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Abstract

(Ti,Ta)(C,N) solid solution-based cermets with cobalt as the binder phase were synthesised by a
two-step milling process. The titanium—tantalum carbonitride solid solution (the ceramic
phase) was obtained via a mechanically induced self-sustaining reaction (MSR) process from
stoichiometric elemental Ti, Ta, and graphite powder blends in a nitrogen atmosphere.
Elemental Co (the binder phase) was added to the ceramic phase, and the mixture was
homogenised by mechanical milling (MM). The powdered cermet was then sintered in a
tubular furnace at temperatures ranging from 1400 °C to 1600 °C in an inert atmosphere. The
chemical composition and microstructure of the sintered cermets were characterised as
ceramic particles grown via a coalescence process and embedded in a complex (Ti,Ta)—Co
intermetallic matrix. The absence of the typical core—rim microstructure was confirmed.
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1. Introduction

Cermets based on titanium carbonitride have attracted the attention of researchers due to
their high hardness at high temperatures, thermal conductivity, chemical, thermal and wear
resistances, and low friction coefficient to metals, among other properties [1], [2], [3], [4] and
[5]. They have been successfully applied to new developments in the field of cutting tools and,
compared with WC—Co hard metals, cermets improve the surface finish, ensuring excellent
chip and tolerance control and dimensional accuracy of the workpieces [6], [7], [8] and [9].

However, cermets have poor toughness in comparison with cemented carbides [10], [11] and
[12]. This lower toughness is often ascribed to the existence of the typical core/rim
microstructure in the hard ceramic particles [13]. The core is generally composed of
undissolved Ti(C,N) particles existing in the original pre-sintered cermet. The rim phase,
meanwhile, forms during the liquid-phase sintering when complex carbonitride solid solutions
containing Ti and other transition metals precipitate from the oversaturated binder phase,
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which is made up of Ni, Co, or an alloy of these metals, onto the undissolved core particles
[14], [15], [16] and [17]. The interface formed between the core and rim can generate residual
stresses that favour crack propagation and, consequently, can deteriorate the toughness of the
material [18].

Although the core-rim interface can be detrimental to some properties of cermets, it has been
amply demonstrated that the mechanical behaviour of the rim phase is also responsible for
improving the overall properties of these materials [14], [19], [20] and [21]. Therefore, if it
were possible to remove the core phase in favour of the rim phase, the final properties of
cermets could be further enhanced, especially the fracture resistance or toughness. To achieve
this goal, some authors have proposed the use of complex transition metal carbonitrides
(master alloys) as the ceramic raw material in the manufacture of cermets [22], [23] and [24].
Moreover, by modifying the chemical composition of the complex carbonitride phase, the final
mechanical properties of cermets may be modulated [2] and [24].

Mechanically induced self-sustaining reactions (MSR) have been used as a reproducible
manufacturing process to obtain complex transition metal carbonitrides [25], [26] and [27].
This reactive milling method takes advantage of the strong exothermic character of the carbide
and nitride formation from the elements to promote self-propagating reactions during milling
and obtain complex carbonitrides with high purity and good stoichiometric control. It has also
been reported that this methodology may be successfully applied to the development of
cermets with the basic Ti(C,N)-Ni/Co composition [28] and [29]. In a previous study [30], the
development of (Ti, Ta)(C, N) cermets was successfully achieved because of the application of
the MSR technology. During the MSR process, an intermetallic binder phase is formed, which
induced the formation of an unusual inverse core—rim microstructure after sintering.

The aim of the present work was to develop cermets without the typical core-rim
microstructure using a pre-made complex (Ti, Ta)(C, N) carbonitride as the ceramic raw
material (master alloy). The chemical composition and microstructure of both the powdered
and sintered cermets obtained by this new methodology are here characterised.

2. Experimental

Titanium powder (99% in purity, < 325 mesh, Strem Chemicals), tantalum powder (99.6% in
purity, < 325 mesh, Alfa-Aesar), graphite powder (< 270 mesh, Fe < 0.4%, Merck), and cobalt
powder (99.8% in purity, < 100 mesh, Strem Chemicals) were used in this work.

