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Abstract

Background: Antimicrobial photodynamic therapy has been proposed as an alternative to suppress
subgingival species. This results from the balance among Streptococcus sanguis, Streptococcus mutans and
Candida albicans in the dental biofilm. Not all the photosensitizers have the same photodynamic effect
against the different microorganims. The objective of this study is to compare in vitro the photodynamic
effect of methylene blue (MB), rose Bengal (RB) and curcumin (CUR) in combination with white light on the
cariogenic microorganism S. mutans, S. sanguis and C. albicans.

Results: Photodynamic therapy with MB, RB and CUR inhibited 6 log 10 the growth of both bacteria but at
different concentrations: 0.31–0.62 μg/ml and 0.62–1.25 μg/ml RB were needed to photoinactivate S. mutans
and S. sanguis, respectively; 1.25–2.5 μg/ml MB for both species; whereas higher CUR concentrations (80–160 μg/ml
and 160–320 μg/ml) were required to obtain the same reduction in S. mutans and S. sanguis viability respectively. The
minimal fungicidal concentration of MB for 5 log10 CFU reduction (4.5 McFarland) was 80–160 μg/ml, whereas for RB it
ranged between 320 and 640 μg/ml. For CUR, even the maximum studied concentration (1280 μg/ml) did not reach
that inhibition. Incubation time had no effect in all experiments.

Conclusions: Photodynamic therapy with RB, MB and CUR and white light is effective in killing S. mutans and S.
sanguis strains, although MB and RB are more efficient than CUR. C. albicans required higher concentrations of all
photosensitizers to obtain a fungicidal effect, being MB the most efficient and CUR ineffective.

Background
The human oral cavity is colonized by a highly diverse
community of bacteria [1]. Dental caries is a chronic, in-
vasive disease involving demineralization of the tooth
followed by destruction of the organic phase of the
dentine [2] and it is the consequence of the interaction
between oral microflora, diet, dentition and oral envir-
onment [3].
Streptococci are the main colonizers of oral surfaces

and constitute 70 % of the cultivable bacteria existing in
the human dental plaque [4]. In fact, S. mutans is the
most prevalent microorganism of the plaque and the

primary pathogenic agent responsible for caries disease
[5], whereas S. sanguis is thought to play a benign, if not
a beneficial, role in the oral cavity [6]. On the other
hand, C. albicans is a commensal fungal species com-
monly colonizing human mucosal surfaces [7]. Falsetta
et al. [8] hypothesize that S. mutans-C. albicans associ-
ation may enhance S. mutans infection and modulate
the development of hypervirulent biofilms on tooth sur-
faces, which will in turn influence the onset and severity
of dental caries in vivo. For this reason, S. mutans, S.
sanguis and C. albicans should be included in any study
about human dental plaque microorganisms.
Photodynamic therapy (PDT) has been advocated as an

alternative to antimicrobial agents to suppress subgingival
species [9] due to the extensive and inappropriate use of
antimicrobial agents which gradually led to the develop-
ment of pervasive resistance [10]. Antimicrobial PDT
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(aPDT) is a technique that utilizes reactive oxygen species
(ROS) produced by non-toxic dye or photosensitizer (PS)
molecules in the presence of low intensity visible light to
kill mammalian or microbial cells [11]. Due to this mech-
anism, It is hypothesized that bacteria will not be easily
able to develop resistance to PDT [12].
More than 400 compounds with photosensitizing

properties are known, including dyes, drugs, chemicals
and many natural substances [13]. Methylene blue
(MB), a well-known dye with high light absorption at
665 nm, is effective in aPDT, showing ability to kill not
only Gram positive and Gram negative bacteria but
also fungi [14–17]. Rose Bengal (RB) is a xanthene dye
characterized by light absorption at wavelengths (λ) of
450–600 nm, used for the diagnosis of eye diseases
[18]. From an antimicrobial point of view, RB has
shown a good profile to photoinactivate microorgan-
isms [19–22]. Curcumin (CUR) is an intensely yellow
pigment, isolated from rhizomes of Curcuma longa,
with a peak of light absorption at 430 nm [23]. Among
its many biological activities are its anti-carcinogenic,
antioxidant, antiinflammatory, antimicrobial properties
and its hypoglycemic effects in humans [24, 25]. Some
studies have shown its capacity to effectively photoi-
nactivate in vitro C. albicans [26, 27].
There are many papers exploring the aPDT effect of

different photosensitizers (PSs) in almost all kind of mi-
crobial species [28–31]. However, only few of them com-
pare the efficacy of several photosensitizers on different
microorganism [32].
The aim of this study was to compare the photoinacti-

vation effect of three PSs, MB, RB and CUR, on S.
mutans, S. sanguis and C. albicans.

