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1 Introduction
Pervasive applications which support smart environ-

ments integrate many electronic devices which are often
very different in their nature, function, communication
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protocols and computational capabilities. Such heteroge-
neity comes at the price of increased levels of complexity
during the development and maintenance stages of any
modern pervasive application. In fact, developers have to
deal with low-level hardware, communication networks and
network protocols, orchestrating all of these different re-
sources in order to provide high-level functionality to users
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and applications. The coordination of all the different fac-
tors proves quite challenging, as developers need to be aware
of all the elements in the environment, all the way up from
the low-level ones to the high-level ones, taking into ac-
count the behavior of those elements in all the architectural
layers. Moreover, there are currently many different tech-
nologies which address the same functional requirements,
making in-depth studies necessary in order to choose one
technology over the other. Therefore, code optimization and
debugging can arguably become a daunting task in such
pervasive environments.

A solution to this particular problem can be found in
middleware [1]. Middleware represents a software abstrac-
tion layer, which basically encapsulates the underlying ele-
ments of the environment and provides a unified way of
making them accessible to high-level software applications.
In addition to this unification, middleware can also provide
additional services or functionality to applications which
make use of it. For instance, and depending on the particu-
lar focus of the middleware, it can provide context manage-
ment services, appliance control services, user management
services, services related to security and others. Generally
speaking, any system where seamless [2] integration of dif-
ferent devices and resources is a key to success can benefit
from adopting a middleware-based solution. Pervasive com-
puting environments, in particular, clearly benefit from us-
ing one or more standard abstraction layers, mainly due to
the progressively growing number of devices that need to
be integrated, and the logical degree of heterogeneity they
convey.

The rest of the document is structured as follows. Sec-
tion 2 deals with the state of the art in context-acquisition
technologies and, in particular, technologies for location and
sensor network technologies. Section 3 focuses in
middleware as a tool for integration in ubiquitous environ-
ments. Finally, Section 4 analyzes some of the currently
available middleware platforms and their trends.

2 Technologies for Ubiquitous Computing
A particularly relevant technological area related to ubiq-

uitous computing is the one providing the tools for context
information acquisition, processing, and its efficient usage
by applications. Technologies designed to find out the physi-
cal location of people or objects, and technologies for the
transmission and aggregation of generic information pro-
vided by one or more sensors are two clear examples of
current and popular applications of ubiquitous computing.

2.1 Location Technologies
As Mark Weiser stated at the end of the 1980s, location

is a pillar of ubiquitous computing. In contrast with out-
door location, where GPS and, more recently, GSM are the
only available technologies, indoor location systems present
a greater degree of heterogeneity, with a wide variety of
technologies that allow for locating a mobile object or body:
artificial vision, field sensors, radio-frequency, etc. As there
is no standard indoor location technology, each solution is

constrained to a specific situation. Moreover, these solu-
tions have a relatively high cost for their features, which
currently limits their generalization.

For outdoor location, well-known solutions exist, such
as GPS [3], or the European version, Galileo [4]. Both are
based on the classic multilateration idea, requiring the data
from at least three satellites to compute a location, and usu-
ally a fourth satellite to validate that result. Location errors
with these systems are within 5 meters in favorable envi-
ronments, and it is possible to reduce them to 3 meters with
DGPS which uses terrestrial stations. Another interesting
point is that GPS is a widely adopted standard. On the other
hand, its main drawback is that signal reception is not guar-
anteed indoors, or in cities with big buildings, which hin-
ders its use in these scenarios [5].

GSM location also acquires a great significance due to
the spectacular increase in mobile phone usage, and the FCC
requirement of emergency call location traceability in the
United States [6] and the European Union [7]. The easiest
way to obtain the location of a mobile phone is placing the
mobile terminal within the cell that it is connected to the
Cell of Origin (COA), which can achieve an accuracy of
several hundred meters in cities [5]. But this accuracy is not
enough for some applications, and there are more sophisti-
cated methods based on measuring the signal strength
(RSSI), the angle of arrival (AOA) and particularly the time
of arrival (TOA) or the time difference of arrival (TDOA).
However, these techniques are highly affected by the inter-
ferences generated by the environment, commonly denoted
as non-line-of-sight (NLOS) errors.