First, 46.5 g of an elemental Ti, Ta, and graphite powder mixture with an atomic Ti:Ta:C ratio of
0.8:0.2:0.5 was placed together with 13 tempered steel balls (d = 20 mm, m = 32.6 g), which
corresponds to a powder-to-ball mass ratio (PBR) of ~ 1/9.3, in a 300 ml tempered steel vial
(67HRC). The mixture was ball milled under 6 atm of high-purity nitrogen gas (H20 and 02 < 3
ppm, Air Liquide) at a spinning rate of 400 rpm, for both the rotation of the supporting disc
and the superimposed rotation in the direction opposite to the vial, using a modified planetary
ball mill (Vario-Planetary Mill PULVERISETTE 4, Fritsch) to obtain by a MSR process a (Ti, Ta)(C,
N) carbonitride solid solution with a Ti0.8Ta0.2C0.5N0.5 nominal composition. The planetary
mill allowed operation at a constant gas pressure and the detection of self-propagating



reactions during milling [25]. After detecting ignition, milling was prolonged for 5 min to
ensure full conversion [31].

Subsequently, 6 g of a mixture composed of 80 wt.% of the (Ti, Ta)(C, N) ceramic phase
obtained by the MSR process and 20 wt.% of Co was introduced together with 7 tempered
steel balls (d = 15 mm, m = 13.7 g), PBR of ~ 1/16, in a 45 ml tempered steel vial (67HRC) and
ball milled under 6 atm of high-purity helium gas (H20 < 3 ppm, 02 < 2 ppm and CnHm < 0.5
ppm, Air Liquide) at a spinning rate of 600 rpm using a modified planetary ball mill (Planetary
Micro Mill PULVERISETTE 7, Fritsch) also allowing operation at a constant gas pressure. The
mixture was milled for 30 min, which was the minimum time necessary to produce the optimal
homogenisation of the powdered cermets under our experimental milling conditions, as
required to achieve an optimal densification after sintering [28].

The powdered cermets were then compacted by uniaxial pressing at 15 MPa for 5 min and
cold isostatic pressing at 200 MPa for 10 min to yield cylinders of 13 mm in diameter and 9 mm
in height. Finally, the green compacts were sintered at different temperatures from 1400 °C to
1600 °C for 60 min (heating and cooling rates of 5 °C/min) under a flowing inert atmosphere
(Argon gas, H20 < 8 ppm and 02 < 2 ppm, Linde) in a horizontal tubular furnace (AGNI Type
IGM1360 model no. RTH-180-50-1H, AGNI). The density of the sintered cermets was measured
in accordance with the Archimedes method and the total porosity by image analysis using
IMAGE PRO PLUS software.

X-ray diffraction diagrams of powders and polished surfaces of cermets were obtained with a
Panalytical X'Pert Pro instrument that had been equipped with a 6/6 goniometer using Cu Ka
radiation (40 kV, 40 mA), a secondary KB filter, and an X'Celerator detector. The diffraction
patterns were scanned from 20° to 140° (26) in a step-scan mode at a step of 0.02° and a
counting time of 275 s/step. Silicon powder (Standard Reference Material 640c, NIST) was
used for calibration of the diffraction line positions. The space group symmetry and the lattice
parameters of the phases were calculated from the whole set of peaks of the XRD diagram by
using the FULLPROF Suite free software containing DICVOL, WinPLOTR and FullProf computer
programmes [32].

Scanning electron microscopy (SEM) images were obtained on a Hitachi S-4800 SEM-FEG
microscope. Transmission electron microscopy (TEM) images and electron diffraction (ED)
patterns were taken on a 200 kV Philips CM200 microscope equipped with a SuperTwin
objective lens and a LaB6 filament (point resolution @ = 0.25 nm). Powder samples were
dispersed in ethanol, and droplets of the suspension were deposited onto a holey C film
copper grid. For the TEM characterisation of consolidated cermets, thin discs (3 mm @) were
prepared by a process of subsequent cutting, polishing, dimpling, and ion milling (DuoMiller,
Gatan Inc. and ion miller model no. 1010, Fischione). The transition metal content in the
ceramic and binder phases was measured by energy dispersive X-ray spectrometry (EDX) with
detectors coupled in both the SEM and TEM. The carbon and nitrogen content in the ceramic
phase was determined by electron energy loss spectroscopy (EELS) with a Gatan model 766-2K
parallel detection electron spectrometer in the TEM. The EELS spectra were recorded in a
diffraction mode with a collection angle of 1.45 mrad. The measured energy resolution at the
zero-loss peak of the coupled microscope/spectrometer system was approximately 2 eV. A



low-loss spectrum was also recorded with each edge in the same illuminated area. After
background subtraction with a standard power law function, the spectra were deconvoluted
for plural scattering with the Fourier-ratio method, and semi-quantitative analyses were then
conducted. All of these treatments were performed using the EL/P programme (Gatan).

