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Joaqúın Borrego-Dı́az and Antonia M. Chávez-González
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Abstract. A method to extend ontologies with the assistance of au-
tomated reasoning systems and preserving a kind of completeness with
respect to their associate conceptualizations is presented. The use of such
systems makes feasible the ontological insertion of new concepts, but it
is necessary to re-interpret the older ones with respect to new ontological
commitments. We illustrate the method extending a well-known ontology
about spatial relationships, the called Region Connection Calculus.

1 Introduction

Ontology Management has becomed in a critical issue in fields related with
Knowledge Representation and intelligent information processing as the Seman-
tic Web. One of the involved tasks, the most important, is the need of extending
or revising ontologies. This task may be, from the point of view of companies,
dangerous and expensive: every change in the ontology can affect to the overall
knowledge organization of the company. Moreover it is also known that the self
process of extension is hard to automatize: the tools are designed to facilitate
the syntactic extension or ontology mapping. But the effect of ontology mapping
on the logical reasoning may be, in general, unknown, and specially on the use
of automated reasoning systems [2].

The aim of this paper is to propose a formal semantics for ontology exten-
sion (following the foundational principles given in [2] and suggested by the
computer-assisted cleaning of Knowledge Databases [1]) as well as a feasible
method, assisted by Automated Reasoning Systems (ARS), to extend ontologies
preserving a certain type of robustness.

2 Lattice Categorical Extensions

We assume throughout that the conceptualization associated to the ontology is
endowed of lattice structure. Actually it is not a constraint: there are methods
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to extract lattices of concepts from data (such as the Formal Concepts Analysis,
see e.g. [8]), and an ontology is easy to be extended by definition to satisfy
it. Although we think about Description Logics as a language (a logical basis
for ontology languages like OWL, see http://www.w3.org/TR/owl-features/),
the framework is useful for First Order Logic (FOL).

A lattice categorical theory is a theory that proves the lattice structure of its
basic concepts. It is a reasonable requirement: the theory must certify the basic
relationships among them. We aim to replace completeness by lattice categoricity
to make feasible the extension of formal ontologies.

Fixed a language, let C = {C1, . . . , Cn} be a set of concept symbols and let T
be a theory (in the general case, definable concepts in T can be assumed) and let
us consider the language LC = {�, ⊥, ≤} ∪ {c : c ∈ C}. Given M |= T , we con-
sider the LC-structure L(M, C), whose universe is the set of the interpretations
in M of the concepts (� is M , ⊥ is ∅), and ≤ is the subset relation.

The relationship between L(M, C) and the self M is based in two facts. The
first one, that the lattice can be characterized by a finite set of equations E,
plus a set of formulas ΘC categorizing the lattice under completion, that is, ΘC
includes the domain closure axiom, the unique names axioms and aditionally
the axioms of lattice theory. Secondly, there is a natural translation Π of lattice
equations into FOL formulas such that if E is a set of equations characterizing
L(M, C), then M |= Π(E).

Definition 1. We say that a LC-theory E is a lattice skeleton (l.s.) for T if

– There is M |= T such that L(M, C) |= E + ΘC, and
– E + ΘC has an only model (modulo isomorphism).

Every consistent theory T has a lattice skeleton (it is sufficent to categorically
axiomatize the lattice associated to some model of T ). Intuitively, the existence
of essentially different lattice skeletons difficults the reasoning with the concep-
tualization associate to T .

Definition 2. T is called a lattice categorical (l.c.) theory if whatever two
lattice skeletons for T are equivalent modulo ΘC.

It is easy to see that every T consistent has a lattice categorical extension:
it is sufficent to consider a model M |= T , and next to find a set E of equations
such that ΘC + E has L(M, C) as only model. The theory T + Π(E) (and any
consistent extension of it) is l.c.

To simplify, we deal with a pair (T, E) -where T is lattice categorical and E
is a lattice sekeleton for T - that we call a lattice categorical core (l.c.c.). Thus,
(T, E) is a l.c.c. if T + Π(E) is a l.c. theory.