Results
Photoinactivation of bacterial suspensions
Under the experimental conditions, PDT with MB, RB
and CUR inhibited 6 log10 the growth of both strains
of bacteria reaching a bactericidal effect. However, less
concentration of RB than of the other PSs was needed
to kill Streptococcus spp. Whereas this bactericidal ef-
fect was achieved for S. mutans with a concentration of
RB as low as 0.31–0.62 μg/ml, higher MB concentration
(1.25–2.5 μg/ml) was needed to reach the same reduction.
In the case of S. sanguis, the RB and MB concentrations
needed to obtain the same bactericidal effect were quite
similar to those used for S.mutans (0.62–1.25 μg/ml and
1.25–2.5 μg/ml, respectively). Much higher concentrations
of CUR were necessary to obtain the same reduction ei-
ther for S. mutans or S. sanguis (Table 1).
Regarding the effect of the incubation time of Strepto-

coccus cells with the PSs, one hour halved the minimal
concentration of MB or RB necessary to attain 6 log10
reduction respect to an incubation time lower than

1 min (<1 min), especially for S. sanguis (Table 1). In the
case of CUR, this effect was only observed for S. sanguis.
Not significant additional benefit was achieved using 3 h
of incubation (Table 1).
Comparing the photodynamic effect of MB for S.

mutans and S. sanguis suspensions, using the optimal in-
cubation for each PS, lower concentrations were needed
to reach the bactericidal effect for S. sanguis than for S.
mutans (Fig. 1). However, no differences were observed
using RB as PS.

Photoinactivation of C. albicans
Table 1 shows the minimum fungicidal concentration
(MFC) of each PS starting from C. albicans 4.5
McFarland. Under the experimental conditions, PDT
with MB, RB but not with CUR inhibited 5 log 10
the growth of C. albicans, being the needed concen-
trations of MB smaller than the RB ones (Fig. 2). An
increase in the incubation time with the PS was only
beneficial for MB, because 3 h halved the concentra-
tion needed to reach a 5 log10 reduction in C. albi-
cans respect to shorter times (Table 1).

Discussion
Dental caries may be a disease well suited to PDT [2].
Our investigation showed that PDT using MB or RB and
a white lamp can kill cariogenic microorganisms, such
as S. mutans, S. sanguis and C. albicans. In contrast,
even though PDT with CUR reaches the same bacteri-
cidal effect, much higher concentrations were needed
and it was not effective against yeasts.
PDT efficacy depends on the microorganism, the PS

and the light used. According to our results, RB
showed higher antimicrobial photodynamic effect for

Table 1 Minimal range concentration to reduce 6 log10 of S.
mutans and S. sanguis and 5 log10 of C. albicans

Pre-irradiation
Incubation time (h)