3. Results and discussion

The titanium, tantalum, and graphite powder mixture milled under a nitrogen atmosphere in
the PULVERISETTE 4 mill showed a highly exothermic self-sustaining reaction (an MSR process)
after 37 min. Five minutes later, milling was stopped. After mixing the resulting sample from
this first treatment with 20 wt.% of elemental Co for 30 min in the PULVERISETTE 7 mill, the
final product was checked by XRD (Fig. 1a). The XRD diagram showed the reflection lines
corresponding to Co and a cubic phase with an Fm-3m space group. In accordance with the
reference diffraction patterns of titanium and tantalum carbides and nitrides, i.e., TiC (32-
1383), TaC (35-0801), TiN (38-1420), and TaN (49-1283), this cubic phase, which was formed
during the MSR process, was assigned to a complex titanium—tantalum carbonitride with the
general formula TixTal — xCyN1 - y. Moreover, a minor amount of unreacted tantalum was
also detected.

The Ta/Ti and C/N ratios in the TixTal - xCyN1 - y ceramic phase were determined from
multiple EDX-SEM and EELS-TEM measurements, respectively. Representative EDX and EELS
spectra are shown in Fig. 2. A Ta/Ti ratio of 0.15, lower than the 0.25 starting nominal ratio,
was found in accordance with the presence of minor unreacted Ta in the sample. Contrarily,
the EELS spectra (Fig. 2b) confirmed the presence of nitrogen in the ceramic phase and the
formation of a carbonitride phase. A C/N ratio of 1.78 was observed, which was higher than
the composition expected from the initial elemental mixture, and again, it was attributed to
the presence of the unreacted Ta. The values obtained from EDX and EELS quantification
allowed wus to propose an average composition of the ceramic phase of
Ti0.87Ta0.13C0.64N0.36, which is the average of the measurements made in 30 different
ceramic particles.

Powdered cermets composed of the complex titanium—tantalum carbonitride as the only
ceramic phase and Co as the binder phase were pressureless sintered at temperatures
between 1400 °C and 1600 °C. XRD diagrams of the sintered cermets are shown in Fig. 1(b—g),
where the reflection lines are assigned to two different phases corresponding to the ceramic
and binder components of the cermets. As expected, the reflections of the ceramic phase
matched with a TixTal - xCyN1 - y composition. However, the binder phase detected in the
XRD diagrams was not an elemental Co, but an intermetallic compound containing Ti, Ta, and
Co, as confirmed by EDX analysis. It is clear that the intermetallic phase was formed during the
liquid-phase sintering by dissolving part of the main ceramic phase and the unreacted Ta phase
present in the powdered cermet into the elemental Co.

The intermetallic phase was assigned to a cubic (Ti,Ta)Co2 solid solution by comparison with
the reference diffraction patterns of cubic-TiCo2 (17-0031) and cubic-TaCo2 (38-0736). In Fig.
3, the XRD diagrams in the 44°-47.5° 20 range are shown. This was ascertained by indexing the
XRD lines of the binder phase with DICVOLO6 software that confirmed a cubic structure with
an Fd-3m space group. The formation, during the sintering process, of this cubic (Ti,Ta)Co2
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solid solution was corroborated by ED, as illustrated in Fig. 4. This depiction shows
representative EDPs taken along the [101] and [112] zone axes in the binder area of the
cermet sintered at 1575 °C. EDX-TEM measurements in these same areas confirmed the 1:2
stoichiometry of the intermetallic phase, which can then be described as TixTal - xCo2 (Fig.
5a). The cubic carbonitride ceramic phase with an Fm-3m space group was also corroborated
by ED in this sample, and in Fig. 4, representative EDPs taken along the [001] and [101] zone
axes are shown. The presence of tantalum and titanium in the ceramic particles was confirmed
by EDX-TEM measurements (Fig. 5b).

