɛ of 

LSO-CS deformed in air at a given initial strain rate 𝜀𝑜̇ = 3.6x10-5 s-1 (corresponding to a cross-head 
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speed of 10 µm/min) and different temperatures between 1020 and 1300 °C. The material displays 

a gradual transition from a brittle-to-ductile regime as the temperature increases. The marks “x” 

on the curves indicate the macroscopic fracture of specimens. At 1020 °C, the lowest temperature 

studied, the sample failed catastrophically at a stress level of about 730 MPa without undergoing 

any plastic deformation. At 1090 °C, the compound already shows the early onset of plastic 

deformation, with a slight curvature of the σ - ɛ curve at 450 MPa, but failing finally after a very few 

percent of plastic strain. A semi-ductile behaviour was observed at 1140 and 1200 °C, where the 

material reached deformations as large as 50% without macroscopic fracture (tests were 

intentionally stopped at this strain value for subsequent microstructural observations). Stress 

softening could be observed in this regime, starting at larger strains with increasing temperature: 

at about 5% and 35% for 1140 and 1200 °C, respectively.  

 

Figure 6.10. True stress  - true strain  curves for LSO-CS deformed in compression at an initial strain 

rate of 3.6x10-5 s-1 and different temperatures. Marks “x” indicate macroscopic specimen failure. 

For higher temperatures, 1250 and 1300 °C, extended steady-state regimes of deformation 

(secondary creep regimes) were attained, characterized by a rather constant positive slope of the 

stress - strain curves. As shown in Section 6.3.1.1, the slopes gradually increase with increasing 

strain (Equation (6.17) owing to the shortening of the specimen height in constant cross-head 

speed tests as used in this study. 

In a similar way, a series of tests was performed at a given temperature of 1300 °C and 

various initial strain rates ranging from 1.9x10-5 to 1.9x10-4 s-1. Figure 6.11 shows the corresponding 

 -  curves. As expected, proper steady states of deformation are attained at the lower strain rates, 
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changing gradually towards a brittle behaviour with increasing strain rate: stress softening can be 

observed at 𝜀𝑜̇ = 1.9x10-4 s-1 at a stress level of  ≈ 35%. It should be noted again the increase of the 

 -  slopes in steady-states conditions when increasing strain rate. 

 

Figure 6.11. True stress  - true strain  curves for LSO-CS deformed in compression at 1300 °C and 

different initial strain rates.  

 

6.3.2.1.2 Microstructure after deformation 

The macroscopic aspect of the strained samples is shown in Figure 6.12, which correlates 

very well with the shape of the corresponding stress - strain curves. At the lower temperature 

studied, 1020 °C (curve in yellow, Figure 6.10), the specimen completely fractured into multiple small 

fragments (Figure 6.12g), indicating the fast propagation of cracks throughout the overall sample 

volume of the sample. Similar characteristics were observed in the sample deformed at 1090 °C 

(curve in orange, Figure 6.10), which underwent a very limited plastic deformation before fracture. 

In this case, the specimen failed by the propagation of several longitudinal cracks along the entire 

specimen length (Figure 6.12f), originated at grain boundary flaws. SEM observations of fracture 

surfaces indicate a mixed failure mode, changing from predominantly transgranular in the coarser 

grains to intergranular in the finer ones (Figure 6.13). Such a behaviour is consistent with the pore 

distribution observed in the as-prepared material, preferentially located at grain boundaries in the 

finer-grained regions (Figure 3.5), which facilitates intergranular crack propagation in these areas.  
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Figure 6.12. Macroscopic aspect of LSO-CS samples deformed in compression at an initial strain rate of 

3.6x10-5 s-1 and different temperatures (Figure 5.10):(a) as-prepared LSO-CS, (b) 1300 °C, (c) 1250 °C, 

(d) 1200 °C, (e) 1140 °C, (f) 1090°C, and (g) 1020 °C. 

 

  
 

Figure 6.13. SEM micrographs of fracture surfaces of LSO-CS tested at 1090 °C and an initial strain rate 

of 3.6x10-5 s-1.  

At the intermediate temperatures of 1140 - 1200 °C and  𝜀𝑜̇ = 3.6x10-5 s-1 (curves in red and 

green, Figure 6.10), the semi-ductile regime is also characterized by the formation of these large 

longitudinal cracks, as can be observed in the lateral faces of the specimens (Figure 6.12d and e), 

which are responsible for the flow softening observed in the corresponding  -  curves. In such 

conditions, however, the material was able to tolerate the macroscopic flaws without cracking, as 

can be observed in Figure 6.14, where two longitudinal cracks are blocked inside a sample strained 

up to 50%. In this defect-tolerant regime, extensive grain boundary decohesion takes place around 

the cracks, whereas nearby regions maintain their original integrity without significant changes in 

grain morphology and porosity with respect to the as-fabricated material. Similar characteristics 

were observed in the sample tested at 1200 °C (Figure 6.15) where softening appeared at ɛ = 35%.  

(a)                   (b)                   (c)                    (d)                  (e)                 (f)               (g) 

5mm 

5 µm 5 µm 
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Figure 6.14. SEM micrographs of LSO-CS deformed up to  = 50% in compression at an initial strain rate 

of 3.6x10-5 s-1 and 1140 °C (curve in red, Figure 6.10), with flow softening starting at= 5%. Stress axis 

is vertical. (a) Unmodified regions between cracks; (b) grain boundary decohesion (embrittlement) 

around the crack surfaces; and (c) longitudinal cracks arrested inside the sample. 

 

  

Figure 6.15. SEM micrographs of LSO-CS sample deformed up to ɛ = 50% in compression at an initial 

strain rate of 3.6x10-5 s-1 and 1200 °C (curve in green, Figure 5.10), with flow softening at  = 35%. 

Stress axis is vertical. 

Further temperature increases give rise to well-deformed samples (Figure 6.12b and c), 

with very little barrelling, corresponding to well-established steady states of deformation (curves 

in blue and cyan, Figure 6.10). SEM observations of these samples reveal that the grains retained 

their equiaxed shape, although concurrent grain growth took place during testing. Figure 6.16 

5 µm 10 µm 

5 µm 30 µm 

30 µm 200 µm 

a) b) 

c) 
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shows SEM micrographs at different magnifications of a specimen strained up to  = 50% at the 

highest temperature studied T = 1300 °C and 𝜀𝑜̇  = 3.6x10-5 s-1 (curve in blue, Figure 6.10). The 

corresponding grain size d and form factor F distributions led to average values of d = 1.4 ± 0.1 µm 

and F = 0.8 ± 0.1, indicating a final grain size slightly larger than in the as-fabricated material 

(reminder: d = 1.1 ± 0.6 µm and F = 0.8 ± 0.1, Section 3.3.1.4). The grains retain, however, their 

initial shape despite the large strains attained. Concurrent grain growth was minimal in samples 

deformed at 1250 °C and below. Static grain growth in conventional pressureless sintered oxy-

apatites has been recently reported by Suarez et al. [7]. They found an increase in grain size from 

1.4 µm at 1400 °C and 24 h to 1.9 µm at 1500 °C and 3 h, and up to 2.2 µm at 1500 °C and 10 h. 

The authors, however, did not attempt to derive a relationship for the grain growth kinetics. 

  
 

Figure 6.16. SEM micrographs of LSO-CS sample deformed in steady state up to  = 50% in 

compression at an initial strain rate of 3.6x10-5 s-1 and 1300 °C (curve in cyan, Figure 5.10). The final 

average grain size is 1.4 m. Stress axis is vertical. 

TEM observations of thin films cut from specimens deformed in the ductile regime have 

shown the absence of dislocations and other defects inside the grains, which exhibit straight 

boundaries and well-defined triple junctions (Figure 6.17), as in the as-fabricated material. However, 

the specimens strained in the semi-ductile regime have shown a relatively high density of 

dislocations, usually gathered into sub-boundaries, in some of the larger-sized grains, while the 

finer grains remained clean and free of dislocations (Figure 6.18). A closer inspection of the 

corresponding SEM images shows the presence of small cells limited by sub-boundaries within 

some of the coarser grains (Figure 6.19); they are hardly seen at higher temperatures (Figure 6.16). 

It is therefore assumed that there is a direct correlation between SEM and TEM images. At 

intermediate temperatures, where the grain growth process still is not finished, the sub-boundaries 

observed within a given large-sized grain correspond to the original boundaries of small grains that 

are being consumed by such a grain. At higher temperatures, grain boundary migration is faster, 

resulting in cleaner grains, as experimentally found. 

5 µm 10 µm 
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Figure 6.17. TEM images of LSO-CS sample deformed in compression at an initial strain rate of 3.6x10-5 

s-1 and 1300 °C (ductile regime). 

 

   
 

Figure 6.18. TEM images of LSO-CS sample deformed in compression at an initial strain rate of 3.6x10-5 

s-1 and 1140 °C (semi-ductile regime). 

 

   
 

Figure 6.19. SEM images of LSO-CS sample deformed in compression at an initial strain rate of 3.6x10-5 

s-1 and 1140 °C (semi-ductile regime). Black arrows point at sub-boundaries in the larger-sized grains. 

Stress axis is vertical. 
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6.3.2.1.3 Creep parameters 

As indicated in Section 0, the characteristic parameters of the creep behaviour can be 

confidentially determined only in steady state; otherwise the values estimated from deformation 

data using the creep power law are physically meaningless (which indeed are in the root of many 

controversies that exist in the literature regarding the creep behaviour of ceramic materials).  

The stress exponent n can be estimated directly from the isothermal  -  curves obtained 

at different strain rates (conventional method, Section 00). As already noted, this determination is 

somewhat complicated in constant cross-head speed tests owing to the variation of the  -  slope 

in steady state because of the decrease in sample height as the test proceeds. The flow stresses 

have been then measured at  = 10, 20 and 30% at 1300 °C (Figure 6.20), resulting stress exponents 

of n = 1.2, 1.2 and 1.3, respectively, with an average value n = 1.2 ± 0.1.  

 

Figure 6.20. Determination of the stress exponent n from isothermal curves in the steady-

state creep of LSO-CS for strain levels  = 10, 20 and 30%.  

This stress exponent n can be also estimated from fast strain rate changes during a single 

isothermal test (differential method, Section 00). Figure 6.21 shows such a test carried out at 

1250 °C with fast up- and down-strain rate changes between 1.9x10-5 and 3.6x10-5 s-1 (curve in 

black). It can be seen that the steady states are rapidly regained after each strain rate jump, with 

transitory states of about 3%. From the strain rate jumps, an average value of n = 1.2 ± 0.1 was 

calculated, identical to that obtained by the conventional method. As discussed later, a stress 
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exponent of 1 is characteristic of a diffusion-controlled grain boundary sliding mechanism, where 

the grains slide against each other to accommodate the macroscopic deformation of the specimen 

[5, 8, 9]. This intergranular deformation mechanism has permitted to explain successfully the 

microstructural and mechanical behaviour observed in different ceramic materials with grain sizes 

above 1 µm, where a stress exponent close to unity was systematically reported: UO2, n = 1.5, d = 

2–10 µm [10]; NiO, n = 1.4, d = 9 µm [11]; Y2O3-stabilized cubic ZrO2, n = 1.3, d = 2-6 µm [12]; 

YBa2Cu3O7-x, n = 1.0, d = 10 µm [13]; and yttrium aluminium garnet (YAG), n = 1.0, d = 2-5 µm [14]. 

 

Figure 6.21. True stress  - true strain  curve for LSO-CS deformed in compression at 1250 °C with 

several strain rate jumps to determine the stress exponent (differential method, curve in black). The 

corresponding curve at 1250 °C and 3.6x10-5 s-1 is also shown (curve in cyan).  

Figure 6.21 also displays the isothermal test performed at 1250 °C and 3.6x10-5 s-1 (curve in 

cyan) superimposed to the differential test. As can be seen, both curves overlap each other 

reasonably well at the same experimental conditions, indicating a very good reproducibility of the 

high-temperature mechanical tests. 

