
Design Methodology for Face Detection Acceleration

Laurentiu Acasandrei
Instituto de Microelectronica de Sevilla

IMSE-CNM-CSIC
Sevilla, Spain

laurentiu@imse-cnm.csic.es

Angel Barriga
Instituto de Microelectronica de Sevilla/Univ. Sevilla

IMSE-CNM-CSIC/ Univ. Sevilla
Sevilla, Spain

barriga@imse-cnm.csic.es

Abstract—A design methodology to accelerate the face
detection for embedded systems is described, starting from high
level (algorithm optimization) and ending with low level
(software and hardware codesign) by addressing the issues and
the design decisions made at each level based on the performance
measurements and system limitations. The implemented
embedded face detection system consumes very little power
compared with the traditional PC software implementations
while maintaining the same detection accuracy. The proposed
face detection acceleration methodology is suitable for real time
applications.

Keywords—face detection; embedded system; design
methodology; hardware & software codesign

I. INTRODUCTION

Face detection is an important aspect for biometrics[1],
video surveillance and human computer[2] interaction.
Detection systems require huge computational and memory
resources due to the complexity of detection algorithms. A
software detection realization implemented on a low speed,
low resource, low power SoC (System on a Chip) it is not
efficient. Instead a Software-Hardware Codesign approach can
be used to build hardware accelerators for most computational
consuming parts of detection algorithms.

Real time face detection application requires a high amount
of multipliers and memory resources running at high speed.
Due to high amount of resources and high speed requirements a
software implementation of the face detection algorithm is not
feasible for a low speed, low resource, low power SoC.
Recently there have been several hardware realizations that
accelerate the face detection process by parallelizing the
detection algorithm. Thus some of the proposals are for
specific hardware realizations on ASIC [3] while others are
implemented on FPGA [4-6]. Using the Software-Hardware
Codesign approach we can accelerate the detection process by
replacing, with very fast dedicated hardware, some parts of the
software that usually consumes large amount of clock cycles
and/or memory during the run time. In [7] several parts of the
Viola-Jones detection mechanism have been parallelized in
order to run efficiently on a GPU architecture.

The purpose of this communication is to describe a design
methodology for accelerating face detection applications.
Taking into consideration that the OpenCV library comes with
two baseline applications LBP (Local Binary Pattern) and
Viola-Jones for video detection, we have chosen Viola-Jones
for developing a face detection application for embedded

systems. The same design methodology is common to both
algorithms. The LBP and Viola-Jones have the same detection
mechanism, the only difference being in how to encode/decode
the features from an image.

II. FACE DETECTION TECHNIQUE

The face detection technique is based on the face detection
framework proposed by Viola-Jones [8]. The proposed
framework is capable of processing images extremely rapidly
while achieving high detection rates. The speed of the face
detection framework relies on three important key components.
Firstly, the image is transformed into “Integral Image” which
allows the features used by the detector to be computed very
quickly. Secondly, the used classifier is simple and efficient
which is build using the AdaBoost learning algorithm [9] to
select a small number of critical visual features from a very
large set of potential features. And thirdly, the classifier is
formed by combining weak classifiers in a “cascade” which
allows background regions of the image to be quickly
discarded while spending more computation on promising
face-like regions.

Viola-Jones technique is based on exploring the image by
means of a window looking for features. This window is scaled
to find faces of different sizes. The system architecture is based
on a cascade of detectors. The first stages consist of simple
detectors, very fast and low cost, that allows to eliminate those
windows that do not contain faces. In the successive stages the
complexity of detectors are increased in order to make a more
detailed analysis of features. A face is detected only if it makes
it through the entire cascade.

The Haar-like features used by the classifier consist of
rectangular areas whose processing requires simple
arithmetical operations. The calculation is based on the sum of
the pixels of each rectangular region weighed by a weight. At
all scales, these features form the “raw material” that will be
used by the detector. The set of rectangle features in the image
is quite large and overcomplete, so to reduce that number
applies the AdaBoost learning algorithm [9]. The Viola-Jones
classifier employs AdaBoost at each node in the cascade to
learn a high detection rate at the cost of low rejection rate
multitree (mostly multistump) classifier at each node of the
cascade.