Notably, in Fig. 1, the position of the XRD lines for the TixTal - xCyN1 - y ceramic phase is
unchanged for cermets sintered at increasing temperatures, and most importantly, appears at
exactly the same 28 position in the powdered cermet. The TixTal — xCo2 lines shifted to higher
20 values when the temperature was increased from 1400 °C to 1550 °C, suggesting a slight
change in chemical composition (Fig. 3). Determination of the lattice parameter for both
ceramic and binder phases supported these features (Table 1). The lattice parameter of the
TixTal — xCyN1 - y hard phase remained practically invariant for different temperatures, and
moreover, when compared with the powdered cermet (4.316 A). This confirms a constant
ceramic composition during the sintering process. However, the lattice parameter of the cubic
TixTal - xCo2 binder phase decreased with the sintering temperature until 1550 °C. From this
temperature, the lattice parameter reached a constant value, suggesting stability in the binder
phase composition.

A careful EDX-SEM semiquantitative analysis was performed in all the cermets to verify the
composition of ceramic and binder phases with temperature (30 different measurements for
each phase and temperature) and to confirm the general trend issued by the XRD study. The
TixTal — xCyN1 - y ceramic phase showed a constant Ta/Ti ratio of 0.15 (less than the nominal
value of 0.25 and identical to that of the powdered cermet) irrespective of the sintering
temperature and in accordance with the XRD results. In contrast, the binder phase possessed a
higher Ta/Ti ratio of 0.7 on average. This high Ta content was a consequence of the presence
of unreacted Ta in the powdered cermets that were incorporated into the binder phase during
sintering. As the sintering temperature was raised, a slight Ti enrichment was observed as a
result of the partial dissolution of TixTal - xCyN1 - y ceramic particles in the binder. Moreover,
the Co/(Ta + Ti) ratio measured in the binder phase showed the 1:2 stoichiometry found
previously for the TixTal — xCo2 intermetallic solid solution.

The density and total porosity of cermets sintered at increasing temperatures is also shown in
Table 1. The gradual decrease in the porosity of cermets with increasing sintering temperature,
as can be observed in Fig. 6, resulted in an improved density. A maximum density and a
minimum porosity were obtained at 1575 °C, which can be regarded as the optimum
pressureless sintering temperature. Above this temperature, the density was not further
enhanced. A loss of density in the specimen sintered at 1600 °C was due to a loss by gravity of
the molten binder phase because of an excessive fluidisation during the sintering process [30].

The high temperatures required for achieving full densification of cermets is attributed to the
presence of Ta in the binder phase due to its high melting point (3017 °C) when compared with
titanium (1668 °C) and cobalt (1495 °C). In a previous work dealing with cermets without



tantalum as an additive, the sintering was possible at 1400 °C by applying the same procedure
as in the present work [28].

SEM characterisation (Fig. 6) of the cermets showed that the ceramic particles did not possess
the characteristic core—rim microstructure, confirming that this can be achieved by the use of
pre-sintered complex carbonitrides (master alloys). Cermets sintered at the lower
temperatures showed the presence of ceramic particles with an irregular morphology as a
result of their partial dissolution in the liquid binder and their preferential growth through a
coalescence phenomenon. At higher sintering temperatures, the enhanced coalescence
growth led to the formation of large faceted particles of ~ 5 um with binder trapped inside.
The binder phase inside the hard particles can be also observed in Fig. 4. The ceramic particles
dissolved in the binder during sintering, with reprecipitation not being noticeable, were
probably due to insufficient binder saturation. Moreover, it is possible that particles that have
grown sufficiently by coalescence were not favoured for further growth by reprecipitation. The
smaller ceramic particles (~ 1 um) seen in the micrographs can be considered part of the
original particles. The final microstructure of the cermet sintered at the optimal temperature
was therefore characterised as having ceramic particles with a bimodal size distribution.