Following the same procedures used for the stress exponent, the creep activation energy 

Q has been estimated from the conventional and differential methods. For the former, Figure 6.22 

shows the variation of flows stress  (at strain levels of 10, 20 and 30%) against reciprocal 

temperature 1/T for an initial strain rate 𝜀𝑜̇ = 3.6x10-5 s-1 at three different temperatures, 1200, 

1250 and 1300 °C (curves in green, cyan and blue, Figure 6.10). The datum point at  = 30% for T = 

1200 °C has not been used in the analysis due to the appearance of signals of sample degradation. 
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Values of Q = 370, 330 and 310 kJ/mol were estimated at 10, 20 and 30% of strain, respectively, 

yielding an average value of Q = 340 ± 30 kJ/mol. The uncertainty assigned to Q is typical for high-

temperature measurements, where the accuracies in stress are usually not better than 10%. 

 

Figure 6.22. Determination of the activation energy Q for LSO-CS at strain levels  = 10, 20 and 

30%.  

For the differential method, Figure 6.23 displays a mechanical test performed at a fixed 

initial strain rate of 𝜀𝑜̇ = 3.6x10-5 s-1 with temperature changes between 1250 and 1300 °C (curve in 

black). Individual Q values of 360, 375 and 300 kJ/mol were obtained, with an average value Q = 

350 ± 40 kJ/mol, in good agreement with the value estimated previously from the conventional 

method Q = 340 ± 30 kJ/mol. At difference with the stress exponent n determination, where the 

strain rate changes were performed without unloading the sample, the deformation was stopped 

before each temperature change, and then resumed after establishing the new equilibrium 

conditions (about 2 h). Figure 6.23 shows that the steady states of deformation are easily reached 

after each temperature change, indicating that the establishment or modification of a dislocation 

substructure is not necessary for attaining the stationary creep regime. This feature attests the idea 

that diffusion is the rate-controlling mechanism in LSO-CS oxy-apatite with an average grain size of 

about 1 µm. Within this frame, the activation energy for flow Q = 350 ± 40 kJ/mol can be associated 
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with the activation energy for diffusion of the slowest moving species along the fastest path, and 

contains both migration and formation energy terms. 

 
 

Figure 6.23. True stress  - true strain  curve for LSO-CS deformed in compression at an initial strain 

rate of 3.6x10-5 s-1 with temperatures changes between 1250 and 1300 °C (curve in black). The 

corresponding conventional curves at the same initial strain rate and temperatures are also shown 

(curves in cyan and blue).  

Figure 6.23 also displays the conventional tests performed at 1250 and 1300 °C and at the 

same initial strain rate (curves in cyan and blue) than the temperature jumping test It can be seen 

that the stress levels in the different sections of the curves superimposed reasonably well, except 

the third section, corresponding to 1250 °C after annealing and deformation at 1300 °C, where the 

stress is higher than would be expected. The difference can be understood by considering a 

potential increase in grain size that would take place at 1300 °C, as already noted above, which 

would hardens the material with respect to the previous section at 1250 °C.  

The next paragraphs aims at understanding to which degree the grain growth might explain 

the deformation curves at high temperature, in particular at and above 1300°C. Concurrent grain 

growth during the high-temperature deformation of LSO-CS oxy-apatite may affect the slopes of 

the  -  curves. As shown above, in steady-state conditions, the slope  of the  -  curve in a log 

- linear plot yields the reciprocal stress exponent  = 0.010/n assuming homogeneous deformation 

and the absence of any microstructural change (Equation (6.17, note that in this Equation the strain 

is given as an absolute quantity, while in the present analysis the strain is expressed as a 



Chapter 6. High-temperature mechanical characterization 

174 

percentage). Figure 6.24 shows such a plot for LSO-CS deformed at the higher temperature T = 

1300 °C and different initial strain rates (Figure 6.11). The slopes are similar for the three curves, 

with values between  = 0.026 and 0.029, much higher than the value of  = 0.010 that would be 

expected for a mechanism with n = 1, and consequently leading to erroneous stress exponents n = 

between 0.35 and 0.38For reference, slopes with n = 1, 2 and 5 are shown by dashed lines at the 

bottom of Figure 6.24.  

 

Figure 6.24. Log  -  curves for LSO-CS deformed in compression at 1300 °C and different initial 

strain rates. Predictions for n = 1, 2 and 5 are also plotted for the sake of comparison.  

According to the creep power law (Equation (6.1), the flow stress in a constant cross-head 

speed test changes continuously with strain in the form: 

 
 
 
 

p
ε n

εn
o

o

d
σ ε = σ .e .

d
 (6.21)  

where o is the nominal (engineering) stress, do the initial grain size and p the grain size exponent 

(usually 2 or 3 depending on the diffusion path [5, 8, 9]). The factor exp(ɛ/n) accounts for the 

increase in flow stress with increasing strain due to sample shortening (Equation 6.17), whereas 

the factor (dɛ/do)p/n takes into consideration the possible grain growth during testing (i.e, the 

material becomes progressively harder). 

Table 6.1 shows the initial  and final 50% stresses measured in LSO-CS at various 

conditions of strain rate and temperature (Figure 6.10 and Figure 6.11). In the absence of 

concurrent grain growth, an increase in flow stress 50%/o = 1.6 would be expected after 50% of 
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strain (Equation 6.21 with d50% = do and n = 1). However, the observed experimental 50%/o ratios 

are higher, between 2.0 and 4.3 (column 5 in Table 6.1), increasing with temperature. This result 

suggests that significant grain growth occurred during testing, particularly at the higher 

temperature, in agreement with the microstructural observations reported above (Figure 6.16). 

Table 6.1. Initial  and final 50% stresses measured in LSO-CS at various conditions of strain rate and 

temperature. A 50%/o ratio of 1.6 is expected in the absence of grain growth (Equation 5.21). Grain 

size d50%/do ratios necessary to explain the observed stress ratios are given in columns 6 and 7 for p = 2 

and p = 3, respectively. 
 

T (°C) ε̇o (s-1) o (MPa) 50% (MPa) 50%/o 
d50%/do 

p = 2 

d50%/do 

p = 3 

1300 

1.8x10-5 20 86 4.3 1.6 1.4 

3.6x10-5 34 127 3.7 1.5 1.3 

7.8x10-5 60 242 4.0 1.6 1.3 

1250 3.6x10-5 75 150 2.0 1.1 1.1 

 

In order to explain the observed stress ratios by concurrent grain growth, the grain size 

exponent p must be known. Because there is no information available, the usual p values of 2 and 

3, corresponding to volume and grain boundary diffusion-controlled creep mechanisms [5, 8, 9], 

respectively, have been used in Equation 6.21. For p = 2 (column 6 in Table 6.1), the final grain size 

d50% would be close to 1.6do = 1.6x1.1 µm = 1.8 µm at 1300 °C and 1.1do = 1.2 µm at 1250 °C. For p 

= 3 (column 7 in Table 6.1), d50% would be about 1.3do = 1.4 µm at1300 °C and 1.1do = 1.2 µm at 

1250 °C. For example, Figure 6.25 shows the necessary increase in grain size (right Y-axis) from do = 

1.1 µm to explain the slope of the log σ - ɛ curve obtained at 1300 °C and 3.6x10-5s-1. Experimentally, 

the final grain size at 1300 °C after 50% of strain increased up to 1.4 µm, while a smaller increase 

of 1.2 µm was found at 1250 °C. The good agreement between the observed and calculated final 

grain size for p = 3 may indicate that the diffusion of the slowest moving species on LSO-CS apatite 

takes place along the grain boundaries. However, caution must be exercised because of the 

relatively large standard deviation associated to log-normal grain size distribution and the 

experimental scatter inherent to high-temperature measurements. 
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Figure 6.25. True stress vs true strain in logarithmic scale for LSO-CS deformed at 1300 °C and 

3.6x10-5 s-1. A reference curve with n = 1 is also plotted (dashed line). The evolution of the grain 

size d with strain necessary to explain the observed stress are displayed on the right Y-axis with p 

= 2 and p = 3.  

There is no information available in the literature concerning concurrent grain growth in 

oxy-apatites, nor in perovskite-type materials, to quantitatively anticipate the effect of grain growth 

on the mechanical properties. In 3 mol% yttria-stabilized tetragonal zirconia, Nieh and Wadsworth 

[15] derived the following equation for both static and dynamic grain growth: 

3 3
o o

Q
d -d =K exp(- )t

RT
 (6.22)  

where Ko is a constant, Q the activation energy for grain growth and t the time; the activation 

energies were 580 and 520 kJ/mol for static and dynamic grain growth, respectively. It is clear that 

a law of this type cannot explain even qualitatively the experimental results in the present material 

because it does not take explicitly into account the stress level during the test, which plays an 

essential role in dynamic grain growth. 

 

6.3.2.1.4 High-temperature deformation mechanism  

As already indicated, a stress exponent of n = 1 is characteristic of intergranular 

mechanisms where the deformation rate is controlled by mass transport without participation of 

dislocations. The deformation is provided by either the mass transport itself (Nabarro-Herring and 

Coble models [5, 9]) or by grain boundary sliding (Ashby-Verrall model [8]). This last model has 
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permitted to explain successfully the mechanical and microstructural features observed in different 

ceramic materials with grain sizes between 1 and 10 µm, such as UO2 [10], NiO [11], YSZ [12], YBCO 

[13] and YAG [14], where a stress exponent close to unity was systematically reported. the Ashby-

Verrall model accounts for: the absence of changes in the form factor of the grains which retain 

their equiaxed shape even after very large strains; the  absence of significant creep transients 

before the establishment of the steady-state regime; and a proper prediction of the magnitude of 

the strain rates (or flow stresses).It should be noted that this model was proposed before the 

development of ceramic polycrystals with very fine grain sizes (below about 1 µm), which 

systematically exhibit a stress exponent n = 2. Such a behaviour, usually termed as superplasticity, 

has been also found in this work in LSO-SPS apatite and BZY polycrystals with d = 0.2 µm. The steady-

state strain rate in the Ashby-Verrall model is given by [8] (Equation 1.4):  

 
 
 

lat gb

2

B

98σΩ πδ
ε = D + D

dk Td
 

(6.23)  

where σ is the applied stress, Ω is the molecular volume, kB is the Boltzmann constant, T is the 

absolute temperature, d is the grain size, δ is the grain boundary thickness and Dlat and Dgb are the 

diffusion coefficients for lattice and grain boundary diffusion, respectively. In compounds, D is an 

effective diffusion coefficient, usually referred as the “molecular” diffusion coefficient, which takes 

into account the diffusivities of the different species in the crystal along the various diffusion paths. 

To maintain the electrical neutrality of the crystal, D is controlled by the slower moving species 

along the fastest path. Because both diffusion processes, lattice and grain boundary, are 

independent and take place simultaneously, the total strain rate is the sum of the strain rates 

contributed by each process. 

Because there is no information on the diffusion coefficients in oxy-apatites, the validity of 

the Ashby and Verrall model cannot be checked by itself. An alternative approach has been then 

used in the present study: the effective diffusion coefficients Dlat and Dgb has been deduced from 

individual datum points by using Equation (6.23 assuming that the strain rate is controlled by either 

lattice or grain-boundary diffusion; a molecular volume Ω = 75 Å3 and a grain boundary thickness  

= 1 nm were used in the calculations. Figure 6.26 shows the corresponding diffusivities on an 

Arrhenius plot. On the other hand, it is observed that the grain boundary diffusivity is only a factor 

of 500 higher than the volume diffusivity, whereas the difference usually in other ceramic materials 

is four or five orders of magnitude. The comparison of the present effective diffusion coefficients 

with those obtained in very fine-grained LSO-SPS with d = 0.2 µm (see next Section), where a 

different deformation mechanism was found, will shed light on the accommodation mechanism.  



Chapter 6. High-temperature mechanical characterization 

178 

 

Figure 6.26. Effective diffusion coefficients Dlat and Dgb for LSO-CS oxy-apatite deduced from 

deformation data using the Ashby and Verral model assuming lattice or grain boundary diffusion-

controlled strain rate (Equation 6.23). 

 

6.3.2.2 High-temperature mechanical behaviour of LSO-SPS  

6.3.2.2.1 Fragile-ductile transition 

Figure 6.27 displays the true stress – true strain curves for LSO-SPS deformed at a given 

initial strain rate 𝜀𝑜̇ = 3.4x10-5 s-1 (corresponding to a cross-head speed of 10 m/min) between 920 

and 1200 °C. A smooth transition from brittle-to-ductile behaviour was observed at this strain rate. 