Definition 3. Given two l.c.c. (T1, E1), (T2, E2) with respect to the sets of con-
cepts C1 and C2 respectively, we say that (T2, E2) is a lattice categorical ex-
tension of (T1, E1) if L(T1, C1) ⊆ L(T2, C2) and L(T2, C2) |= E1.



3 Extending Ontologies

In order to obtain a practical method, some of the basic (theoretical) logical prin-
ciples required by the definitional methodologies of building of formal ontologies
must be weakened [3]. Such principles, in their original forms, are:

1. Ontologies should be based upon a small number of primitive concepts.
2. These primitives should be given definite model theoretic semantics.
3. Axioms should only be given for the primitive concepts.
4. Categorical axiom sets should be sought.
5. The remaining vocabulary of the ontology (which may be very large), should

be introduced purely by means of definitions.

The three first principles are assumed, but, in order to a feasible management,
the last two ones (two strong logical constraints) are weakened. The fourth one
will be replaced by lattice categoricity, more manageable than logical categoricity
or completeness. With respect to the last one, if we start with a basic theory, it
can be hard to define any new concept/relation by means of the basic elements of
the ontology. Thus, we must consider that there are ontological insertions, that
is, additions of new concepts/relations not ontologically defined on the former
ontology. This may produce a deep readdress of the domain analysis.

The method consists of four steps, assisted by an automated theorem prover
(in our case, OTTER, http://www-unix.mcs.anl.gov/AR/otter/), a model
finder (MACE4, www-unix.mcs.anl.gov/AR/mace4/), and a last stage for on-
tological reconsideration. Starting from a lattice categorical theory:

1. First, one extends the lattice of the basic concepts of the ontology by ex-
tending the selected skeleton.

2. Next, one applies MACE4 on a possible axiomatization of the new lattice
in order to obtain the new lattices. In general, the characterization of the
lattice is a theory weaker than the initial ontology.

3. The third step consists of the refinement of the skeleton in order to MACE4
exhibits one only model (that is, the theory is lattice categorical).

4. Finally, it is necessary to certify (by means OTTER or hand-made) the
unicity of above model.

The final stage of the method is not algorithmical. It consists of an ontological in-
terpretation of the new element, by re-interpreting (generally by refining) if nec-
essary, the older ones. This task, nonalgorithmical in essence, is responsability of
experts in the domain represented by the ontology. In fact, such re-interpretation
can force us to reconsider the initial ontological commitments.

4 An Example in Qualitative Spatial Reasoning

We shall apply the method for extending an ontology on Qualitative Spatial
Reasoning by means of the insertion of relations on imperfect spatial informa-
tion, concretely the well-known Region Connection Calculus (RCC) [6]. The



DC(x, y) ↔ ¬C(x, y) (x is disconnected from y)
P (x, y) ↔ ∀z[C(z, x) → C(z, y)] (x is part of y)
PP (x, y) ↔ P (x, y) ∧ ¬P (y, x) (x is proper part of y)
EQ(x, y) ↔ P (x, y) ∧ P (y, x) (x is identical with y)
O(x, y) ↔ ∃z[P (z, x) ∧ P (z, y)] (x overlaps y)
DR(x, y) ↔ ¬O(x, y) (x is discrete from y)
PO(x, y) ↔ O(x, y) ∧ ¬P (x, y) ∧ ¬P (y, x) (x partially overlaps y)
EC(x, y) ↔ C(x, y) ∧ ¬O(x, y) (x is externally connected to y)
TPP (x, y) ↔ PP (x, y) ∧ ∃z[EC(z, x) ∧ EC(z, y)] (x is a tangential prop. part of y)
NTPP (x, y) ↔ PP (x, y) ∧ ¬∃z[EC(z, x) ∧ EC(z, y)] (x is a non-tang. prop. part of y)