To facilitate the processing of the features the operations
are not made on the original image but on an integral image.
Therefore the detection algorithm requires a preprocessing step

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/158965816?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

that calculates this integral image. The integration of the image
consists of adding for each pixel the values of the previous
pixels.

III. DESIGN METHODOLOGY

The starting point of the design methodology of the
embedded system is the OpenCV’s Viola-Jones baseline face
detection application. OpenCV (Open Source Computer
Vision), started by Intel in 1999, is a library of programming
functions for real time computer vision [10]. OpenCV is
released under a BSD license and hence it is free for both
academic and commercial use. It is written in C/C++ and was
designed for computational efficiency and with a strong focus
on real-time applications.

The host target for the proposed face detection system is an
embedded environment based on LEON3 AMBA Bus
processor. The LEON3 is a synthesizable VHDL soft core of a
32-bit processor compliant with the SPARC V8 architecture
[11]. The processor is highly configurable, and particularly
suitable for system-on-a-chip (SOC) designs. The full source
code is available under the GNU GPL license. The processor
controls and executes the majority of software application tasks
while a specific IP (Intellectual Property) module accelerate
only those tasks that require a high number of clock cycles.

The design flow is based on four stages, as shown in Figure
1. In the first stage an adaptation of the software application to
execute on the embedded system has been made. In the next
stage an analysis of the new embedded software application is
performed, in order to detect "bottlenecks" and those tasks that
are suitable to accelerate through hardware implementation. In
the third phase, as result of the previous analysis, solutions to
optimize and accelerate some of the tasks of the face detection
process will be proposed. The fourth stage consists in the
hardware implementation of those parts that consume a many
resources and have large run times. The idea is to offload to the
hardware the functions with a high degree of processing and to
parallelize the execution of the detection algorithm. With this
the face detection process can be drastically accelerated.

Fig. 1. Design methodology

At each stage of the design process the performance of the
face detection system is analyzed, in terms of speed and
detection accuracy. The accuracy of face detection process is
analyzed using ROC (Receiver Operating Characteristic)
curves. The ROC curve of a given face detector shows its
performance as a trade-off between the false acceptance rate
and the face detection rate by varying its discrimination
criterion (e.g. a threshold parameter).

IV. EMBEDDED SOFTWARE FACE DETECTION

IMPLEMENTATION

Viola and Jones organized each boosted classifier group
into nodes of a rejection cascade. Each of the nodes contains an
entire boosted cascade of groups of decision stumps (or trees)
trained on the Haar-like features from faces and nonfaces (or
other objects the user has chosen to train on). Typically, the
nodes are ordered from least to most complex so that
computations are minimized (simple nodes are tried first) when
rejecting easy regions of the image. Typically, the boosting in
each node is tuned to have a very high detection rate (at the
usual cost of many false positives). When training on faces, for
example, almost all (99.9%) of the faces are found [12] but
many (about 50%) of the nonfaces are erroneously “detected”
at each node. But this is satisfactory because using, as an
example, 20 nodes will still yield a face detection rate (through
the whole cascade) of 0.99920 ≈ 98% with a false positive rate
of only 0.520 ≈ 0.000001%!

During algorithm execution, a search window of different
sizes is swept over the original image. In practice, 70–80% of
nonfaces are rejected in the first two nodes of the rejection
cascade, where each node uses about ten decision stumps. This
quick and early “attentional reject” vastly speeds up face
detection.

The Haar-like features are trained to be applied for a
evaluating rectangular window of 20x20 pixel. For other
dimensions of the evaluating window the Haar-like features
must be scaled correspondingly. The OpenCV software
implementation for face detection consists of 22 cascade
detectors, containing 2135 Haar like features.