It should be noted that the temperature range used for this material is much lower than the one 

used in conventional sintered LSO materials owing to the large difference in grain size between 

both materials. At 920 °C, the sample failed catastrophically without any plastic deformation, at a 

stress level of about 840 MPa. The onset of plastic deformation could be observed at 980 °C with a 

slight curvature in the σ - ɛ curve at 400 MPa, but the sample finally failed after reaching a very 

limited strain (ɛ ≤ 5%). A semi-ductile behaviour was observed at 1020 °C, where the material 

reached deformations as large as 50% without macroscopic fracture, although stress softening was 

observed in this regime at about 40%. At higher temperatures, the compound exhibits extended 

steady states of deformation, characterized by a positive slope of the σ - ɛ curves. Compared to 

LSO-CS strained at the same initial strain rate (Figure 6.10), the temperature needed for steady-

state creep is about 200 °C smaller. 
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Figure 6.27. True stress σ - true strain ɛ  curves for LSO-SPS deformed in compression at an initial 

strain rate of 3.4x10-5 s-1 and different temperatures. Marks “x” indicate macroscopic specimen 

failure. 

Figure 6.28 shows the σ - ɛ curves for LSO-SPS obtained at a fixed temperature of 1140 °C 

and different initial strain rates ranging from 1.8x10-5 to 1.8x10-4 s-1. All the curves display extensive 

steady states of deformation, though some softening by damage accumulation could be observed 

at ɛ  > 30% in the sample strained at the higher strain rate. The slope of the σ - ɛ curve increases 

continuously with increasing 𝜀𝑜̇, as expected in constant cross-head speed tests. 

 

Figure 6.28. True stress σ - true strain ɛ curves for LSO-SPS deformed in compression at 1140 °C and 

different initial strain rates. 



Chapter 6. High-temperature mechanical characterization 

180 

6.3.2.2.2 Microstructure after deformation 

Microstructure after deformation Figure 6.29 shows the macroscopic aspect of the strained 

samples, which is consistent with the shape of the corresponding stress – strain curves. The 

material fractured into multiple pieces at the lowest temperature studied, indicating the fast 

propagation multiple cracks throughout the entire volume of the sample. SEM observations of the 

fracture surfaces indicate again a mixed failure mode (Figure 6.30), like in LSO-CS, despite the fine-

grained microstructure. The porosity remaining inside some of the grains may contribute to the 

transgranular fracture mode. At 980 °C, the sample underwent a very limited plastic deformation 

before fracture, corresponding to the development of cracks running longitudinally along the 

length of the specimen (Figure 6.29f). At the intermediate temperature of 1020 °C, the material is 

damaged (Figure 6.29e) but able to tolerate strains up to 50% without macroscopic failure. Finally, 

at higher temperatures, in the ductile regimen, the specimens deformed very homogeneously, 

practically without barrelling (Figure 6.29b, c and d).  

 
 

Figure 6.29. Macroscopic aspect of LSO-SPS samples deformed in compression at an initial strain rate 

of 3.4x10-5 s-1 and different temperatures. (a) as-prepared LSO-SPS, (b) 1200 °C, (c) 1140 °C, (d) 

1090 °C, (e) 1020 °C, (f) 980°C and (g) 920 °C. 

 

  
 

Figure 6.30. SEM micrographs of fracture surfaces of LSO-SPS specimen at 920 °C and an initial strain 

rate of 3.4x10-5 s-1. 

(a)                (b)                (c)                  (d)                  (e)                 (f)                 (g) 

5mm 

2 µm 2 µm 
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SEM observations of the samples deformed in steady state conditions reveal that the grains 

retain the equiaxed shape, but there is an increase in the final grain size. Figure 6.31 shows SEM 

micrographs of a specimen deformed up to ɛ ≈ 50% at 1090 °C and 3.4x10-5 s-1 (curve in red, Figure 

6.27). The corresponding grain size d and form factor F distributions led to average values of d = 0.3 

± 0.1 µm and F = 0.8 ± 0.1 after deformation at 1090 °C. Similarly, Figure 6.32 displays SEM images 

of a sample strained at 1200 °C (curve in green, Figure 6.27), which exhibits average values of d = 

0.5 ± 0.2 µm and F = 0.8 ± 0.1. The as-prepared values were d = 0.2 ± 0.1 µm and F = 0.8 ± 0.1, 

indicating that concurrent grain growth took place during the creep tests. The SEM micrographs 

additionally show that many of the larger grains, particularly at 1200 °C (Figure 6.32), are still in 

formation, while the small grains are consumed by neighbours. 

   
 

Figure 6.31.  SEM micrographs of LSO-SPS sample deformed up to ɛ ≈ 50% in compression at an initial 

strain rate of 3.4x10-5 s-1 and 1090 °C. 

 

    
 

Figure 6.32. SEM micrographs of LSO-SPS sample deformed up to ɛ ≈ 50% in compression at an initial 

strain rate of 3.4x10-5 s-1 and 1200 °C. 

TEM observations of deformed specimens have shown a grain structure very similar to that 

found in the as-fabricated material, without relevant differences. The grains remain clean and free 

of dislocations, and some areas exhibit the original residual porosity inside the grains (Figure 6.33).  

4 µm 2 µm 

2 µm 4 µm 
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Figure 6.33. TEM images of LSO-SPS sample deformed in compression at an initial strain rate of 3.6x10-

5 s-1 and 1140 °C. 

 

6.3.2.2.3 Creep parameters 

The stress exponent n and the activation energy for creep Q in LSO-SPS have been 

determined using the same procedures followed for LSO-CS. Figure 6.34 displays the log – log plot 

of the initial strain rate vs flow stress obtained at 1140 °C. Due to the variation of  with , the flow 

stress was taken at three different strain levels  = 10, 20 and 30%. An average stress exponent n = 

1.9 ± 0.1 was deduced from the best linear fits, which contrasts with the value of n ≈ 1 found 

previously in conventionally-sintered LSO-CS polycrystals.  

 

Figure 6.34. Determination of stress exponent n in steady-state creep of LSO-SPS for strain levels  
of 10, 20 and 30%.  

500 nm 500 nm 
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A stress exponent n of 2 has been systematically reported in the superplastic behaviour of 

many metals and metallic alloys with d < 10 µm [9] as well as in submicrometer-grained ceramics 

(d < 1 m), such as 3 mo% Yttria-Stabilized Tetragonal Zirconia 3YTZP [16], Alumina [17], 

Al2O3/3YTZP composites [18], three-phase Alumina/Zirconia/Mullite [19], and Yttrium- and 

Ytterbium-doped Barium Cerates [20, 21]. In these materials, it is well documented that grain 

boundary sliding played the key role in the deformation process, although there are serious 

discrepancies regarding the nature of the accommodation mechanism. 

A similar n value was deduced from fast 𝜀𝑜̇ jumps during an isothermal test at 1090 °C, as 

shown in Figure 6.35, where the initial strain rate was changed between 3.4x10-5 and 1.8x10-5 s-1 

(corresponding to cross-head speeds of 10 and 5 µm/min, respectively). The comparison of the flow 

stresses before and after the strain rate changes yields an average value of n = 1.8 ± 0.1, in 

agreement with the value deduced from conventional tests (Figure 6.34). 

 

Figure 6.35. True stress σ - true strain ɛ curve for LSO-SPS deformed in compression at 1090 °C. Several 

determinations of n by strain rate changes are shown.  

Regarding the activation energy Q, Figure 6.36 shows the log  - 1/T curve for LSO-SPS 

obtained at a strain rate of 3.4x10-5 s-1 between 1090 and 1200 °C. A least-squares fit leads to Q = 

340 ± 20 kJ/mol, identical to the value of 350 ± 40 kJ/mol found in LSO-CS apatite with a grain size 

of 1.1 m. This result suggests that the same diffusion mechanism, either into the lattice or along 
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the grain boundaries, is the rate-controlling step in both large- and fine-grained oxy-apatites, the 

deformation itself occurring by grain boundary sliding. 

 

Figure 6.36. Steady-state flow stresses of LSO-SPS as a function of reciprocal temperature for strain 

levels  of 10, 20 and 30%.  

 

Figure 6.37. True stress σ - true strain ɛ curve for LSO-SPS deformed in compression at an initial 

strain rate of 3.4x10-5 s-1. Two determinations of Q by temperature changes are shown. 
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The activation energy Q has been also calculated by using the differential method. Figure 

6.37 shows two determinations of Q by temperature changes between 1090 and 1140 °C during a 

test performed at a fixed initial strain rate of 𝜀𝑜̇ = 3.4x10-5 s-1. The first jump leads to a value of 365 

kJ/mol, in agreement with the average value deduced previously by conventional tests. The second 

jump, however, yields a value of 500 kJ/mol, indicating that the material became harder than 

expected because grain coarsening took place particularly during the second section at higher 

temperature. 

The same procedure used for LSO-CS apatite (Section 0) has been used here to analyse the 

effect of grain growth on the creep of LSO-SPS. Figure 6.38 displays the log σ - ɛ plot of LSO - SPS 

apatite obtained at 1140 °C and different initial strain rates. In this case, the slope  of the steady 

states decreases from 0.016 to 0.011 when increasing strain rate, in contrast with what was found 

in LSO - CS oxy-apatite, where the slopes were roughly constant with a larger value  ≈ 0.027. These 

results confirm that concurrent grain growth took place during the straining of LSO-SPS, but in a 

lesser extension than in LSO-CS apatite (nonetheless it should be remember that the testing 

temperature is very different for both compounds). 

 

Figure 6.38. Log σ - ɛ curves for LSO-SPS deformed in compression at 1140 °C and different initial 

strain rates. Prediction for n = 2 is also plotted for the sake of comparison.  

Table 6.2 shows the initial σo and final σ50%stresses measured in LSO-SPS at various 

conditions of strain rate and temperature (Figure 6.27 and Figure 6.28). In the absence of grain 

growth, σ50%/σo= 1.3 for n = 2 (Equation 6.21), however, the experimental ratios are higher than 



Chapter 6. High-temperature mechanical characterization 

186 

this value. The d50%/do ratios needed to explain the observed stress ratios (Equation 6.21) are shown 

in Column 6 for p =2 and Colum 7 for p =3. 

Table 6.2. Initial σo and final σ50%  stresses measured in LSO-SPS at various conditions of strain rate and 

temperature. A σ50% /σoratio of 1.3 would be expected in the absence of grain growth for n = 2 

(Equation (6.21). Grain size d50%/do ratios necessary to explain the observed stress ratios are given in 

columns 6 and 7 for p = 2 and p = 3, respectively. 
 

T (ºC) oε (s-1) σo(MPa) σ50%(MPa) σ50%/σo 
d50%/do 

p = 2 

d50%/do 

p = 3 

1020 3.4x10-5 150 245 1.6 1.3 1.2 

1090 3.4x10-5 85 164 1.9 1.5 1.3 

1140 

1.8x10-5 35 75 2.2 1.7 1.4 

3.4x10-5 46 95 2.1 1.6 1.4 

6.8x10-5 79 144 1.8 1.4 1.3 

1.8x10-4 122 211 1.7 1.4 1.2 

1200 3.4x10-5 24 60 2.5 1.9 1.6 

For instance, Figure 6.39 shows the increase in grain size (right Y-axis) needed to explain 

the slope of the log σ - ɛ curve obtained at 1140 °C and 3.4x10-5 s-1. The final grain sizes d50% would 

be 1.6do =1.6x0.2 µm = 0.3 µm for 1140 °C and 1.9do = 0.4 µm for 1200 °C for p = 2, while for p = 3 

d50% would be 1.4do = 0.3 µm for 1140 °C and 1.6do =0.3 µm for 1200 °C. Experimentally, the 

measured final grain sizes at 1140 °C and 1200 °C after 50% of strain were 0.4 and 0.5 µm, 

respectively, with a standard deviation associated to the log-normal grain size distribution of 0.2 

µm in both cases. Although the measured d values are higher than those expected from Equation 

6.21, it should be noted the difficulty in estimating the final grain size in the samples deformed at 

the higher temperatures due to the presence of numerous grains in formation (clearly seen in 

Figure 6.32), which leads to an overestimation of d if only the final grains are considered in the 

analysis. 

The experimental d50%/do ratios measured in LSO-CS and LSO-SPS oxy-apatites after testing 

also support that the stress exponent in both materials is definitively different. If n were 2 in LSO-

CS instead of 1, final grain sizes of about 3 m would be measured after 50% of strain, contrary to 

the experimental evidence. And vice-versa: if n were 1 in LSO-SPS instead of 2, final grain sizes of 

about 0.2 m would be measured after 50% of strain, contrary also to the experimental evidence. 
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Figure 6.39. True stress vs true strain in logarithmic scale for LSO-SPS deformed at 1140 °C and 3.4x10-

5 s-1. Reference curve with n = 2 is also plotted (dashed line). The evolution of the grain size d with 

strain necessary to explain the observed flow stress is displayed on the right Y-axis for p = 2 and p = 3, 

with n = 2. 
 