Focusing on indoor location, the number of existing
typologies to perform location dramatically increases:
ultrasounds, radiofrequency, artificial vision, magnetic field
sensors, inertial sensors, etc. The systems that show a bet-
ter coverage/accuracy/cost ratio are those which combine
ultrasound technologies with radiofrequency, taking advan-
tage of the different propagation speeds of both signals to
precisely measure the time of flight. Each system uses dif-
ferent strategies, leading to differences in location accuracy
—both spatial and temporal—, scalability, ease of deploy-
ment, adaptability to predefined profiles, centralized or de-
centralized management, etc.

AT&T Laboratories Cambridge developed Active Bat [8].
This system has a controller who sends a location query via
radiofrequency. Then, the device to be located sends an ultra-
sound pulse at the same time that the controller sends a syn-
chronization signal to an array of sensors placed on the build-
ing ceiling which are connected by wires. Each sensor meas-
ures the time between the synchronization signal and the ultra-
sound pulse arrival, and the measurements are processed by
the controller which computes the location. In its last version
[9], it is possible to locate three mobile devices within 3 cm up
to 50 times per second. Its main drawbacks are the big infra-
structure needed (a 1000 square meters area requires 750 sen-
sors), and its dependence on the correct placement of sensors.
Scalability, ease of deployment and the global cost are there-
fore the main drawbacks of this system.
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The Cricket system [10], developed by MIT, uses bea-
cons, distributed along the ceilings and walls of a building,
which emit an ultrasound pulse at the same time as they
send information via radiofrequency. Receivers placed on
the device to be located listen to those signals and send the
acquired information to an intelligent device connected to
them. This device runs an algorithm that estimates the dis-
tances to the beacons and then, via triangulation, calculates
the location of the mobile object. This system shows simi-
lar drawbacks to the ones present in the Active Bat system,
requiring a network of approximately one sensor per square
meter to achieve an accuracy of one meter. Another incon-
venient is that, due to the high computational load, receiv-
ers must be connected to moderately intelligent devices, such
as PDAs or laptops.

Finally, another noteworthy system developed by MIT
is the one known as Constellation [11], which combines
ultrasounds with infrared radiation instead of
radiofrequency, and also uses inertial sensors to obtain a
location by double integration of the acceleration. This sys-
tem offers better features than most of the previously re-
viewed systems, with a high refresh rate and millimetric
accuracy, providing even orientation information. It is ro-
bust and immune enough to occlusions, but requires a big
infrastructure and has a limited coverage.

2.2 Sensor Networks
A sensor network is usually composed of a relatively

high number of sensors (typically 100 to 1000) intercon-
nected through wireless links. The topology of a sensor
network is usually highly variable. In fact, the network au-
tonomously organizes itself, with information routing, fault
tolerance, and the like, performed in a cooperative way by
the sensors. Sensors (or nodes) are usually low-cost and
therefore have limited resources: battery, memory, compu-
ter power, bandwidth, etc. Particularly, energy consump-
tion is a critical concern since it limits data transmission
rate and range, as well as network autonomy. A broadcast
communication paradigm is generally used, and traffic in
these networks has some unique characteristics, such as
being typically synchronous. For instance, in some sensor
networks, all nodes activate themselves at the same time
when they detect a change in one of the physical magnitudes
being sensed (e.g. temperature).

Although significant advances have been made in wire-
less sensor networks (WSN), this is still an open research
issue. Currently, the IEEE 802.15.4 is the de facto standard,
but there exist a number of alternative or complementary
technologies that we briefly discuss below.

Bluetooth [12] is a mature, widely accepted technology
focused in wireless personal area networks, with data rates
up to 1 Mbps and a range of 10 meters. Bluetooth devices
form networks called piconets with up to 7 nodes (slaves)
coordinated by a master. Although multiple piconets can be
interconnected forming scatternets, the resulting number
of nodes is still low for most typical sensor network appli-
cations. This fact, together with its relatively high power

consumption, makes this technology an alternative for some
specific situations, but not a reference technology for WSNs.