The first task of Software-Hardware Codesign was adapting
and optimizing the OpenCV baseline application for an
embedded environment. We have considered that the majority
of embedded environments are capable of running C/C++
applications with or without Operating System (OS) support.
This means that the resulting application code has to be
compatible for both C, C++ compilers and in the same time
platform independent.

Another consideration made is the fact that most of the SoC
have no floating point support. For it, the resulting application
uses integer operations instead of floating point operations in
order to preserve the generality of the application for the
embedded system world. An important moment in this step
was finding an acceptable scaling coefficient of the floating
point variables and data to integer variables and data. After
trying different values and comparing the resulted integer
application with the floating point application we found that by
scaling with 20 bits (precision of 20 bits for the floating point
decimals) the integer and floating point applications obtain

P
er

fo
rm

an
ce

 a
nd

 d
et

ec
ti

on

ac
cu

ra
cy

an
al

ys
is

OpenCV Software Face
Detection Application

Embedded Software
Implementation

Embedded Software
Analysis

Algorithm Optimization

Hardware acceleration

identical results. Also the floating point squared root function
necessary to calculate variance of the evaluating window was
replaced with a fast integer squared root version.

In the end it was obtained a face detection stand-alone
application compatible with C/C++, using only integer type
operations and data.

V. EMBEDDED SOFTWARE FACE DETECTION ANALYSIS

The next step in application development was analyzing
different modes of detection in order to find the run time
bottlenecks and optimize the detection. For the embedded
target we have decided to use the detection mode where the
detector (Haar-like feature) is scaled and the biggest regions
containing faces are searched within an image. In this mode the
detections starts with the biggest evaluation window and
biggest evaluation step and progressively, the window together
with the evaluation step are decreased until a region containing
a face is detected. In the case that a region with face or multiple
faces is detected, the attention of the detector concentrates in
that region.

The trained classifier cascade (Haar-like feature) is
provided by OpenCV in an XML file format. Using this XML
format in an embedded system will produce memory and run
time overhead. In order to avoid the overhead we have
developed an application that receives a XML file, interprets
the data and saves it in a simpler format to a C header file. The
resulted embedded application can be compiled with the
cascade of classifier or the data can be transmitted during the
execution of the application via an appropriate interface.

In order to obtain relevant insight about which parts (or
functions) of the face detection program are taking most of the
execution time we enable -gp flag in the Eclipse project
compilation options in order to generate profiling information
that can be interpreted with GNU gprof tool. This tool permits
one to learn where the program spends its time and the function
calling tree during the execution. It can also tell which
functions are being called more or less than are expected.

Table I shows the obtained results. As we can see the
function SetMatZero() uses 24.64% of the executing time even
surpassing the time spent applying the cascade Haar like-
features (20.16%) for the entire image. The function
SetMatZero() is used to set to zero all the elements of a
temporary matrix having the same dimension of the image. In
this matrix the top left coordinates of a detected face are
flagged with value 1. In this mode the detections starts with the
biggest evaluation window and biggest step and progressively,
the window and the step are decreased until a region containing
a face is detected. The detection is done in two steps:

 First Step: The image is scanned with the evaluation
window by applying only the first two Haar-like feature
stages in order to rapidly detect regions containing
potential faces. If a region is found to have a potential
face then the coordinates are set to value one in the
temporary matrix.

 Second step: Each potential face (starting with their
coordinates) from the temporary matrix is evaluated
with the remaining Haar-like feature stages. If a true

face is detected then the coordinates, width and height
are stored in a list. At the end of the second step, the
temporary matrix is set to zero in preparation for the
next image where the evaluating window has smaller
dimensions.

We can improve the speed by not using the function
SetMatZero() at the end of the second step and instead each
time after we have detected a face during the second step and
that face is stored into a list, we set to zero the coordinates
inside the temporary matrix. After applying this change, the
detection time is improved with 24.64 %.