 

6.3.2.2.4 High-temperature deformation mechanism  

In the previous section it has been shown that LSO-CS and LSO-SPS materials exhibit 

different stress dependences of the strain rate, with n increasing from 1 in LSO with d = 1.1 µm to 

2 in LSO-SPS with d = 0.2 µm. The creep activation energy is, however, the same for both 

compounds with a value Q = 340 ± 40 kJ/mol. The increase in stress exponent when decreasing 

grain size has been reported previously in Yttria-Stabilized Zirconia polycrystals with grain sizes 

ranging from 0.3 to 2 µm [16], where grain boundary sliding was the primary deformation 

mechanism, as also found in the present study on oxy-apatites. 

There is currently no simple explanation for this effect, because the atomistic origin of the 

value of n = 2 itself found in fine-grained materials is not known and is presently a matter of debate 

[22]. Many different models [9] have been developed to explain superplasticity based in different 

relaxation processes of the stresses generated by the sliding of the grains on each other: dislocation 

motion inside the volume of the grains or along the grain boundaries, diffusional flow, interface-

reaction-controlled diffusion (i.e. boundaries are not perfect sources and sinks for point defects), 

grain boundary migration or cavitation. None of them, however, is able to explain successfully the 



Chapter 6. High-temperature mechanical characterization 

188 

body of experimental data in superplastic materials. Therefore, it has been used here two 

phenomenological relationships developed by Sherby et al. [9] for superplastic metals 

corresponding to grain boundary sliding controlled by either lattice diffusion (n = 2, p = 2) or grain 

boundary diffusion (n = 2, p = 3) (Equation 1.10 and 1.11): 

   
   
   

   
   
   

2 2
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B

3 2
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B
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k T d G

Gb b σ
ε = 2x10 D

k T d G

 (6.24) 

where b is the Burgers vector, G is the shear modulus and Dlat and Dgb are, as before, the effective 

diffusion coefficients for lattice and grain boundary diffusion, respectively. The first equation has 

been shown to account for the superplastic deformation of fine-grained Yttria-Stabilized tetragonal 

Zirconia [16] and the second equation for fine fine-grained YBa2Cu3O7-x superconductor [23]. In both 

cases, the diffusion coefficients were associated with cations, the slower moving species in those 

materials. Unfortunately, there is no information available about ion diffusivities in oxy-apatites, 

despite the importance of this magnitude in processes involving mass transport: creep, sintering, 

grain growth, etc. 

Following the same procedure used previously for LSP-CS apatite, the effective diffusivities 

Dlat and Dgb have been estimated from individual datum points using Equations 6.24 assuming either 

lattice diffusion or grain boundary diffusion, respectively. A Burgers vector b = 5 Å and a 

temperature-dependent shear modulus G measured in this work by Resonant Ultrasound 

Spectroscopy (see Chapter 5) have been used in the calculations. Figure 6.40 shows these effective 

diffusion coefficients for LSO-SPS (cyan points) together with those of LSO-CS for comparison (blue 

points). There is a factor of about 104 between Dlat and Dgb, as usually found in ceramics. Although 

there is no way to decide which diffusion path is responsible for the accommodation process by 

itself, the comparison with the diffusion coefficients derived previously for large-grained LSO oxy-

apatite may assist in the identification of the rate-controlling mechanism. It can be seen that there 

is an excellent agreement between the grain boundary diffusivities deduced from the two 

independent steady-state creep rate equations, one with n = 1 in large-grained LSO (Equation 6.23) 

and the other with n = 2 in fine-grained LSO (Equations (6.24). On the contrary, there is a difference 

of two orders of magnitude between the lattice diffusivities deduced from the two models. This 

agreement, with no adjustable parameters, lends credibility to the assumption that superplastic 

flow is accommodated by grain boundary diffusion in LSO compounds. To the best of our 
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knowledge, it is the first time where such a comparison has been made in a material using two 

independent deformation models. 

 

Figure 6.40. Effective diffusion coefficients Dlat and Dgb for LSO-SPS oxy-apatite (cyan points) deduced 

from deformation data using the phenomenological equations derived by Sherby et al. [9] for lattice 

and grain boundary diffusion-controlled strain rate (Equations 6.24). Effective diffusivities derived 

previously for LSO-CS using the Ashby and Verrall model (blue points, Figure 6.26) are also included. 

The agreement for grain boundary diffusivities is excellent. 
 

 

6.3.2.3 High-temperature mechanical behaviour of home-made BZY 

6.3.2.3.1 Fragile-ductile transition 

Figure 6.41 shows the true stress - true strain curves of BZY deformed between 1100 and 

1325 °C at an initial strain rate of 3.6x10-5 s-1 (corresponding to 10 µm/min). There is a clear 

transition from brittle-to-ductile behaviour as the temperature increases. No plastic flow at all was 

found at 1100 °C, where the material failed catastrophically at a stress level of about 830 MPa. At 

1175 °C, however, the sample displayed some plasticity, reaching a total strain of 13% and about 

550 MPa before fracture. A similar semi-brittle behaviour was observed at 1210 °C, where the 

compound underwent a remarkable deformation of 25% before final failure at a stress level of 350 

MPa. At temperatures of 1235 °C and above, the material displays extended steady states of 

deformation, characterized by a rather constant slope of the σ - ɛ curves which increases gradually 

with decreasing temperature. In these steady state conditions, the tests were intentionally stopped 

at ɛ ≈ 40% for further microstructural observations.  
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Figure 6.41. True stress σ - true strain ɛ curves for home-made BZY deformed in compression at an 

initial strain rate of 3.6x10-5 s-1 and different temperatures. Marks “x” indicate macroscopic specimen 

failure.   

In a similar way, several tests were carried out at a given temperature of 1325 °C and 

different initial strain rates ranging from 1.8x10-5 to 1.8x10-4 s-1 (corresponding to cross-head 

speeds between 5 and 50 µm/min). The corresponding σ - ɛ curves are shown in Figure 6.42. As 

expected at this temperature, the material displays extensive secondary creep regimes. 

 
Figure 6.42. True stress σ - true strain ɛ curves for home-made BZY deformed in compression at 

1325 °C and different initial strain rates. 
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6.3.2.3.2 Microstructure after deformation 

The macroscopic aspect of the samples after deformation (Figure 6.43) agrees well with the 

shape of the corresponding mechanical σ - ɛ curves. At the lower temperature studied, 1100 °C, 

the sample completely fractured into multiple small fragments (Figure 6.43e), indicating the fast 

propagation of cracks throughout the entire volume of the sample. SEM observations of fracture 

surfaces indicate an intergranular failure mode (Figure 6.44), as could be expected in a very fine-

grained material. 

 

Figure 6.43. Macroscopic aspect of home-made BZY samples deformed in compression at an initial 

strain rate of 3.6x10-5 s-1 and different temperatures. (a) as-prepared, (b) 1290 °C, (c) 1235 °C, (d) 

1210 °C and (e) 1100 °C.  

 

  
 

Figure 6.44. SEM micrographs of fracture surfaces of catastrophically failed BZY specimen at 1100 °C 

and an initial strain rate of 3.6x10-5 s-1.  

At 1175 and 1210 °C, in the semi-ductile regime, the specimens underwent a strain-

controlled delayed fracture, originated by damage accumulation. In order to determine the origin 

of this damage-tolerant regime, the test performed at 1175 °C (curve in orange, 2) was repeated 

but voluntarily stopped at a strain of 10% prior to failure. It could be seen a high density of 

microcavities along the grain boundaries (Figure 6.45) distributed throughout the sample but 

particularly concentrated in the finer-grained areas. As strain proceeds, these stress-assisted 

microcavities coalesce into cracks leading to final sample failure. These observations are in 

agreement with the intergranular fracture mode noted above. 

5 mm 

(a)                        (b)                          (c)                           (d)                          (e) 

2 µm 2 µm 



Chapter 6. High-temperature mechanical characterization 

192 

  
 

Figure 6.45. SEM micrographs at different magnifications of BZY sample deformed up to ɛ ≈ 10% in 

compression at an initial strain rate of 3.6x10-5 s-1 and 1175 °C. Stress axis is vertical. 

At temperatures of 1235 °C and above, the samples deformed homogeneously, with very 

little barrelling (Figure 6.43), in agreement with the well-established steady-states curves of 

deformation. SEM observations of the samples deformed in these steady-state conditions show the 

lack of noticeable changes in grain morphology and porosity with respect to as-fabricated samples. 

Figure 6.46 shows SEM micrographs at different magnifications of a specimen deformed up to ɛ ≈ 

40% at the highest temperature and lowest strain rate studied (1325 °C and 1.8x10-5 s-1, respectively, 

curve in grey, Figure 6.42). The corresponding grain size d and form factor F distributions led to 

average values of d = 0.19 ± 0.08 µm and F = 0.80 ± 0.09, identical to those found in unstrained 

samples (d = 0.21 ± 0.10 µm and F = 0.79 ± 0.09, Section 3.3.2.4). Similar characteristics were found 

in the other samples deformed in steady-state conditions (Figure 6.47). The lack of morphological 

changes during deformation suggests that grain boundary sliding is the main deformation 

mechanism in this material, as also found in LSO-SPS with the same small grain size and other fine-

grained ceramics [16-21]. Some inter-granular cavitation was found in the samples strained at the 

lower strain rate, which may help in the accommodation of the grain boundary sliding. 

   
 

Figure 6.46. SEM micrographs of home-made BZY sample deformed up to ɛ ≈ 40% in compression at 

an initial strain rate of 1.8x10-5 s-1 and 1325 °C. Stress axis is vertical. 

4 µm 8 µm 

2 µm 5 µm 
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Figure 6.47. SEM micrographs of home-made BZY sample deformed up to ɛ ≈ 40% in compression at 

an initial strain rate of 3.6x10-5 s-1 and 1325 °C. Stress axis is vertical. 

TEM observations have been also performed on 40%-deformed samples in steady-state 

conditions (Figure 6.48). The grains remained primarily equiaxed, and no signs of cavitation were 

observed. Rather often, dislocation pile-ups appeared between grain boundaries, indicating that 

the boundaries are not efficient sites for dislocation absorption. This is probably at the origin of the 

pretty poor sinterability of this compound. The dislocation activity within the subgrains was 

practically null. In summary, the overall structure and density of dislocations are similar to those 

observed in unstrained specimens, suggesting that dislocations do not play an important role in 

steady-state deformation of BZY. 

  

Figure 6.48. TEM images of BZY sample deformed in compression at an initial strain rate of 3.6x10-5 s-1 

and 1325 °C. 

 

6.3.2.3.3 Creep parameters 

The stress exponent n and the activation energy for flow Q in steady-state conditions 

(Equation (6.1) have been estimated following the same procedures used previously for apatites. 

Figure 6.49 shows the log – log plot of the initial strain rate 𝜀𝑜̇ against steady stress σ obtained at 

2 µm 5 µm 

600 nm 300 nm 
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1325 °C for the lower strain rates (Figure 6.42). The stress exponent measured at the strain levels ɛ  

of 10, 20 and 30% was n = 2.2, 2.1 and 2.1, respectively. The average value of n = 2.1 ± 0.1 is similar 

to the value found previously in LSO-SPS and other fine-grained ceramic materials. This result 

supports the previous idea, based on microstructural observations, that grain boundary sliding is 

the predominant deformation mechanism in the creep of BZY polycrystals.  

 
 

Figure 6.49. Determination of stress exponent n in the steady-state creep of BZY for strain levels  of 

10, 20 and 30%.  

At difference of LSO-SPS, however, no concurrent grain growth took place during the 

straining of BZY samples. This finding is clearly reflected in the slopes of the σ - ɛ curves. Figure 

6.50 shows again the tests performed at the lower strain rates at 1325 °C but in a log σ - ɛ 

representation. The slopes of the curves in steady state are 0.0053, 0.0053 and 0.0057 for 𝜀𝑜̇ = 

1.8x10-5, 3.6 x10-5 and 7.2x10-5 s-1, respectively, yielding values of n = 1.9, 1.9 and 1.8, in agreement 

with the value previously estimated by the conventional method (Figure 6.49). 