MB RB CUR

S. mutans ATCC 35668

<1 min 1.25–2.5 μg/ml 0.31–0.62 μg/ml 80–160 μg/ml

1 h 0.62–1.25 μg/ml 0.15–0.31 μg/ml 160–320 μg/ml

3 h 0.62–1.25 μg/ml 0.31–0.62 μg/ml 160–320 μg/ml

S. sanguis ATCC 10556

<1 min 1.25–2.5 μg/ml 0.62–1.25 μg/ml 160–320 μg/ml

1 h 0.31–0.62 μg/ml 0.15–0.31 μg/ml 40–80 μg/ml

3 h 0.15–0.31 μg/ml 0.15–0.31 μg/ml 40–80 μg/ml

C. albicans ATCC 1023

<1 min 80–160 μg/ml 320–640 μg/ml >1280 μg/ml

1 h 80–160 μg/ml >1280 μg/ml >1280 μg/ml

3 h 40–80 μg/ml >1280 μg/ml >1280 μg/ml

Irradiation with metal halide lamp, λ 420–700 nm, fluence 37 J.cm−2

Soria-Lozano et al. BMC Microbiology  (2015) 15:187 Page 2 of 8



Streptococcus spp than the other PSs studied, whereas
MB was better for Candida spp. CUR always showed
the lowest antimicrobial activity; this could be due to
the fact that the higher peaks of the spectrum emis-
sion of the lamp correspond better to the absorptium
spectra of RB and MB than CUR. Table 2 shows that
compared with previous studies using aPDT with MB,
RB and CUR for S. mutans, our parameters seem to be
more efficient, especially considering the percentage
of bacterial growth inhibition of 99.9999 %. Regarding
the antimicrobial effect of MB-PDT on the viability of
S. mutans, Araujo et al. [33] needed 25 μg/ml MB to
reach 73 % inhibition. Nevertheless, our results are
not completely comparable because they used red
light, which corresponds with the maximum spectrum
absorbance of MB. Regarding RB, studies carried out
by Costa et al. [34] show that the concentration

needed to attain 6.86 log10 CFU/mL reduction of S.
mutans was 2.02 μg/ml, using a LED lamp with λ
440–460 nm and a fluence of 95 J/cm2. Comparing to
our results they needed higher concentrations of PS to
reach a similar effect, perhaps because the λ of their
lamp was less convenient than ours to excite RB; an-
other reason could be the use of distilled water as dis-
solvent, whereas they used phosphate-buffered saline
because, based in the study of Nuñez et al. [35], a sig-
nificant difference in the same aPDT experiment can
be promoted only by the use of differents dissolvents.
According to this study, CUR needs much higher con-

centration than RB and MB to photoinactivate bacteria.
This result agrees with those obtained by Araujo et al.
[23] who, using a concentration of 1500 μg/ml and blue
LEDs lamp (λ 450 nm, fluence 5.7 J/cm2), reached 60 %
inhibition of S. mutans in planktonic cultures. However,
other studies obtained 95 % reduction of S. mutans in-
stead of 6 logs using only 0.73 μg/ml CUR, which could
be explained by the higher fluence used (72 J/cm2), the λ
of the lamp (blue light) and the lower percentage of bac-
tericidal activity obtained.
Few studies compare the efficacy of different PSs to

photoinactivate oral microorganisms. Rolim et al. [36]
showed that MB, toluidine blue ortho, malachite green,
erythrosine, eosin and RB, using a red LEDs lamp for
the former and a blue one for the later, were photoactive
in vitro against S. mutans, but only toluidine blue re-
duced 99.9 % of the microorganism. In this study, they
also find a bactericidal effect of RB on S. mutans without
light. Nevertheless, in our study no antimicrobial effects
were observed when the strains were exposed either to
the dyes or the light source separately.
Considering that the cariogenic potential of S. sanguis

is deemed low compared to that of the S. mutans, the
number of reports using aPDT to kill S. sanguis is lower
than those of S. mutans. Chan et al. [37] demonstrated

Fig. 1 Photodynamic effect of MB and RB on S. sanguis and S. mutans depending on their concentration (Incubation time with the PS <1 min
and irradiation using a metal halide lamp with a fluence of 37 J/cm2)

Fig. 2 Photodynamic effect of MB and RB on C. albicans depending
on their concentration (incubation time of 1 h to MB and <1 min to
RB, and irradiation using a metal halide lamp whit a fluence
of 37 J/cm2)
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that PDT with MB was able to obtain a reduction of
99–100 % on cultures of S. sanguis. However, they used
higher concentrations (100 μg/ml) than we used but
lower fluence (21.2 J/cm2) of a diode laser (665 nm).
Pereira et al. [32] only obtained a 9.9 % inhibition with
5 μg/ml RB and they used a higher fluence. Therefore,
our results show MB as the most efficient bactericidal
PS for S. sanguis.
According to the present investigation, MB has better