Ultra Wide Band (UWB) [13] is currently being intro-
duced in the market, due to recent regulations on ultra-wide
band communications in Europe and the U.S.A. This tech-
nology has been developed for high-speed personal area
networks, with data rates of up to 500 Mbps across a dis-
tance of 2 meters, and 100 Mbps across 10 meters. How-
ever, the use of this technology is not only oriented towards
high speed applications, as it is also being used in sensor
networks with high bandwidth requirements (Wireless
Multimedia Sensor Networks-WMSNs). The high data rate
of UWB makes this the technology of choice for future
wireless connections like WirelessUSB and WiMax. Fur-
thermore, its adoption as a physical layer option for
Bluetooth is being considered.

Wibree is a proposal from Nokia [14] for WSN where
the Bluetooth physical layer is used and the higher layer
protocols are simplified in order to guarantee lower power
consumption, more adequate to the needs of WSNs (often
built using battery powered devices). The proposal is very
recent but it is rapidly gaining momentum and Wibree has
just been included in the Bluetooth specification.

The Zigbee technology, based on the IEEE 802.15.4
standard, was developed by the ZigBee Alliance [15], and
has become a de facto standard for low-power sensor net-
works. Currently, a high number of manufacturers offer
hardware devices and development kits for this technology,
such as the kits offered by Ember [16].

Among the most recent technologies, it is worth men-
tioning both ANT and SP100. ANT [17] is a technology for
WSN nodes based on the wireless technology from
Dynastream [18]. It offers a performance similar to that of
Zigbee with slightly lower power consumption and a data
rate close to that of Bluetooth. SP100, on the other hand, is
a standard from Honeywell [19] for wireless communica-
tions in industrial and control applications, in direct com-
petition with Zigbee and Bluetooth. It is expected that SP100
devices will have battery life of up to 10 years.

3 A Middleware-based Approach
The aforementioned example applications of location

and sensor networks can be seen as specialised cases of
ubiquitous computing. However, smart environments of the
future will probably integrate such applications inside a
wider collection of  subsystems that will conform the per-
vasive environment and will therefore benefit from inte-
grative middleware solutions in order to minimize the com-
plexity of the system. We will consider three fundamental
aspects of this type of generic smart environments: acquisi-
tion of contextual information, control of the environment
and user interaction with the environment.

3.1 Acquisition of Contextual Information
In pervasive applications and environments, we define

context as a representation of the knowledge that a system
has about the state of the system itself. By definition, con-
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text in pervasive environments is partial, due to constraints
in sensing technologies and logical limits found in the al-
gorithms which manage context. However, context infor-
mation, although partial, is an invaluable resource for per-
vasive applications, as it allows applications to gather in-
formation about the real world, and adapt their behavior
accordingly. Context is not just a snapshot [20] of a perva-
sive environment at a particular moment. It usually repre-
sents information from a given time-frame in the life of the
pervasive environment, providing the basis for systems
which learn from their past context, provide enhanced ad-
aptation capabilities and therefore support proactive deci-
sion-making with varying degrees of autonomy.

Contextual resources include both the sensing hardware
and the sensed information. Nowadays, many types of elec-
tronic devices, such as motes [21] and most handheld de-
vices such as cell phones have sensing capabilities of one
type or another. The most widespread basic sensors include
temperature, humidity, acceleration and lighting sensors,
while complex or applied sensors offer more refined sens-
ing information, such as the readings provided by motion-
detection, intrusion-detection or fall-detection sensors. The
pool of raw sensor readings can be processed by an appli-
cation to provide contextual information. Contextual infor-
mation can be created using low-level context processing,
such as evaluating individual readings, or it can be inferred
and composed using high-level context processing tech-
niques which take into account a part of the raw reading
pool, or even the whole pool of readings [22].