The absence of the core—rim can be seen more clearly when comparing the microstructure of
cermets obtained in this study with the literature [12] or with those developed in a previous
work [30], where it appeared as an inverse core—rim microstructure (Fig. 7). The presence of
the binder phase inside big faceted particles suggesting that they have grown from small ones
by a coalescence process can be observed in Fig. 7b (this work). However, large particles
observed in Fig. 7a (previous work [30]) with a core—-rim structure do not show the binder
phase inside them, which put forward a growth characterised by a dissolution/re-precipitation
process during sintering. Fig. 7 also shows that the coalescence growth leads to larger particles
than the dissolution/re-precipitation process. In Fig. 7b, some large faceted particles showed
the existence of small areas with different contrasts that could correspond to the coalescence
of particles with slightly different stoichiometries. However, these differences in composition,
if any, should be minor because EDX measurements did not allow for differentiation. However,
EDPs performed in particles exhibiting this characteristic contrast (Fig. 4) revealed a unique
structural orientation and, therefore, can be considered as monocrystalline

4, Conclusions

The use of a synthesised titanium—tantalum carbonitride solid solution (TixTal - xCyN1 - y) by
a MSR process, instead of a mixture of different ceramic phases, as the only raw ceramic
material to fabricate cermets using Co as the binder phase allowed the fabrication of cermets
without the characteristic core—rim microstructure. The pressureless sintering process did not
alter the chemical composition of the TixTal — xCyN1 - y ceramic phase. However, the
resulting binder phase was a TixTal - xCo2 intermetallic solid solution instead of the initial
elemental cobalt. The intermetallic phase formed during sintering through the dissolution of
part of the ceramic component in the Co melt and then crystallised during the cooling step.



The microstructure of the cermets was characterised as ceramic particles grew via a
coalescence process and without the typical core—rim microstructure. The coalescence of the
ceramic particles induced the trapping of the binder phase inside them. Large faceted particles
that were grown by coalescence of smaller ones possessed a single crystal structure.
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Figure captions

Figure 1. X-ray powder diffraction diagrams of powdered cermet (a) and cermets sintered at
different temperatures: (b) 1400 °C, (c) 1450 °C, (d) 1500 °C, (e) 1550 °C, (f) 1575 °C, and (g)
1600 °C. (®) TixTal - xCyN1 - y; (») cubic (TixTal - x)Co2; (#) cobalt; (O) tantalum.

Figure 2. Representative EDX-SEM and EELS-TEM spectra corresponding to the TixTal - xCyN1
-y ceramic phase.

Figure 3. X-ray powder diffraction diagrams of sintered cermets in the 44°-47.5° 28 region,
where the [311] and [222] reflections of the intermetallic phase appear. (») Cubic (TixTal -
x)Co2.

Figure 4. Bright-field TEM image and ED patterns along the [101] and [112] corresponding to
the cubic TixTal - xCo2 binder phase; and along the [001] and [101] corresponding to the
cubic TixTal - xCyN1 -y ceramic phase in cermet sintered at 1575 °C.

Figure 5. Representative EDX-TEM measurements for the (a) binder and (b) ceramic phases
shown in Fig. 4. Iron observed in the binder was due to milling media contamination and Co in
the ceramic phase to trapped binder inside the particles.

Figure 6. Representative SEM micrographs, by secondary electron mode, of cermets sintered
at 1400 °C, 1500 °C and 1575 °C.

Figure 7. SEM micrographs of TixTal - xCyN1 - y-based cermets (a) showing a core—rim
microstructure developed during sintering by a dissolution/re-precipitation process [30], and
(b) showing a microstructure without core—rim characterised by a coalescence growth.
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Table 1

Table 1. Lattice parameters of ceramic and binder cubic phases, absolute density

and total porosity of cermets sintered at increasing temperatures.

. . . , Absolute Total
Sintering . Ceramic Intermetallic density porosity
temperature (°C) ||phase () [phase (A) (glemd) (%)

11400 14.3155 16.739 l6.71 14.5 |
11450 14.3149 I6.730 |6.85 3.9 |
11500 143149 [6.720 |7.14 2.4 |
11550 l4.3153 l6.710 |7.22 1.6 |
1575 14.3150 l6.712 |7.32 0.8 |
11600 14.3149 16.713 17.27 2.0 |
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Figure 2
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Figure 3
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Figure 4

[001] -
(-220) (020)

=200
(200)

[112]

[101]

L 020 F
(-111) (11-1) ©

17



Figure 5
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Figure 6
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Figure 7
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