TABLE I. ANALYSIS OF DETECTION SYSTEM BOTTLENECKS

Time % # calls Function name
24.64 17 SetMatZero()
20.16 3201 RunHaarClassifierCascadeEmbedd()
14.81 16 SetImagesForHaarClassifierCascadeEmbedd()
13.39 1 Integral()
11.35 1 LinkDataToEmbeddClassifierCascade()
4.22 511 HResizeLinear()
3.11 262144 saturate_uchar()
2.62 512 VResizeLinear()
1.80 296384 sum_elem_ptr()
1.10 3201 isqrt64()

VI. EMBEDDED FACE DETECTION OPTIMIZATION

The OpenCV face detection baseline application
implements detection in two distinct modes:

Mode 1: Face detection by scaling the image. In this mode
the image is scaled using interpolation until it reaches a
predefined minimal dimension. Each time the image is scaled

the two integral images (normal= x and squared= 2x),
needed for variance, are recalculated for the scaled image. The
search window has fixed dimension during the detection
process.

Mode 2: Face detection by scaling the classifiers. In this

mode the integral images(normal= x and squared= 2x),
needed for variance, are calculated only once for the original
image but the Haar-Like features form the classifier are scaled
progressively until their dimensions are close to the dimension
of the original window. This mode lacks the interpolator used
in mode 1. The search window has a variable dimension during
detection process.

In both detection mode the Haar-like features components
(weights and dimensions) are scaled proportionally with the
dimensions of search window. That means for a search window
of dimension WxH, the weight of each rectangle forming the
Haar-like features are scaled with WxH. In the search window,
the sum of each applied Haar-like feature is calculated using:

3

1I

scaled
II

Sum WeightAreaeHaarFeatur (1)

Area represents the sum of all pixels inside a component
and I=1, 2 or 3 represents the number of components for that
Haar-like feature. In order to determine the next weight value

for the stage sum, each HaarFeatureSum is compared with each
normalized threshold of the respective Haar-like feature as:

norm
J

Sum
J

Weight
J

norm
J

Sum
J

Weight
J

ThreseHaarFeaturifStageStageSum

ThreseHaarFeaturifStageStageSum
StageSum

,

,
1

2

(2)

where J=[1…2135] represents the Haar-like feature indexes
in a stage and ThresJ

norm=σThresJ
HaarFeature (σ is standard

deviation of the windows search area).

If we do not scale the Haar-like feature weights and adjust
the variance computation by using the formula

)(222 xxHWadjusted , it results that the number of

arithmetic operations (division, multiplication) and memory
accesses are decreased substantially. This will make the
algorithm perform faster due to a reduced number of operations
needed for computation of the adjusted variance for the search
window [13]. Figure 2 shows the proposed optimization of the
detection algorithms in the two detection modes (scaling the
image and scaling the classifiers).

Fig. 2. Proposed face detection acceleration algorithm

In order to compare the performance of the OpenCV 2.2
baseline face detection and the accelerated Viola-Jones
algorithm, and to analyze the influence of the configuration

parameters, both implementations have been compiled and
speed optimized for 64 bit Win7 OS using Visual Studio 2010
Profesional edition. The verification PC has a Pentium Dual-
Core CPU T4300, with L1 cache of 128KB, L2 unified cache
1024KB and the OS is Windows 7 Home Edition 64 bits.

Both implementation (OpenCV’s implementation and
accelerated Viola-Jones version) have received the same test
VGA (640x480) images and the same configuration
parameters. In Table II the configuration have different scale
factor (sf) and minimum search window dimensions (swd):
sf=1.1 and swd=20x20 (Conf 1); sf=1.2 and swd=20x20 (Conf
2); sf=1.1 and swd=30x30 (Conf 3).