Managing contextual resources poses various challenges
to developers of pervasive applications: detection of exist-
ing contextual resources, data gathering from those re-
sources, persistence of old contextual information, infer-
ence of high-level contextual information from raw read-
ings, and others. A well-designed middleware module could
take care of all those low-level aspects of context manage-
ment, and provide applications with unified interfaces to
access those resources in a simple and efficient way. The
middleware could, in fact, provide additional functionality
by partially processing contextual information and offering
inferred context in addition to raw readings. Persistence and
optimization of various management aspects of sensor net-
works and differences in the technologies used by those
sensor networks would be transparent to the application
developer using such a middleware module.

3.2 Control of the Envionment
Control represents the ability that pervasive environ-

ments and applications have to change the environment.
These changes in the environment are achieved through
controllable devices or appliances, such as TVs, VCRs,
home automation kits, air conditioners, automated kitch-
ens, security locks and many more, depending on the par-
ticular deployment environment. For instance, in a perva-
sive health-care environment users could control specific
devices designed to augment their autonomy and comfort,
such as intelligent wheelchairs, automated doors and win-
dows, cooking appliances and such. Changes in the envi-
ronment can be initiated by applications or users, and be
reactive or proactive, depending on the particular situation
or context of the environment when control is requested
and always keeping in mind that proactive decision-mak-
ing should respect the autonomy of users and be as non
intrusive as possible. Commands are issued to devices us-
ing the most suitable communication media available in the
environment, ranging from short-range wireless interfaces
to long-range wireless interfaces, cabled computer networks
and even power line communications [23].

Therefore, control resources include not only the de-
vices or appliances which can be controlled, but also the
communication media that makes control possible. Having
many different communication technologies and device
standards which are often not interoperable with one an-
other, application developers have to decide beforehand
which devices the application will control, and develop spe-
cific bridges to that particular technology or standard. This
limitation translates into systems which only work in very
specific locations and, even then, only when controlling very
specific hardware. Thus, the variety of controllable resources
is interesting in the theoretical level, but quite a hurdle when
practical implementations of pervasive computing environ-
ments and applications are to be developed. Logically, as is
the case with context and user interaction, decoupling ap-
plications and device-specific details by adding an abstrac-
tion layer on top of the device hardware level can help mini-
mize the complexity of developing pervasive computing
applications.

A middleware module for device and appliance control
could take care of most of the complexity of discovering,
setting up, and effectively managing all controllable re-
sources in a given environment. The module could offer a

public interface ApplianceControlManager
{

public ListOfAppliances getListOfAvailableAppliances (Environment selectedEnvironment);
public ListOfCommands getListOfAvailableCommands (Appliance selectedAppliance);
public void executeCommand (Command requestedCommand, Appliance selectedAppliance);

}

Figure 1: Example of a Programmatic Control Interface.
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unified programmatic interface to applications, which would
then have all the controllable resources of the environment
at their disposal, regardless of the particular technology or
group they belong to. An example programmatic interface
is shown in Figure 1, to better illustrate the functionality
offered by the middleware module. All together, such a
module opens doors to applications which stay available
even if devices change or get replaced by newer models or
technologies. On top of abstracting the underlying network
of appliances, the middleware module for control would
have the added benefit of arbitrating control among appli-
cations, to avoid conflicting commands, set defaults, and
issue permissions for exclusive control rights over certain
resources. Overall, a middleware module for device and
appliance control, combined with a suitable model for con-
trol and controllable resources can reduce the development
time of pervasive applications which aim at changing the
environment, be it autonomously or under the strict guid-
ance of end users or administrators.

3.3 User Interaction
In the domain of pervasive computing applications and

environments, user interaction represents the communica-
tion between a user and the environment. User interaction
is mandatory for most pervasive applications, as they are
built around users and their needs, although some particu-
lar autonomous computing systems could be in charge of
an environment without the need for user interaction, and
some very specific applications could also be autonomous
in that sense. However, being an emerging technology, send-
ing information to users and getting their feedback is still
one of the main pillars of pervasive computing applications
and environments alike.