antifungal profile than RB and CUR. Other authors [14,
15, 38], show that MB–aPDT is endowed with antifungal
potential against C. albicans, whereas Costa et al. [18]

show that RB only reach a 1,97 log10 reduction in C.
albicans.
Comparing the three PSs, the present study shows

that MB is the most effective PS on C. albicans while
RB was slightly superior for S. mutans. Dental caries
result from interactions among different cariogenic
microorganisms, so using or combining different PSs
could improve the efficacy of aPDT. In this sense, the
use of a white light lamp that covers all the absorption
spectrum of most PSs can efficiently excite them, mak-
ing PDT easier to perform and avoiding the necessity
of using a lamp for each PS. However, a light source
with an emission spectrum that corresponds to the
maximum absorption spectrum of each PS theoretic-
ally determines a higher efficacy [39]. Red light
sources (630–700 nm) have been used extensively in
PDT due to their relatively long wavelengths, which
can effectively penetrate biological tissues and acti-
vates some of the most effective PSs, such as pheno-
thiazines and porphyrins. Additionally, other studies
have also shown that blue light (380–520 nm) is an at-
tractive option for PDT, because blue light sources can
be used in combination with many PSs, such as RB,
eosin, erythrosine, and CUR to photoinactivate oral
microorganisms [36]. For this reason, one limitation of
our study is the use of the same lamp to photoactivate
the three PSs, whose emission spectrum matches quite
accurately with the maximum absorptium spectra of
RB and MB but not with CUR. This could influence
the bad results obtained with the later.
According to our data, the minimal bactericidal or fun-

gicidal concentration was reduced in some experiments
with a pre-irradiation incubation time of 1 h. However,
considering that the increase in the concentration was
only of one or two dilutions, the difficulty to maintain
therapeutic concentrations of the PS in the high flow con-
ditions within the oral cavity (due to saliva and/or gingival
crevicular fluid) for a long period of time [40] do not sup-
port the use of incubation time in the clinical setting.
Andrade et al. [26] using CUR and Rezusta et al. [41] with
hypericin concluded that none incubation time enhance
the photoinactivation of planktonic cultures of C. albicans.
Additionally, although the adverse effects of blood and
saliva could be avoided with the help of dental dams, not
pre-incubation time is more comfortable for the patients
and more efficient for doctors.

Conclusions
The photodynamic efficacy of each PS varies according
to the target microorganism. The combination of differ-
ent PS and white light could be a promising approach to
treat those infections caused by a combination of micro-
organisms, such as caries.

Table 2 Summary of the in vitro PDT studies using methylene
blue, rose Bengal or curcumin on S. mutans, S. sanguis and C.
albicans

PS Concentration Inhibition λ Fluence

(μg/ml) (%) (nm) (J/cm2)

S. mutans

Araújo et al. [33] MB 25 73 ND ND

Our study MB 2.5 999.999 420–700 37

Costa et al. [34] RB 2.02 999.999 440–460 95

Our study RB 0,62 999.999 420–700 37

Araújo et al. [23] CUR 1500 99.9 450 5.7

Paschoal et al. [44] CUR 1473.5 60 450 72

Manoil et al. [45] CUR 0.73 95 % 360–550 542

Our study CUR 160 999.999 420–700 37

S. sanguis

Chan et al. [37] AM 100 99–100 632.8 21.2

Our study AM 2.5 999.999 420–700 37

Pereira et al. [32] RB 5 9.9 455 95

Our study RB 0.62 999.999 420–700 37

Our study CUR 1500 999.999 420–700 37

Mattiello et al. [46] TB 200 84.32 660 10

C. albicans

Souza et al. [15] AM 100 99.9 660 39,5

Peloi et al. [14] 4 AM 22,5 95,14 663 6

Souza et al. [16] AM 100 88,6 685 28

Our study AM 160 99.999 420–700 37

Costa et al. [18] RB 23 9.9 455 95

Demidova et al.
[47]

RB 200 99,9999 525–555 80

Our study RB >1280 <99.999 420–
700

37

Andrade et al. [26] CUR 7,3 89.5 455 5,28

Dovigo et al. [48] CUR 14,8 85 440–460 18

Our study CUR >2460 <99.999 420–700 37

PS photosentizer, MB methylene blue, RB rose bengal, CUR curcumin, TB
toluidine blue ortho, ND no data
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Materials and methods
Chemicals
Methylene Blue (MB) and Curcumin (CUR) were pur-
chased from Sigma-Aldrich and Rose Bengal from Fluka.
Sabouraud Dextrose Agar (SB) and Columbia Blood
Agar (BA) were purchased from Oxoid.