The stress exponent has been also estimated from fast strain rate changes during an 

isothermal test (differential method, Section 6.3.1.40). Figure 6.51 shows the true stress vs true 

strain curve obtained at 1290 °C between 3.6x10-5 and 1.8x10-5 s-1 (corresponding to cross-head 

speed jumps between 10 and 5 µm/min, respectively). The comparison of the steady-state flow 

stresses before and after the changes yields an average exponent n = 2.1 ± 0.1, again in excellent 

agreement with previous determinations. It can be thus concluded that BZY polycrystals with d = 
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0.2 m deform via a grain boundary mechanism characterized by n = 2, as found in other ceramic 

materials with grain sizes below 1 m. 

 

Figure 6.50. Log σ - ɛ curves for BZY deformed in compression at 1325 °C and different initial strain 

rates. The slopes of the curves yield a value of n close to 2, indicating the absence of concurrent grain 

growth.  

 

Figure 6.51. True stress σ - true strain ɛ  curve for BZY deformed in compression at 1290 °C. Several 

determinations of n by strain rate changes are displayed. 
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The creep activation energy Q in steady-state has been also measured by both conventional 

and differential methods. For the former, Figure 6.52 shows a log - linear plot of the flow stress σ 

vs reciprocal temperature 1/T obtained at an initial strain rate of 3.6x10-5 s-1 between 1270 and 

1325 °C. As done previously for the stress exponent, the flow stresses was measured at three strain 

levels ɛ  = 10, 20 and 30%. The least squares fit leads to Q values of 520, 560 and 605 kJ/mol, with 

an average value Q = 560 ± 40 kJ/mol. A stress exponent n = 2.1 has been used in the calculations. 

 

Figure 6.52. Determination of activation energy Q in the steady-state creep of BZY for strain levels 

 of 10, 20 and 30%.  

The activation energy Q has been also calculated from up- and down-temperature changes 

during a single iso-strain rate test (differential method, Section 00). Figure 6.53 displays a test 

performed at 𝜀𝑜̇  = 3.6x10-5 s-1 with temperature changes between 1290 and 1270 °C, yielding 

energies of 530 and 630 kJ/mol, with an average value of Q = 580 ± 50 kJ/mol, in agreement with 

the value estimated previously from conventional tests (Figure 6.52). Figure 6.53 demonstrates the 

excellent reproducibility of the high-temperature mechanical tests in BZY, with the iso-strain rate 

curve at 1270 and 1290 °C (curves in green and light blue, respectively) matching adequately the 

corresponding sections of the differential curve. It also shows the maintenance of the flow stress 

levels after positive and negative temperature changes, indicating again that no microstructural 

evolution took place during steady state deformation. These features are related to the great 

stability of the grain distribution of Barium Zirconate compounds. 
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Figure 6.53. True stress σ - true strain ɛ curve for BZY deformed in compression at an initial strain rate 

of 3.6x10-5 s-1 and different temperatures. Values of Q were determined by temperature changes. 

In order to verify the superplastic behaviour of this fine-grained BZY material, a few creep 

tests at constant load were carried out at high temperatures. Figure 6.54 displays the log 𝜀𝑜̇ -  

curve obtained at 1280 °C, showing several determinations of n by fast load changes. Stress 

exponents of 1.9, 2.0 and 1.9 were estimated from such load jumps, in excellent agreement with 

the values measured from conventional and differential constant strain rate tests (Figure 6.49 and 

Figure 6.51).  

 

Figure 6.54. Creep curve plotted as log 𝜀𝑜̇ against  for BZY deformed at 1280 °C. Several 
determinations of n by load changes are shown. Note the absence of creep transients. 
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It should be noted that the strain rates after up- and down-load changes remain rather 

constant, indicating the absence of significant microstructural evolution during creep, in agreement 

with microstructural observations. The large concurrent grain growth observed in LSO-SPS apatite 

prevented the use of constant load tests, which usually last several days, for the proper 

determination of the creep parameters. 

In a similar way, the creep activation energy Q has been deduced from temperature 

changes during creep tests at constant load. Figure 6.55 displays the log 𝜀𝑜̇ -  curve obtained at σ 

= 65 MPa showing two determinations of Q between 1280 and 1250 °C. Energies of 530 and 580 

kJ/mol were estimated, again in good agreement with the values deduced from constant cross-

head speed tests. 

 

Figure 6.55. Determination of the activation energy Q by temperature changes for BZY at 65 MPa. 

As already noted above, diffusion is usually the rate-controlling mechanism when plastic 

deformation is achieved by grain boundary sliding and thus the creep activation energy Q can be 

identified with the diffusion energy of the slowest moving species in the compound along the 

fastest path. In a recent work on BaZr0.80Y0.20O2.9 polycrystals by Farlenkov et al. [24], the oxygen 

tracer diffusion coefficient was measured at 800 - 900 ºC using the oxygen isotope exchange 

method. An activation energy of 115 kJ/mol was reported for bulk oxygen diffusion, which is 

significantly lower than the activation energy for creep of 580 kJ/mol found in this work. It can be 

thus concluded that cation diffusion is the rate controlling step. Actually, the presence of oxygen 

vacancies within the oxygen sublattice and the known oxygen ion conductivity in BZY strongly plays 

in favour a cation-limited diffusion, independently from the values of activation energies. 
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6.3.2.3.4 High-temperature deformation mechanism  

The steady-state creep of fine-grained BZY with d = 0.2 m is characterized by n ≈ 2 and Q 

= 570 kJ/mol. The stress exponent n is characteristic of superplastic materials, as also found in the 

present work in fine-grained LSO-SPS oxy-apatite with d = 0.2 m. The mechanical data have been 

analyzed by means of the phenomenological Sherby’s equations for metals and metallic alloys 

(Equations 6.24), using the same procedure followed for LSO-SPS. That is, effective diffusion 

coefficients Dlat and Dgb have been deduced for each datum point assuming accommodation by 

lattice or grain boundary diffusion, respectively. The corresponding diffusivities are plotted in Figure 

6.56 (red points), along with the diffusion coefficients found for LSO-SPS apatite (cyan points) using 

the same phenomenological models with n = 2, and for LSO apatite (blue points) using the Ashby-

Verrall model with n = 1. It can be seen that whatever mass transport is accomplished by volume 

or grain boundary, the diffusion coefficient is about two orders of magnitude smaller than those 

found for the oxy-apatites, which is consistent with the poor sinterability of BZY. However, due to 

the lack of information about the diffusion coefficients in BZY, there is no way to decide which 

diffusion path is the accommodation process for grain boundary sliding neither the validity itself of 

the deformation models. 

 

Figure 6.56. Effective diffusion coefficients Dlat and Dgb for fine-grained BZY (red points) deduced from 

deformation data using the phenomenological equations derived by Sherby et al. [9] for lattice and 

grain boundary diffusion-controlled strain rate (Equations 6.24). Effective diffusivities derived for LSO-

CS (n = 1, blue points, Figure 6.26) and LSO-SPS (n = 2, cyan points, Figure 6.40) are also included. 
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6.3.2.3.5 Creep behaviour of other perovskite-structured oxides 

The high-temperature plastic deformation of several ceramic perovskites has been 

previously reported. Materials, grain sizes and creep parameter are compiled in Table 6.3. Except 

for yttrium- and ytterbium- doped barium cerate, which has a submicrometer grain size of d = 0.5 

m and a stress exponent n = 2, the other compounds exhibit grain sizes ranging from 4 to 80 m 

and stress exponents close to 1. These results attest again to the systematic variation of n with 

grain size, increasing from n = 1 to 2 when decreasing grain size below about 1 m. The activation 

energy for creep ranges from 350 to 750 kJ/mol, and the grain size exponent p is close to 2, although 

a value of 1 was reported in the deformation of SrCo0.8Fe0.2O3. No information about cation 

diffusion is available for these perovskite materials, although values below or close to 100 kJ/mol 

were reported for oxygen diffusion. The creep activation energies are considerably higher than this 

value for oxygen diffusion, indicating that cations should be most often rate controlling. As noted 

in the previous section, it seems to be also the case in Yttrium-doped Barium Zirconate. 

Table 6.3. Creep parameters n, Q and p, for oxide perovskites reported in the literature. 

Material d (µm) n Q (kJ/mol) p Reference 

BaZr0.85Y0.15O2.925 0.2 ± 0.1 2.1 ± 0.1 580 ± 40 - this work 

BaCe0.95Y0.05O3 
BaCe0.95Yb0.05O3 

≈ 0.5 2.0 ± 0.2 490 ± 40 - [20, 21] 

BaCe1-xYxO3x = 0.05 - 0.20 3 - 7 1.1 ± 0.1 350 ± 50 - [25, 26] 

SrTiO3 6 ≈ 1 630 ± 20 - [27] 

La0.9Sr0.1MnO3 8 1.1 ± 0.2 490 ± 30 - [28] 

La0.8Sr0.2Ga0.85Mg0.15O3 15 1.3 ± 0.1 520 ± 20 - [29, 30] 

SrCo0.8Fe0.2O3 4 - 11 ≈ 1 470 - 280 ≈ 1 [31] 

CaTiO3 5 – 60 1.0 ± 0.1 750 2.1 [32] 

BaTiO3 30 - 80 1.1 ± 0.2 720 ± 70 1.8 ± 0.2 [33] 

Regarding the absolute magnitude of the strain rates, Figure 6.57 shows the variation of 

strain rate with stress for perovskites deformed at 1300 °C. Data for BZY (dark red line) have been 

extrapolated from lower temperatures using Q = 580 kJ/mol. For the sake of comparison, data for 

LSO apatite with d = 1.1 m and n = 1 are also included (cyan points), as well as for LSO-SPS (purple 

points) with d = 0.2 m and n = 2; in this latter case, data have been extrapolated at 1300 °C using 

the measured value of Q = 340 kJ/mol.  
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Figure 6.57. Variation of strain rate with stress for perovskite-structure materials deformed at 1300 °C. 

Data for BZY (dark red line) have extrapolated at 1300 °C with Q = 580 kJ/mol. LSO-CS (blue line) and 

LSO-SPS (cyan line, extrapolated with Q = 340 kJ/mol) apatites are also included for the sake of 

comparison. 3YTZP with d = 0.5 µm (dashed line) is shown as reference for superplastic behaviour.  

For a proper comparison, raw data have to be compensated with grain size. A value of p = 

3 have been used for the comparison (Figure 6.58), although it has been verified that an analysis 

with p = 2 leads to identical conclusions. As can be seen, BZY is the hardest material, indicating that 

mass transport is very slow compared to the other ceramic materials. It is followed by LSO-SPS, 

barium cerate and 3YTZP, all of them with d < 1 m and n = 2. LSO apatite is slightly less creep 

resistant, while the larger-grained perovskites are much softer. 

 

Figure 6.58. Grain-size compensated strain rates with p = 3 against stress for perovskite-structure 

materials. 
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Chapter 7 
GENERAL CONCLUSIONS 

 

This work is devoted to the fabrication and structural, microstructural and mechanical 

characterization of Lanthanum Silicate and Yttrium-doped Barium Zirconate, which are potential 

materials to be used as electrolyte in SOFCs. The main conclusions derived in this work can be 

summarized as follows: 

• Fully dense La9.33Si6O26 and BaZr0.85Y0.15O2.925 ceramics have been successfully prepared 

from nanopowders obtained by different strategies. On the one hand, LSO materials were 

synthesized by freeze drying and sintered at high-temperature by conventional or spark 

plasma sintering, resulting oxy-apatite ceramics with relative densities between 97% and 

100%. On the other hand, BZY materials were prepared by the modified EDTA-citrate 

complexing method and sintered at high temperature by conventional sintering, achieving 

densities higher than 97%.  

 

• A commercial BaZr0.85Y0.15O2.925 prepared by SSR with 1 wt% NiO content as sintering-aid 

provided by NorecsTM has been also investigated. In addition, in order to study the influence 

of Nickel on the mechanical properties, the mechanical characterization was also carried 

out in the commercial BZY after NiO-extraction. The extraction process required to pack 

the commercial ceramic in a bed of BZY nanopowders and a high temperature heat 

treatment at 1600 °C for 120 h. 