Reduced to its essence, user interaction is a two-party
communication paradigm. In spite of that, pervasive com-
puting applications and environments transform this sim-
ple paradigm and introduce new players into the game. Due
to the vast number of devices present in foreseeable perva-
sive environments, users will have a wide range of devices
at their disposal to interact with the pervasive computing
applications running in those environments. Conversely,
applications running in pervasive computing environments
will have control over many devices which could be used
to perform user interaction in the most suitable way taking
into account the context of the environment. Interaction
renderers are devices which offer their resources to the sys-
tem and the users, in order for them to communicate with
each other. Due to the heterogeneity of devices (screen sizes,
multimodal capability, computing power, etc.) and the simi-
lar heterogeneity of users (age, gender, cognitive capacity,
mobility challenges, etc.), a proper model is required to
describe the capabilities of interaction renderers and the
users interacting with them.

Managing interaction in a pervasive computing envi-
ronment can be a complex task due to the aforementioned
heterogeneity of devices and types of users. In particular,
an abstraction layer on top of interaction rendering devices

could greatly benefit pervasive application developers, pro-
viding them with a unified pool of interaction devices which
describe their capabilities in a standardized way and have
well-defined programmatic interfaces which encapsulate
their complexity. A middleware module could implement
this abstraction layer, providing a service for applications
which need to perform some sort of user interaction. Addi-
tionally, this service could offer other functionalities, such
as automated setup of interaction devices, user authentica-
tion capabilities, multimodal renderers and others.

4 The Middleware Platform
A middleware platform is a software platform for the

implementation of middleware architectures. The growing
ubiquity of network connections, the Internet, and the pro-
liferation of mobile devices and electronic devices of all
kinds have proven the utility of the middleware concept
and have, thus, lead the demand for commercial APIs and
standards for interoperability and middleware development.
Middleware platforms vary in size and form, but share a
common objective which is to provide software developers
with tools to implement the middleware solution they need
in the smallest amount of time. General purpose middleware
platforms can be divided in two big groups: open and closed
middleware platforms. The former aim at interconnecting
resources from different administrative scopes, requiring
standardized markup languages such as XML and having
performance limitations derived from being computing plat-
form independent. The latter, on the other hand, aim at cre-
ating a closed middleware solution under the authority of a
single administration, usually embracing a particular com-
puting platform and being more efficient at the expense of
interoperation flexibility. One of the clearest examples of
open middleware platforms is found in the Web Services
standard [24], while the closed middleware counterpart to
that example is best characterized by the Jini middleware
technology [25].

Middleware platforms are often service-oriented, and
use modularity and distributed computing techniques in
order to offer a service-oriented architecture where mod-
ules are interconnected with each other, offer services to
the public and at the same time make use of services of-
fered by other parties. Key services in service-oriented
architectures for pervasive environments and applications
include services to provide resource discovery, transactional
support, substitution functionalities for thin clients, authen-
tication services, and general administration services to re-
motely manage the life cycle of services in the pervasive
environment.
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Abbreviations and Acronyms
ANT: a wireless personal network protocol.
AOA: Angle of Arrival.
API: Application Programming Interface.
AT&T: American Telephone & Telegraph Co.
COA: Cell of Origin.
DGPS: Differential Global Positioning System.
FCC: Federal Communications Commission (U.S.A.).
GPS: Global Positioning System.
GSM: Global System for Mobile communications (origi-

nally Groupe Spécial Mobile).
IEEE: Institute of Electrical and Electronic Engineers.
MIT: Massachusetts Institute of Technology.
NLOS: Non-Line of Sight.
PDA: Personal Digital Assistant  (a handheld computer).
RSSI: Received Signal Strength Indication.
SP100: a standard for wireless communications.
TDOA: Time Difference of Arrival.
TOA: Time of Arrival.
UWB: Ultra Wide Band.
WMSN: Wireless Multimedia Sensor Networks.
WSN: Wireless Sensor Network.
XML: Extensible Markup Language.