Microorganisms and growth conditions
S. mutans ATCC 35668, S. sanguis ATCC 10556 and C.
albicans ATCC 10231 strains were obtained from the
American Type Culture Collection (ATCC; Rockville,
MD).
McFarland scale is recommended for performance of

susceptibility testing by CLSI [42] and EUCAST [43].
The yeasts were grown aerobically overnight in SB

medium at 35 °C. Stock inoculum suspensions were pre-
pared in distilled water and adjusted to optical densities
corresponding to 4.5 McFarland for five logs reduction
assays. Cell viability was assessed counting the number
of colony-forming units (CFU), developed on SB after an
incubation period of 24 h at 35 °C.
S. mutans and S. sanguis were grown aerobically in

BA medium at 35 °C for 48 h. Stock inoculum suspen-
sions were prepared in distilled water and adjusted to
optical densities corresponding to 0.5 McFarland for six

logs reduction assays. Cell viability was assessed count-
ing the number of CFU, developed on BA after an incu-
bation period of 48 h for S. mutans and 24 h for S.
sanguis at 35 °C.

Photosensitizer solutions
Stock MB, RB and CUR solutions were prepared in dis-
tilled water and diluted either with bidistilled water to
the desired concentration immediately prior to use. The
concentrations used ranged from 0.1–12800 μg/ml. All
solutions were prepared and handled under light-
restricted conditions.

Light source
In order to cover the spectrum absorption of the 3 PSs
(Fig. 3), MB, RB and CUR (maximal absorption λ at 665,
557 and 430 nm respectively), we used a metal halide
lamp emitting at 420–700 nm (Fig. 4) with an irradiance
of 90 mW/cm2, being the specific irradiance at the max-
imal absorptium λ of each PS : 292 μW/cm2 at 557 nm,
300 μW/cm2 at 665 nm and 186 μW /cm2 at 430 nm.
Microorganisms suspensions with the different PSs pre-

pared into a 96 wells microtiter plate, with a well diameter
of 6 mm, were irradiated for 6 min and 51 s at a distance
of 10 cm. The light beam diameter was 21 cm and the

Fig. 3 Spectrum absorption of rose Bengal a, methylene blue b and curcumin c
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fluence used 37 J/cm2. The effective light received on the
dishes results from integrating the power of the lamp for
all the effective wavelengths for each PS.

Photodynamic treatments of microorganisms
Suspensions with the desired McFarland value of every
microorganism were prepared in bidistilled water. 90 μL
of these initial suspensions was dropped into different
wells of a microtiter plate and 10 μL of the different PS
solutions were added. The final PS concentration in the
experiments used ranged from 0.01–1280 μg/ml. The
plates were then maintained in the dark for different
periods of time (<1 min, 1 and 3 h) to evaluate the influ-
ence of contact time with the PS on the outcome of the
photodynamic treatments. Afterwards, microorganisms
were subjected to illumination (37 J/cm2).
Fungal and bacterial cultures grown under the same

conditions with and without PS, either kept in the dark
or illuminated, served as controls.
After photodynamic treatments, samples and controls

were incubated at 35 °C for 24 h, in case of C. albicans
and S. sanguis experiments, and for 48 h in case of S.
mutans. The antimicrobial effect was determined by
counting the number of CFU per millilitre.
A criterion of 5 log10 unit decrease from the starting

inoculum was adopted to define fungicidal activity, and
a more stringent criterion of 6 log10 unit for bactericidal

activity, due to the differences in cell size and mass be-
tween Candida spp and Streptococcus spp (the cell con-
centration of C. albicans used was 10 times lower (>105)
than that used for the two bacterial species (>106)).
All experiments were carried out at least five times.
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