 

• X-ray diffraction of the resulting nanopowders and sintered ceramics indicated the 

presence of the single La9.33Si6O26 (P63/m) and BaZr0.85Y0.15O2.925 ( 𝑃𝑃𝑃𝑃3�𝑚𝑚 ) phases, 

respectively. However, commercial BZY-NiO also contained BaY2NiO5 (Immm), which 

completely disappeared after NiO-extraction. From XRD diagrams of the LSO calcined 

nanopowders and sintered ceramics, the refined lattice parameters deduced from Le Bail 

fitting did not undergo significant changes, with values a = 9.729(3) Å and c = 7.183(2) Å. 

The crystallite size was estimated to be about 80 - 90 nm that correlates well with TEM 

observations, where irregular particles of average size of about 100 nm were observed. In 
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the case of XRD diagrams for BZY, a lattice parameter a = 4.203(1) Å was found for the 

calcined powder, while the cell parameter increased slightly to a = 4.223(3) Å after 

sintering. The crystallite size estimated from the peaks width was about 15 - 20 nm, also in 

agreement with the very small spherical particles, between 10 and 40 nm in diameter, 

observed by TEM. The cell parameters deduced from the Le Bail method for the 

commercial materials before and after NiO-extraction were a = 4.212(3) Å and 4.223(3) Å, 

respectively, indicating that NiO addition slightly reduces the cubic unit cell parameter.  

 

• SEM observations reflected that all the sintered compounds exhibited a homogeneous 

microstructure formed by equiaxed grains, with practically no porosity except in the case 

of BZY after NiO-extraction, which displayed cavities of about 10 µm in size preferentially 

located at multiple grain junctions. The average grain sizes varied from 0.2 ± 0.1 µm in BZY 

and LSO-SPS, to 9 ± 3 µm in the case of the commercial material after NiO-extraction. 

Intermediate values were found for LSO-CS and BZY-NiO, which exhibited a mean grain size 

d of 1.1 ± 0.6 and 1.6 ± 0.6 µm, respectively.  

 

• TEM observations showed that the grains of oxy-apatites and BZY-NiO are essentially free 

of defects, with clean and straight grain boundaries and well-defined triple points. Both BZY 

and BZY after NiO extraction, however, exhibited a high density of dislocations. 

 

• The room-temperature mechanical characterization of Lanthanum Silicate and Yttrium-

doped Barium Zirconate has been carried out by means of different techniques. All the 

methods showed similar results for the elastic properties, being RUS the most precise 

technique. However, the values of hardness obtained by microindentation were 

significantly lower than those determined by nanoindentation, according to the applied 

load dependence of hardness. 

 

• The values of the Young’s modulus obtained at room temperature were in the range of 135 

- 141 GPa for LSO-CS and 129 - 136 GPa for LSO-SPS. Higher values were found for BZY 

compounds, with values in the range of 186 - 200 GPa for BZY, 198 - 207 GPa for BZY-NiO 

and 191 - 211 for BZY after NiO-extraction.  

 

•  Poisson ratios obtained at room temperature for the oxy-apatites were in the range of 

0.29 - 0.32, while for BZY ceramics were between 0.24 and 0.32.  
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• Regarding hardness, values of 9.5 and 9.8 GPa were measured by nanoindentation in LSO-

CS and LSO-SPS for an applied load of 500 mN, whereas values of 7.3 and 7.7 GPa were 

estimated under a 2 N-load by microindentation. For the same loading conditions, values 

of nanohardness of 10.1, 9.0 and 6.7 GPa were found for BZY, BZY-NiO and BZY after NiO-

extraction, respectively, while those calculated by microindentation were 7.7, 7.0 and 4.7 

GPa. The softening of BZY after NiO-extraction can be ascribed to its larger grain size in 

comparison with the other materials, since hardness is inversely proportional to grain size 

according to the Hall-Petch law.  

 

• Fracture toughness was calculated from cracks propagated from the microindentation 

corners by using the Niihara equation for oxy-apatites and BZY, obtaining values of 1.2 and 

1.6 MPa m1/2, respectively. However, fracture toughness could not be determined in the 

commercial materials due to the presence of circumferential cracks surrounding the 

residual imprint which prevent a reliable determination of Kic. 

 

• The elastic parameters of LSO and BZY compounds were also determined by means of DFT 

calculations. The results obtained for oxy-apatite showed a slight anisotropy of its elastic 

longitudinal response between a, b axes and c axes, while those found for BZY revealed 

that both the increase of Yttrium doping level and the presence of protons tend to reduce 

the elastic coefficients. 

 

• The temperature dependence of the coefficient of thermal expansion and elastic constants 

of Lanthanum Silicate and Yttrium-doped Barium Zirconate was studied by means of high-

temperature X-ray diffraction, thermo-mechanical analysis and high-temperature resonant 

ultrasound spectroscopy. On the one hand, in the range of temperature of 298 - 1173 K, 

the anisotropic thermal expansion coefficient of oxy-apatites was estimated to be                 

9.5 x 10-6 K-1 along the a-axis and 8.2 x 10-6 K-1 along the c-axis, whereas a value of                    

9.1 x 10-6 K-1 was found at macroscopic scale. The values of α  obtained for BZY and BZY-

NiO were 8.5 x 10-6 K-1 and 8.2 x 10-6 K-1, respectively. On the other hand, in all sintered 

ceramics the elastic constants E and G showed a decrease of about 1% for every 100 K-

increase in temperature according with the rule of thumb, while the Poisson ratio remained 

practically constant. 
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• Finite elements numerical simulations have been successfully conducted in oxy-apatite 

polycrystal aggregates created by Voronoi tessellation in order to characterize the residual 

stresses state and predict fracture in Lanthanum Silicate. The results showed that the 

stresses were heterogeneously distributed in the aggregate which was completely linked 

with the thermo-elastic anisotropy of a single crystal. It was observed that stress localized 

preferably along the grain boundaries of some favorably-oriented grains leading to high 

levels of residual stresses. However, for the purpose of properly studying failure, it was 

deduced from the results that it is necessary to consider larger aggregates in order to 

establish the effective thermo-elastic properties and be more precise concerning the 

construction of the policrystal and the material properties. 

 

• The mechanical response of Lanthanum Silicate and Yttrium-doped Barium Zirconate 

electrolytes has been tested in conditions similar to SOFC operating conditions by means 

of high-temperature compressive mechanical tests under hydrogen atmosphere. LSO 

compounds fabricated by either conventional or spark plasma sintering did not show any 

signal of degradation under hydrogen atmosphere. The same behavior was observerd in 

home-made BZY ceramics fabricated without sintering additives, which did not undergo 

any significant mechanical degradation during testing even at very high compressive 

loading. However, commercial NiO-containing BZY failed catastrophically in hydrogen-rich 

conditions at loads above 350 MPa.  

 

• By using atomic-scale chemical analysis, it has been observed that nickel oxide was mainly 

located along grain boundaries in commercial NiO-added BZY, which reduced to metallic Ni 

under hydrogen atmosphere. Such a reduction of NiO at grain boundaries favored sample 

breaking at lower loading values, limiting thus the material’s fracture resistance. 

 

• Although NiO-extraction could be considered as a solution to prevent the premature 

degradation of commercial BZY-NiO in working conditions, the process led to a porous 

material with important grain coarsening and low mechanical resistance.  

 

• The high-temperature plastic deformation of oxy-apatites and Y-doped Barium Zirconate 

has been assessed by compressive mechanical tests. A transition brittle-to-ductile has been 

observed at a fixed strain rate with increasing temperature. For a typical value of 𝜀𝜀𝑜̇𝑜  = 

3.5x10-5 s-1, the transition temperature is about 1100 and 1000 °C for LSO-CS (d = 1.1 µm) 
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and LSO-SPS (d = 0.2 µm), respectively, and 1200 for BZY (d = 0.2 µm). In the brittle regime, 

a mixed fracture mode was observed in both apatites, while it was predominantly 

intergranular in BZY. 

 

• At higher temperatures, the compounds exhibit extended steady states of deformation. In 

all cases, grain boundary sliding has been found to be the main deformation mechanism, 

with the grains retaining their original shape even after strains as large as 50%. Concurrent 

grain growth took place during deformation in the oxy-apatites, while no change in grain 

size was found in BZY, according to the poor sinterability reported for this material. 

 

• In the steady-state regime, the creep parameters were derived from conventional and 

differential mechanical tests. The stress exponent n was found to be close to 2 in LSO-SPS 

and undoped BZY, i.e., in materials with very fine-grained microstructures. This value is 

characteristic of superplasticity in metals and ceramics. In LSO-CS with d > 1 µm, the stress 

exponent is close to unity, as reported in various ceramic materials with grain sizes d > 1 

µm. The atomistic origin of the transition in n from 2 to 1 when increasing grain size is 

presently unknown. 

 

• Regardless the exact value of the stress exponent, the activation energy for creep Q is 

usually associated with the diffusion energy of the slowest moving ionic species in the 

compound when grain boundary sliding is the main deformation mechanism. A value of Q 

= 340 kJ/mol has been measured for both LSO-CS and LSO-SPS oxy-apatites, indicating that 

the same diffusion mechanism is rate controlling, despite the difference in stress exponent. 

In BZY, the creep activation energy was 570 kJ/mol. No data concerning diffusion energies 

have been reported in the literature for a proper comparison. 

 

• Effective diffusivities for lattice and grain boundary diffusion were derived from mechanical 

data by using the Ashby-Verrall model for LSO-CS (n = 1) and the Sherby’s 

phenomenological equations for LSO-SPS and BZY (n = 2). There is an excellent agreement 

between the grain boundary diffusivities estimated for both oxy-apatites, giving confidence 

to the present analysis. On the other hand, the diffusivities derived for BZY are two orders 

of magnitude smaller than for apatites, which may justify the low sinterability of this 

material. In this regard, it should be noted the importance in determining the diffusion 

coefficient of the slowest moving species in compounds because it plays an essential role 
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not only in creep, but in all mass transport-related processes, such as sintering and grain 

growth. Such an information can be thus used to devise optimum processing schedules. 
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Chapter 7 
CONCLUSIONS GENERALES 

 

Ce travail avait pour objectif la fabrication et l’étude des propriétés structurales, 

microstructurales et mécaniques de Silicate de Lanthane et Zirconate de Baryum dopé à l'Yttrium, 

qui sont considérés comme matériaux d’électrolytes potentiels au sein de piles à combustible. Les 

principales conclusions de ce travail sont les suivantes: 

• Des céramiques denses des matériaux La9.33Si6O26 et BaZr0.85Y0.15O2.925 ont été préparées à 

partir de nanopoudres, elles-mêmes synthétisées par différentes méthodes. D’un côté, les 

silicates de lanthane de type apatite (LSO) ont été préparés sous forme de nanopoudres 

par lyophilisation puis frittage conventionnel ou spark plasma. Les céramiques obtenues 

présentent des densités relatives de 97 et 100%. D’un autre côté, le matériau BZY a été 

préparé par une méthode de type «complexe de citrate » puis fritté par frittage 

conventionnel permettant d’obtenir des céramiques de densité supérieures à 97%. 

 

• Un échantillon commercial de formule BaZr0.85Y0.15O2.925, préparé par la méthode de frittage 

réactif avec 1% d’additif sous forme d’oxyde de nickel, a également été étudié. Le but était 

de déterminer l’influence de la présence du nickel sur les propriétés mécaniques des 

échantillons. Nous avons également évalué l’influence d’un traitement de 1600 °C pendant  

120 h sur l’extraction du nickel et sur l’évolution des propriétés mécaniques. 

 

• L’étude par diffraction des rayons X des nanopoudres et céramiques frittées montrent que 

les échantillons préparés au laboratoire présentent respectivement les seules phases 

La9.33Si6O26 (P63/m) et BaZr0.85Y0.15O2.925 (𝑃𝑃𝑃𝑃3�𝑚𝑚 ). Cependant, nous avons montré que 

l’échantillon commercial montre également la phase BaY2NiO5 (Immm) qui disparaît 

complètement après le procédé d’extraction du nickel. Les paramètres de maille déduits 

pour la phase apatite sous forme poudre, a = 9.729(3) Å et c = 7.183(2) Å sont en accord 

avec des résultats des échantillons frittés.  On a estimé que la taille des cristallites était 

d'environ 80 à 90 nm qui correspond bien aux observations TEM, où des particules 

irrégulières de taille moyenne d'environ 100 nm ont été observées. Pour BZY, le paramètre 
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de maille a = 4.203(1) Å obtenu pour la poudre est légèrement inférieur à celui obtenu 

pour l’échantillon fritté avec a = 4.223(3) Å. La taille des cristallites estimée à partir de la 

largeur des pics était d'environ 15 à 20 nm, également en accord avec les très petites 

particules sphériques, entre 10 et 40 nm de diamètre, observées par TEM. Les paramètres 

de maille déduits pour les matériaux commerciaux avant et après le procédé d’extraction 

du nickel étaient respectivement a =  = 4.212 (3) Å et 4.223 (3) Å, indiquant que l'addition 

du nickel réduit légèrement le paramètre de maille. 