TABLE II. PERFORMANCES OF OPENCV AND ACCELERATED VIOLA-
JONES IMPLEMENTATION FOR DIFFERENT PARAMETERS

 Mode 1. Img scaling Mode 2. Haar scaling
OpenCV
Baseline

Optimized
version

OpenCV
Baseline

Optimized
version

Conf 1
speed

708.8 ms
1.41 FPS

185.7ms
5.38FPS

843.9 ms
1.18FPS

188.1ms
5.3FPS

Search
windows

602348 599816 697582 631343

Conf 2
speed

409.5 ms
2.44FPS

164.8ms
6.06FPS

479.7ms
2.08FPS

140.1ms
7.1FPS

Search
windows

354321 353935 381474 364635

Conf 3
speed

348.1ms
2.87FPS

99.4ms
10FPS

456.7 ms
2.18FPS

130.6ms
7.6FPS

Search
windows

352718 351184 402519 332917

As the proposed implementation has kept the control
mechanism for search windows identical with the one form the
OpenCV baseline it is difficult to make a comparison with
previous work done in accelerating detection due to the lack of
setup information and how many search windows are
evaluated. There is one exception Cho et al [6] where they use
mode1 with a scaling factor of 1.2, minimal search window
dimension of 20x20 and the search window is applied with a
vertical horizontal step of 1. Table III shows the comparison
results.

TABLE III. PERFORMANCE OF THE OPENCV BASELINE AND
ACCELERATED VIOLA-JONES USING THE CHO ET AL.[6] SETUP

Implementation
Mode1-Image scaling

Speed Search Windows

OpenCV
974.3 ms
1.02FPS

881484

Accelerate Viola-Jones
451.4 ms
2.21 FPS

880585

As shown in Tables II and III the number of search
windows depends heavily on the configuration setup and also
of the control mechanism. Also measuring the number of
searched windows performed by the detection system gives
more realistic information about the detection performance.
The speeds obtained by the accelerated Viola-Jones
implementation in some configuration are faster that any single
GPU acceleration [3], [7] and for the highest number of search
windows (Table III) it has closer performances to [3] and [7].

VII. HARDWARE ACCELERATION OF THE EMBEDDED FACE

DETECTION SYSTEM

After a careful analysis of the face detection application it
was found that the software bottleneck resided in the huge
amount of memory read access, multiplication, and squared
root operations done by all the search window evaluations. In
order to detect a face from an image, hundreds of thousands of
search windows are evaluated and this represents the most time
consuming part of the application. Therefore it was decided to
accelerate the evaluation of search windows by employing a
harware IP module [14]. The proposed IP module and all
internal components are clocked by the system clock (80 Mhz).

In order to keep a high degree of flexibly and share the
hardware resources with the rest of the LEON3 system it was
decided for the IMSE_OBJECT_DETECTION IP to have two
operating modes: the free mode in which LEON3 processor
can use the IP hardware resources to implement other
functionalities, and the face detection mode. Figure 3 shows
the block diagram of the IP module.

Fig. 3. IMSE_OBJECT_DETECTION IP block diagram

As it was previously mentioned the IP module implements
the search window algorithm. The software application will
load the compressed form of Haar-like features into the Shared
Memory before any detection operation. Before starting any
detection operation the configuration registers (scale, x-y
coordinates, image dimension, etc.) must be configured with
the desired configuration values. When the start command is
given the face detection procedure is fully controlled by the
component Imse_stage_evaluator_unit (see Figure 3). This unit
is the core engine for accelerating face detection. At the end of
the detection the component signalize if a face is present, the
Status register is updated with the detection result and an
interrupt is generated.

The evaluator unit has a multiple state machine control in
order to deal with variable memory access latencies. Beside the
multiple state machine control this unit contains specialized
modules. Haar_feature_rect_calc module is used to calculate

the area of integral rectangles using only the corners data.
Haar_feature_scaler is a pipelined module for Haar-like
feature scaling and search window address computation.
Sqrt64_array_pipe16 is 64 bit pipelined integer square root
unit that has data output latency of 16 clocks. Mul41x33signed
is a 41x33 signed multiplier. The Register Bank contains APB
bus accessible registers that are used for the core configuration
and control. The APB Slave Interface connects the IP module
to the APB bus and enables the LEON3 processor to access the
registers from Register Bank. The AHB Master/Slave Interface
is a simple DMA interface.