Fig. 1. Axioms of RCC
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Fig. 2. The skeleton E for the lattice of concepts of RCC

need of such extension arose, for example, when we applied RCC as a meta-
ontological tool for analysing and repairing anomalies in ontologies [1] [5]. RCC
is a mereotopological approach to spatial reasoning; the spatial entities are non-
empty regular sets. The primary relation is the connection, C(x, y), with in-
tended meaning: “the topological closures of x and y intersect” and basic axioms
∀x[C(x, x)] and ∀x, y[C(x, y) → C(y, x)] jointly with a set of definitions on the
main spatial relations (fig. 1). Actually the theory has other axioms (see [6]),
but these are not necessary to prove the lattice structure of the set of relations
(shown in fig. 3). Thus, RCC is lattice categorical.

4.1 Isolating a Skeleton for RCC

In order to isolate a skeleton without redundant formulas, we start with the
lattice equations induced by the Hasse diagram of the RCC-relations. Next we
sequentially remove equations of this set when such elimination does not produce
other new lattices modelling the final set. The set of equations E, see the figure
2, we obtain has an only model (is a skeleton). categorizes under completion the
lattice of the RCC-spatial relationships (given in fig. 3) [5].

4.2 Inserting New Elements

The Jointly Exhaustive and Pairwise Disjoint set (JEPD) of atomic relations
of the lattice (fig. 3) is denoted by RCC8. It represents the set of the most
specific spatial relations in RCC8. Our aim is to insert a new relation representing
undefinition, such relation must be disjoint with RCC8.
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Fig. 3. The lattice of RCC-relations (left) and the egg-yolk representation of vague
regions (right)

Theorem 1. There are only eight E-conservative extensions of the lattice of
RCC by insertion of a new relation D such that RCC8 ∪ {D} is a JEPD set.
In the proof of the theorem we use MACE4 for listing the lattice extensions,
taking as input the lattice axioms, the skeleton, the unique names principles and
the closure domain axiom. The system outputs eight extensions. Since MACE4
has not been formally verified to work correctly, it is necessary to certify that
such models are correct, and, by finding OTTER’s proofs, to show that the list
of models is exhaustive. The analysis of the extensions (fig. 4) suggests us that
the new relations represent undefinition up to a degree.

4.3 Refining the Skeleton for the New Extension

We are not specially interested here in a determinated extension, although there
exist situations where it is necessary to select one of them (by example, when we
intend to classify unaccurate data [4]). However, the refinement of the skeleton
is easy: once an extension is selected. For instance, with respect to the first
extension, it is sufficent to substitute the formula PP ≡ TPP � NTPP by the
new formula PP ≡ TPP �I1 �NTPP to obtain a skeleton E′ for the extension.
Every extension of (RCC, E′) is a l.c. extension of (RCC, E).

4.4 Final Stage: Ontological Interpretation

Finally, we need to mereotopologically interpret the new relations. In [5] four
different interpretations are offered, we tried to use some of them for supporting
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Fig. 4. The eight lattice describing the l.c. extensions of RCC by undefinition

ontological cleaning tasks. In order to show how they can be interpreted in each
case, we consider the classical egg-yolk interpretation of spatial vague regions
[7]. Intuitively, a spatial region a compounded by two subregions, as figure 3
shows, the first, y(a) (the yolk) which represents accurate locations in a, and the
second one, e(a) bounding the unaccurate locations of a. In [7] the 48 possible
spatial relations between two vague regions are shown. If we want to work with
I1, for example, its vague interpretation is I1(a, b) ≡ PP (e(a), e(b)), while RCC
relations are interpreted by the natural way.

5 Final Remarks

The method described here is a logical basis for extending ontologies. Since
there is a lack of formal notions -feasible in practice- describing features about
completeness in the evolution of formal ontologies, we think that our proposal
can be useful to add formal semantics to several ontological transformations [5]
[1], achieving in this way the logical trust. The feasibility of the method depends
of two factors: the use of efficent ARS and the simplicity of the completeness
notion, related with the conceptualization of the ontology. Future research lines
are addressed to embrace the use of roles on spatial reasoning.
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Through Automated Ontology Extensions, submitted (2005).
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