 

• Les observation par microscopie électronique à balayage (SEM) montrent que les 

échantillons ont une microstructure régulière et homogène formée de grains équi-axes, 

avec une porosité pratiquement nulle, excepté dans le cas de l’échantillon de BZY après 

extraction d’extraction du nickel qui montrent des porosités d’environ 10 µm en taille 

située aux joints triples. La taille des grains au sein de la céramique évolue de quelques 

centaines de nanomètres à quelques microns en fonction du matériau, du mode de frittage 

et du traitement post-frittage (0.2 ± 0.1 µm pour le BZY et le LSO-SPS, 1.1 ± 0.6 pour le LSO-

CS, 1.6 ± 0.6 pour le BZY-NiO et 9 ± 3 µm pour le BZY après extraction d’extraction du nickel). 

 

• Les caractérisations par microscopie électronique à transmission (TEM) montrent que les 

grains d’oxy-apatites et de BZY-NiO sont libres de défauts étendus avec des joints de grains 

et des joints triples bien définis. Les échantillons de BZY et de BZY après l’extraction de NiO 

montrent par contre une haute densité de dislocations. 

 

• Les propriétés mécaniques de Silicate de Lanthane et Zirconate de Baryum dopé à l'Yttrium 

ont été évaluées à température ambiante par différentes méthodes. Toutes ces méthodes 

montrent des résultats sensiblement identiques de Les propriétés élastiques, la méthode 

la plus précise semblant être celle de résonance ultrasonore. Les résultats de dureté varient 

cependant entre les essais de micro-dureté et ceux de nano-indentation ce qui peut 

s’expliquer en partie par l’influence de la charge sur les valeurs de dureté. 

 

• Les valeurs de module d’Young sont dans la gamme 135 - 141 GPa pour les apatites 

préparées par frittage conventionnel et 129 - 136 GPa pour celles préparées par frittage 

spark plasma. Des valeurs plus élevées ont été trouvées pour les échantillons de BZYs, les 

valeurs du module d’Young sont dans la gamme approximative de 186 et 200 GPa pour le 

BZY, 198 - 207 GPa pour le BZY-NiO et 191 - 211 pour le BZY après l’extraction de NiO. 
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• Les coefficients de Poisson obtenus à température ambiante pour les apatites sont dans la 

gamme 0.29 - 0.32 alors qu’il semble varier plus pour les échantillons de BZY entre 0.24 et 

0.32.  

 

• En ce qui concerne la dureté, des valeurs de 9.5 et 9.8 GPa ont ainsi été mesurées par 

nanoindentation sous une charge de 500 mN pour les échantillons d’apatites fabriquées 

par frittage conventionnel et spark plasma respectivement alors que les mesures de de 

micro-indentation sous une charge de 2N donnet des valeurs de 7.3 and 7.7 GPa. De la 

même manière, pour le zirconate de baryum, des valeurs de 10.1, 9.0 et 6.7 GPa ont été 

mesurées  par nanoindentation pour les échantillons BZY, BZY-NiO et BZY-NiO après 

extraction, alors que les mesures de micro-dureté donnent les valeurs 7.7, 7.0 et 4.7 GPa 

respectivement. La diminution de la dureté pour les échantillons après extraction est en 

grande partie due à l’évolution de la taille de grains suite au traitement thermique imposé.  

 

• La ténacité de la fracture calculée à partir de la propagation des cracks lors des essais de 

micro-dureté est de 1.2 et 1.6  MPa m1/2, respectivement pour l’oxyapatite et BZY.  

 

• Les coefficients élastiques de LSO et BZY ont également été déterminés par calculs DFT. Les 

résultats montrant que l’oxyapatite présente une légère anisotropie  du tenseur élastique 

alors que pour BZY, le dopage à l’yttrium et la présence des protons tend à diminuer la 

valeur du coefficient élastique. 

 

• La variation en température du coefficient d’expansion thermique et des coefficients 

élastiques a été évaluée expérimentalement par diffraction des rayons X, dilatométrie et 

résonance ultrasonore. Dans la gamme 298 - 1173 K, le coefficient d’expansion thermique 

a été mesuré à 9.5 x 10-6K-1 suivant la direction a et 8.2 x 10-6 K-1 suivant la direction c.Pour 

BZY, les valeurs mesurées de coefficient d’expansion thermique sont 8.5 x 10-6 K-1 et 8.2 x 

10-6 K-1, pour BZY et BZY-NiO respectivement. Dans toutes ces céramiques, les coefficients 

élastiques E et G montrent une baisse d’environ 1% pour chaque augmentation de 100 K, 

le coefficient de Poisson demeurant pratiquement constant sur toute la gamme de 

températures explorées. 
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• Des simulations par la méthode des éléments-finis ont été menées pour évaluer la 

présence de contraintes résiduelles au sein des composés apatite. Les résultats montrent 

ces contraintes sont distribuées de manière hétérogène en fonction de l’orientation des 

différents grains, du fait de la différence de coefficient d’expansion thermique et 

d’élasticité suivant les directions a ou c.  

 

• La réponse mécanique de Silicate de Lanthane et Zirconate de Baryum dopé à l'Yttrium a 

été testée à haute température dans les conditions proches de celles de fonctionnement 

d’une pile, en particulier sous hydrogène. Dans tous les cas, les échantillons de type 

oxyapatite montrent une réponse identique entre les atmosphères oxydantes et les 

atmosphères réductrices. C’est également le cas pour l’échantillon de BZY préparé au 

laboratoire. L’échantillon commercial de BZY-NiO montre par contre une forte dégradation 

de ses propriétés mécaniques sous hydrogène menant à la rupture de l’échantillon sous 

forte charge en compression (>350 MPa).  

 

• Cette dégradation a été expliquée par la réduction des ions Nickel en Nickel métallique 

sous atmosphère hydrogénée, menant à la fragilisation du matériau, d’autant plus que le 

nickel a montré (TEM) être localisé essentiellement aux joints de grains. 

 

• L’hypothèse que l’extraction du nickel permettrait d’améliorer les propriétés mécaniques 

n’a pas pu être démontrée car les échantillons après extraction présentent une porosité 

importante.  

 

• L’évaluation de la déformation plastique à haute température des échantillons 

d’oxyapatite et de Zirconate de Baryum a été réalisée par des essais mécaniuqes en 

compression. LA transition fragile-ductile a été identifée à vitesse constante de 

déformation avec une température croissante. Pour une vitesse de déformation typique 

de 𝜀𝜀𝑜̇𝑜  = 3.5x10-5 s-1, cette transition a lieu aux environs de 1100 et 1000 °C pour les 

échantillons LSO-CS (d = 1.1 µm) et LSO-SPS (d = 0.2 µm), respectivement. Dans le cas de 

BZY préparé au laboratoire, cette transition a lieu aux environs de 1200 °C (d = 0.2 µm). 

Dans le régime fragile, un mode de fracture mixte a été observé dans les deux apatites, 

alors qu'il était principalement intergranulaire dans BZY. 
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• Aux plus hautes températures, les échantillons montrent un comportement plastique. 

Dans tous les cas, la déformation observée a été associée au glissement des joints de grains 

conservant la forme des grains après déformation. Dans plusieurs des échantillons 

d’oxyapatite, nous avons observé le phénomène parasite de croissance de grains en 

parallèle de la déformation plastique, alors qu'aucun changement de la taille des grains n'a 

été observé dans le BZY, conformement à la mauvaise sinistérabilité signalée pour ce 

matériau. 

 

• Dans le régime stationnaire, les paramètres de fluage ont été déterminés à partir des essais 

mécaniques classiques et différentiels. L’exposant de stress n a été évalué pour être égale 

à 2 dans l’oxyapatite préparée par SPS et dans BZY i.e. dans les matériaux présentant une 

très faible taille de grains. Cette valeur est caractéristique d’une superplasticité comme 

observée dans d’autres céramiques nanostructurées. Dans l’apatite préparée par frittage 

conventionnel avec une taille de grains micronique, l’exposant de stress est proche de 1 

comme reporté dans plusieurs matériaux oxydes avec des grains d > 1 µm. L'origine 

atomistique de cette transition est actuellement inconnue. 

 

• Indépendamment des valeurs d’exposant de stress, l’énergie d’activation du mécanisme 

de fluage a été calculée pour tous les échantillons. Une valeur de Q = 340 kJ/mol a été 

mesurée pour les échantillons d’oxyapatite préparés par frittage conventionnel et spark 

plasma, indiquant que le mécanisme de diffusion contrôlant le fluage a probablement la 

même origine dans les deux cas. Dans BZY, la valeur de l’énergie d’activation a été mesurée 

à 570 kJ/mol. 

 

• Les diffusivités effectives du matériau massif et des joints de grains ont été déterminées 

par un modèle de type Ashby-Verrall dans le cas de l’oxyapatite préparée par frittage 

conventionnel (n = 1) et par un modèle de type Sherby pour l’oxyapatite fabriquée par SPS 

(n = 2). Malgré l’utilisation de modèles différents (dû à la présence de microstructures très 

différentes), on observe une excellent accord entre les diffusivités de joints de grains 

obtenues pour les deux types d’échantillons. Notre approche a également permis de 

montrer que la diffusivité du bulk pour BZY est de 2 ordres de grandeur inférieure à celle 

de l’oxyapatite permettant d’expliquer en partie les problèmes de frittage rencontrés pour 

ce matériau. Il est important de souligner ici que la détermination de la diffusivité du 

matériau est de première importance pour comprendre la plasticité à haute température 
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mais également dans tous les process impliquant des transferts de masse tels que la 

croissance des grains, le frittage ou la relaxation des contraintes. Une telle information peut 

donc être utilisée pour optimiser le procédé d’élaboration ou de mise en forme de ces 

céramiques. 
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Chapter 7 
CONCLUSIONES GENERALES 

 

Este trabajo se ha dirigido a la fabricación y caracterización estructural, microestructural y 

mecánica de Silicato de Lantano y Circonato de Bario dopado con Itrio, que son considerados 

materiales muy prometedores para ser utilizados como electrolito en las SOFCs. A continuación se 

presentan las principales conclusiones derivadas de este trabajo: 

• Se han obtenido con éxito cerámicos de La9.33Si6O26 y BaZr0.85Y0.15O2.925 totalmente densos 

a partir de nanopolvos obtenidos mediante diferentes estrategias. Por una parte, los 

materiales de LSO se sintetizaron mediante liofilización y se sinterizaron a alta temperatura 

por sinterización convencional o asistida por descarga eléctrica pulsada, dando como 

resultado oxi-apatitas con densidades relativas entre 97% y 100%. Por otra parte, los 

materiales de BZY se prepararon mediante el método de agentes complejantes EDTA- ácido 

cítrico y se sinterizaron a alta temperatura por sinterización convencional, lográndose 

densidades superiores al 97%. 

 

• Se ha estudiado también un material comercial de BaZr0.85Y0.15O2.925 fabricado mediante 

reacción en estado sólido con 1% en peso de NiO como aditivo y proporcionado por 

NorecsTM. Además, con el fin de evaluar la influencia del níquel en las propiedades 

mecánicas, la caracterización mecánica también se llevó a cabo en el material comercial de 

BZY después de la extracción del NiO. Para realizar el proceso de extracción fue necesario 

poner el material comercial en una cama de polvos de BZY y someterlo a un tratamiento 

térmico a alta temperatura a 1600 °C durante 120 h. 