The IP module has a shared memory based on a dual-port
RAM with AHB interface. The Shared Memory is used by the
IP module to store the compressed Haar-like features. When
the module works in “Free Mode” LEON3 can use the Shared
Memory as additional on chip RAM memory.

VIII. RESULTS

The proposed LEON3 face detection system works with
images (colored or grey) having a resolution smaller than
1024x1024 pixels. It fully uses the OpenCV cascade of
classifiers for frontal faces and it can store into the IP Shared
Memory approximately 2730 Haar-like classifiers. It also
works with a greater number of Haar-like classifiers but the
extra classifiers must be store into the program memory and
then loaded into the Shared Memory at the appropriate
moment.

The system was implemented on a Xilinx XC5VLX50
FPGA. The entire LEON3 face detection system uses 6,435
slices (up to 89% of the device utilization) and 10,962 of flip-
flops (up to 38% of the device utilization). The estimated static
power consumption (measured with Xpower Analyzer from
Xilinx) for the LEON3 core is 603 mW. The most power
consuming components are the DDR2 memory controller (216
mW), DVI interface (136.06 mW) and the clock generators.
The LEON3 processor consumes 32.39 mW and even though
the IMSE_OBJECT_DETECTION IP uses more flip flops and
has approximately the same amount of logic, its power
consumption is 6 times less (5.39 mW) than the LEON3
processor.

A. Performance

In order to measure the detection performances of the
LEON3 embedded detection system three distinct software
implementations for face detection were compared:

 Ported OpenCV software for embedded systems.

 Software accelerated version of the ported software.

 Hardware + Software accelerated version of the ported
software.

The measured performances metrics are the execution time
and the number of searched windows performed. For the first
two implementations the performances were measured for two
distinct modes of detection (mode 1 and mode 2). For each
mode, four different set-up parameters were used (setup 1 to 4)
for the minimum size search window (S) and the scale step
(step): 1) S=30x30, step=1.2; 2) S=30x30, step=1.1; 3)
S=20x20, step=1.2; 4) S=20x20, step=1.1.

From Figure 4 it results that the accelerated face detection
application is 3-4 times faster than the ported OpenCV
application for both modes. Using the hardware acceleration IP
the face detection is 10-12 times faster than the ported face
detection application running exclusively on LEON3 processor
core.

Fig. 4. Detection times of three distinct implementations for VGA image. a)
Scale Image mode (Mode 1), b) Scale Haar-like features mode (Mode 2)

B. Detection Accuracy

In order to analyze the detection accuracy an specific
software has been developed. The PC based test bench
software configures LEON3 based detection system and send
the test images. Then it receives the detection results for further
analysis. The test setup is based on 2409 frontal face images
from the color FERET database [15].

The accuracy of face detection can be described using
receiver operating characteristic (ROC), which is a curve
widely adopted in signal-detection theory. An ROC is
essentially a scatterplot that shows the relationship between the
false acceptance rate and the true acceptance rate. Because the
number of evaluated negative regions is very high for detection
algorithms, for analysis, it was adopted a modified version of
ROC curve introduced in FDDB[16] in which the horizontal
axis contains only false positive for the entire test image set.

Figure 5 shows the ROC curves for OpenCV software and
the IP module. Both have very similar results. There is a small
difference between the two ROC curves because the data result
(i.e detected faces) aggregation mechanism is slightly different
in the analysis tools.

 (a) (b)
Fig. 5. ROC curves: a) OpenCV face detection software,
b) IMSE_OBJECT_DETECTION IP based system

IX. CONCLUSIONS

This communication presents a design methodology for
face detection embedded implementation. The starting point
was OpenCV library resources for video face detection. For it
some modifications has been make adapting and optimizing the
OpenCV baseline application for an embedded environment.
This modifications can be summarized in changing the floating

point operations by integer ones, analyzing the performance in
order to detect the system bottlenecks, and algorithmic speed-
up by not scaling the Haar-like feature weights and adjusting
the computation of variance. Finally, those tasks requiring a
greater computation are implemented in hardware, accelerating
the face detection process, and enabling its application in
embedded systems that require real time.

ACKNOWLEDGEMENT

This work was supported in part by Spanish Ministerio de
Ciencia y Tecnología under the Project TEC2011-24319, and
by Junta de Andalucía under the Project P08-TIC-03674. Co-
financed by FEDER.

REFERENCES
[1] K. Suzuki, J. Kobayashi, T. Takeshima; K. Yamada, "Detection of

unusual facial expression for human support systems," 34th Annual
Conference of IEEE Industrial Electronics. IECON 2008, pp.3414,3418,
10-13 Nov. 2008.

[2] M. Paschero, G. Del Vescovo, L. Benucci, A. Rizzi, M. Santello, G.
Fabbri, F.M.F. Mascioli, "A real time classifier for emotion and stress
recognition in a vehicle driver," IEEE International Symposium
on Industrial Electronics (ISIE), pp.1690,1695, 28-31 May 2012.

[3] T. Teocharides, N. Vijaykrishnam, M.J. Irwin, “A Parallel Architecture
for Hardware Face Detection”, Proc. IEEE Computer Society Annual
Symposium Emerging VLSI Technologies and Architectures, pp. 452-
453, 2006.

[4] V. Nair, P.O. Laprise, J.J. Clark, “An FPGA-Based People Detection
System”, EURASIP Journal on Applied Signal Processing, pp. 1047-
1061, 2005.

[5] C. Gao, S.L. Lu, “Novel FPGA Based Haar Classifier Face Detection
Algorithm Acceleration", Proc. International Conference on Field
Programmable Logic and Applications, 2008.

[6] J.Cho, S. Mirzaei, J. Oberg, R. Kastner, “FPGA-Based Face Detection
System Using Haar Classifiers”, Proc. ACM/SIGDA International
Symposium on Field Programmable Gate Arrays (FPGA'09), pp. 103-
112, 2009.

[7] D. Hefenbrock, J. Oberg, N.T.N. Thanh, R. Kastner, S.B. Baden,
“Accelerating Viola-Jones Face Detection to FPGA-Level using GPUs”,
Proc. IEEE Annual International Symposium on Field-Programmable
Custom Computing Machines, 2010.

[8] P. Viola, M.J. Jones, “Robust Real-Time Face Detection”, International
Journal of Computer Vision, v.57 n.2, pp.137-154, May 2004.

[9] R.E. Schapire, Y. Freund, P. Bartlett, W.S. Lee, “Boosting the Margin:
A New Explanation for the Effectiveness of Voting Methods”, The
Annals of Statistics, pp. 1651-1686, 1998.

[10] OpenCV, link: http://sourceforge.net/projects/opencvlibrary/

[11] LEON3, link: http:// www.gaisler.com/

[12] G. Bradski, A. Kaehler, “Learning OpenCV”, O’Reilly Media, pp.506-
516, September 2008.

[13] L. Acasandrei, A. Barriga: “Accelerating Viola-Jones Face Detection for
Embedded and SoC Environments”, Fifth ACM/IEEE International
Conference on Distributed Smart Cameras (ICDSC’2011), Ghent,
Belgium, Aug. 2011.

[14] L. Acasandrei and A. Barriga: ‘FPGA implementation of an embedded
face detection system based on LEON3’, Int. Conf. on Image
Processing, Computer Vision, and Pattern Recognition, Jul. 2012.

[15] P.J. Phillips, H. Wechsler, J. Huang, P. Rauss: "The FERET database
and evaluation procedure for face recognition algorithms," Image and
Vision Computing J, Vol. 16, No. 5, pp. 295-306, 1998.

[16] J. Vidit and E.L. Miller: "FDDB: A Benchmark for Face Detection in
Unconstrained Settings", Technical Report UM-CS-2010-009, Dept. of
Computer Science, University of Massachusetts, 2010.

a) b)