 

• Los análisis de difracción de rayos X, tanto de los polvos calcinados como de los materiales 

sinterizados, muestran la presencia de las fases puras de La9.33Si6O26 (P63/m) y 

BaZr0.85Y0.15O2.925 (Pm3m), respectivamente. Sin embargo, el material comercial de BZY-NiO 

contiene también BaY2NiO5 (Immm), que desaparece completamente después del proceso 

de extracción del NiO. Los parámetros reticulares deducidos de los diagramas de XRD de 

los nanopolvos y de los masivos de LSO mediante el método de Le Bail, no revelaron 
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cambios significativos, encontrando valores de a = 9.729 (3) Å y c = 7.183 (2) Å. Se estimó 

que el tamaño de cristalitos era aproximadamente 80-90 nm, lo que se correlacionaba bien 

con las observaciones de TEM, donde se observaron partículas irregulares de un tamaño 

medio aproximado de 100 nm. En el caso del BZY, se encontró un parámetro de red a = 

4.203 (1) Å para el polvo calcinado, que aumentó ligeramente hasta a = 4.223 (3) Å después 

de la sinterización. El tamaño de cristalito estimado fue de aproximadamente 15-20 nm, 

también en concordancia con el tamaño de las pequeñas partículas esféricas de entre 10 y 

40 nm de diámetro observadas por TEM. Los parámetros reticulares deducidos por Le Bail 

para los materiales comerciales antes y después de la extracción del NiO fueron a = 4.212 

(3) Å y 4.223 (3) Å, respectivamente, lo que indica que la adición de NiO reduce ligeramente 

el parámetro de red de la celda de unidad cúbica. 

 

• Las observaciones de SEM reflejaron que todos los compuestos exhibían una 

microestructura homogénea formada por granos equiaxiados y prácticamente sin 

porosidad, excepto en el caso de BZY después de la extracción del NiO, que presentaba 

cavidades de aproximadamente 10 μm de tamaño ubicadas preferentemente en los puntos 

triples de unión de los granos. Los tamaños medios de grano variaron de 0.2 ± 0.1 μm en 

BZY y LSO-SPS, a 9 ± 3 μm en el caso del material comercial después de la extracción del 

NiO. Se encontraron valores intermedios para LSO-CS y BZY-NiO, que mostraron un tamaño 

de grano medio d de 1.1 ± 0.6 y 1.6 ± 0.6, respectivamente. 

 

• Las observaciones de TEM de las oxi-apatitas y del BZY-NiO mostraron que los granos 

estaban mayoritariamente libres de defectos, con bordes limpios y rectos y puntos triples 

bien definidos. Sin embargo, tanto el BZY como el BZY después de la extracción del NiO 

presentaban una alta densidad de dislocaciones. 

 

• La caracterización mecánica a temperatura ambiente del Silicato de Lantano y del 

Circonato de Bario dopado con Itrio se realizó mediante diferentes técnicas. Todos los 

métodos mostraron resultados similares de las propiedades elásticas, siendo RUS la técnica 

más precisa. Sin embargo, los valores de dureza obtenidos por microindentación fueron 

significativamente más bajos que aquellos determinados por nanoindentación, lo que 

puede ser justificado en base a la dependencia de la dureza con la carga aplicada. 
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• Los valores del módulo elástico obtenidos a temperatura ambiente fueron entre 135 - 141 

GPa para LSO-CS y 129 - 136 GPa para LSO-SPS. Mientras que valores más altos se 

determinaron para los compuestos de BZY, con valores de E en el intervalo de 186 - 200 

GPa para el BZY, 198 - 207 GPa para el BZY - NiO y 191 - 211 para el BZY después de la 

extracción del NiO. 

 

• Los valores de coeficientes de Poisson obtenidos a temperatura ambiente se encontraron 

en el intervalo de 0.29 - 0.32 para las oxi-apatitas, mientras que para las cerámicas BZY 

estaban entre 0.24 y 0.32. 

 

• En cuanto a la dureza, mediante nanoindentación se obtuvieron resultados de 9.5 y 9.8 

GPa en LSO-CS y LSO-SPS para una carga aplicada de 500 mN, mientras que se 

determinaron valores de 7.3 y 7.7 GPa para una carga de 2 N por microindentación. Para 

las mismas condiciones de carga, se encontraron valores de nanodureza de 10.1, 9.0 y 6.7 

GPa para el BZY, BZY-NiO y BZY después de la extracción del NiO, respectivamente, 

mientras que los obtenidos por microindentación fueron 7.7, 7.0 y 4.7 GPa. La abrupta 

disminución de la dureza del BZY después de la extracción del NiO se puede atribuir al 

mayor tamaño de grano que presenta este material en comparación con los otros 

compuestos, ya que la dureza es inversamente proporcional al tamaño de grano de 

acuerdo con la ley de Hall-Petch. 

 

• La tenacidad de fractura se calculó a partir de las grietas propagadas desde las esquinas de 

las microindentaciones utilizando la ecuación de Niihara para las oxi-apatitas y el BZY, 

obteniéndose valores de 1.2 y 1.6 MPa m1/2, respectivamente. Sin embargo, la tenacidad 

de fractura no se pudo determinar en los materiales comerciales debido a la presencia de 

grietas circunferenciales que rodeaban las huellas residuales, lo que impidió una 

determinación fiable de Kic. 

 

• Las constantes elásticas de los compuestos LSO y BZY también se determinaron mediante 

cálculos DFT. En el caso de la oxi-apatita, los resultados revelaron una ligera anisotropía en 

su respuesta longitudinal elástica entre ejes a, b y c, mientras que en el caso del BZY, se 

observó que tanto el aumento del nivel de dopaje de Itrio como la presencia de protones 

tienden a reducir los coeficientes elásticos. 
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• La evolución del coeficiente de expansión térmica y de las constantes elásticas del Silicato 

de Lantano y del Circonato de Bario dopado con Itrio se estudió mediante difracción de 

rayos X a alta temperatura, análisis termomecánico y espectroscopía de resonancia 

ultrasónica a alta temperatura. Por una parte, en el intervalo de temperatura de 298 - 1173 

K, se estimó que para las oxi-apatitas el coeficiente de expansión térmica anisotrópico era 

9.5 x 10-6 K-1 en el eje a y 8.2 x 10-6 K-1 en el eje c, mientras que un valor de 9.1 x 10-6 K-1 se 

determinó a escala macroscópica. Los valores obtenidos para el BZY y BZY-NiO fueron 8.5 

x 10-6 K-1 y 8.2 x 10-6 K-1, respectivamente. Por otra parte, todos los cerámicos muestran la 

misma evolución de sus constantes elásticas, con E y G disminuyendo aproximadamente 

un 1% por cada incremento de 100 K de acuerdo con la regla general, mientras que el 

coeficiente de Poisson permaneció prácticamente constante. 

 

• Se han llevado a cabo con éxito simulaciones numéricas por elementos finitos en un 

agregado policristalino de oxi-apatita creado mediante una teselación de Voronoi para 

caracterizar el estado de tensiones residuales y predecir su fractura. Los resultados 

mostraron que las tensiones residuales se distribuían heterogéneamente en el agregado lo 

cual estaba completamente ligado con la anisotropía termoelástica de los cristales. Se 

observó que las tensiones se localizaba preferiblemente a lo largo de los bordes de algunos 

granos orientados favorablemente generando a altos niveles de tensiones residuales. Sin 

embargo, con el fin de estudiar adecuadamente el fallo de este material, se observó que 

es necesario considerar los agregados más grandes con el objetivo de establecer 

adecuadamente las propiedades termoelásticas y ser más precisos con la construcción del 

policristal y con las propiedades del material. 

 

• La respuesta mecánica de los electrolitos de Silicato de Lantano y Circonato de Bario 

dopado con Itrio se ha estudiado en condiciones similares a las condiciones de operación 

de las SOFCs, mediante ensayos mecánicos de compresión a alta temperatura y en 

atmósfera de hidrógeno. Los compuestos de LSO no mostraron ninguna señal de 

degradación en atmósfera de hidrógeno. El mismo comportamiento fue observado en los 

materiales cerámicos de BZY fabricados sin aditivos, los cuales no sufrieron ninguna 

degradación mecánica significativa durante los experimentos, incluso bajo una tensión de 

compresión muy elevada. Sin embargo, el material comercial de BZY que contiene NiO falló 

catastróficamente en atmósfera de hidrógeno a tensiones superiores a 350 MPa.  
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• Mediante un análisis químico a escala atómica, se ha observado que en el material 

comercial de BZY fabricado con NiO, el óxido de níquel se localizaba principalmente a lo 

largo de los bordes de grano y que éste se reducía a Ni metálico en atmósfera de hidrógeno. 

Esta reducción de NiO en los bordes de grano favorece la ruptura de la muestra incluso a 

tensiones muy bajas, limitando así la resistencia a la fractura del material. 

 

• Aunque la extracción con NiO puede considerarse como una solución para prevenir la 

degradación prematura del BZY-NiO en las condiciones de trabajo, el proceso de extracción 

da lugar a un material poroso con un importante crecimiento de grano y una baja 

resistencia mecánica. 

 

• La deformación plástica a alta temperatura de oxi-apatitas y Circonato de Bario dopado con 

Itrio se ha evaluado mediante ensayos mecánicos de compresión. Se ha observado una 

transición de frágil a dúctil a medida que aumenta la temperatura para una velocidad de 

deformación dada. Para un valor típico de 𝜀𝜀𝑜̇𝑜 = 3.5x10-5 s-1, la temperatura de transición es 

de aproximadamente 1100 y 1000 °C para LSO-CS (d = 1.1 μm) y LSO-SPS (d = 0.2 μm), 

respectivamente, y 1200 °C para BZY (d = 0,2 μm). En el régimen frágil, ambas apatitas 

presentaron una fractura mixta, mientras que el modo de fractura del BZY era 

predominantemente intrergranular. 

 

• A temperaturas superiores, los compuestos alcanzaron estados de deformación 

estacionaria prolongados. En todos los casos, se ha encontrado que el deslizamiento de 

fronteras de grano es el principal mecanismo de deformación, con los granos conservando 

su forma original incluso después de deformaciones tan grandes como el 50%. Se observó 

un significativo crecimiento grano durante la deformación de las oxi-apatitas, mientras 

que no se encontró ningún cambio en el tamaño de grano en el BZY, de acuerdo con la 

pobre sinterabilidad reportada para este material. 

 

• En el régimen de estado estacionario, los parámetros de fluencia se obtuvieron a partir de 

ensayos mecánicos convencionales y diferenciales. Se obtuvo un exponente de tensión n 

cercano a 2 en LSO-SPS y BZY, es decir, en materiales con microestructuras de grano fino. 

Este valor es característico de la superplasticidad en metales y cerámicas. En LSO-CS con 

d > 1 µm, el exponente de tensión es cercano a la unidad, tal como se ha encontrado 

también en diversos materiales cerámicos con tamaños de grano d > 1 μm. El origen 
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atómico de la transición en n de 2 a 1 cuando se incrementa el tamaño de grano es 

actualmente desconocido. 

 

• Independientemente del valor exacto del exponente de tensión, la energía de activación 

de fluencia Q se asocia generalmente con la energía de difusión de la especie iónica más 

lenta del compuesto cuando el deslizamiento de fronteras de grano es el principal 

mecanismo de deformación. Se ha medido un valor de Q = 340 kJ/mol para las oxi-apatitas 

LSO-CS y LSO-SPS, lo que indica que el mismo mecanismo de difusión controla la velocidad 

de deformación, a pesar de la diferencia en el exponente de la tensión. En el BZY, la energía 

de activación de fluencia fue de 570 kJ/mol. No se han reportado en la literatura valores 

para la energía de difusión en estos materiales, para poder realizar una comparación 

adecuada. 

 

• Las difusividades efectivas para la difusión a través del volumen y a lo largo de las fronteras 

de grano se obtuvieron a partir de datos mecánicos utilizando el modelo de Ashby-Verrall 

para LSO-CS (n = 1) y las ecuaciones fenomenológicas de Sherby para LSO-SPS y BZY (n = 2). 

Existe una excelente concordancia entre los coeficientes de difusión por bordes de grano 

estimados para las oxi-apatitas, dando confianza al presente análisis. Por otra parte, las 

difusividades derivadas para BZY son dos órdenes de magnitud más pequeñas que para las 

apatitas, lo que puede justificar la baja sinterabilidad de este material. En este sentido, 

debe tenerse en cuenta la importancia de determinar el coeficiente de difusión de las 

especies que se mueven más lentamente en los compuestos, ya que desempeña un papel 

esencial no sólo en la fluencia, sino en todos los procesos relacionados con el transporte 

de masa, como la sinterización y el crecimiento de grano. Dicha información se puede 

utilizar para diseñar programas de procesamiento óptimos. 
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