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                                                                                             Abstract
Address–Event–Representation (AER) is a communication protocol for transferring images between chips, originally developed for 
bio-inspired image-processing systems. Such systems may consist of a complicated hierarchical structure with many chips that transmit 
images among them in real time, while performing some processing (for example, convolutions). In developing AER-based systems it is 
very convenient to have available some means of generating AER streams from on-computer stored images. Rank order coding (ROC) 
and Poisson rate coding are the extremes of spikes coding. In this paper, we present a pseudo-random hardware method for generating 
AER streams in real time from a sequence of images stored in a computer’s memory. The Kolmogorov–Smirnov test has been applied to 
quantify that this method follows a Poisson distribution of the spikes. A USB–AER board, developed by our RTCAR group, have been 
used for the measurements. An example scenario of use under the EU CAVIAR project is presented.
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1. Introduction

Primate brains are structured in layers of neurons, in
which the neurons in a layer connect to a very large
number (�104) of neurons in the following layer [25]. Many
times the connectivity includes paths between non-con-
secutive layers, and even feedback connections are present.
Artificial bio-inspired software models based on such
connectivity models have overwhelmed the specialized
literature presenting many ways of performing bio-inspired
processing systems that outperform more conventionally
engineered machines [12,5]. Since these models are software
based, they operate at extremely low speeds, because of the
massive connectivity they emulate. For real-time solutions
direct hardware implementations are required. However,
hardware engineers face a very strong barrier when trying
to mimic the bio-inspired hierarchically layered structure:
the massive connectivity. In present day state-of-the-art
very large-scale integrated (VLSI) circuit technologies it is
plausible to fabricate on a single chip many thousands
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(even millions) of artificial neurons or simple processing
cells. However, it is not viable to connect physically each of
them to even a few hundreds of other neurons. The
problem is greater for multi-chip multi-layer hierarchically
structured bio-inspired systems. Address–Event–Represen-
tation (AER) is an incipient bio-inspired spike-based
technique capable of providing a hardware solution to
the inter-chip massive connectivity problem.
AER was proposed in 1991 by Sivilotti [26] for

transferring the state of an array of analog time-dependent
values from one chip to another. It uses mixed analog and
digital principles and exploits pulse density modulation for
coding information. Fig. 1 explains the principle behind the
AER basics. The Emitter chip contains an array of cells
(like, for example, a camera or artificial retina chip) where
each pixel shows a continuously varying time-dependent
state that it changes with a slow time constant (in the order
of ms). Each cell or pixel includes a local oscillator (VCO)
that generates digital pulses of minimum width (a few
nano-secconds). The density of pulses is proportional
to the state of the pixel (or pixel intensity). Each time a
pixel generates a pulse (which is called ‘‘Event’’), it
communicates to the array periphery and a digital word
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Fig. 1. Illustration of AER inter-chip communication scheme.
representing a code or address for that pixel is placed on
the external inter-chip digital bus (the AER bus). Addi-
tional handshaking lines (Acknowledge and Request) are
also used for completing the asynchronous communi-
cation. The inter-chip AER bus operates at the maximum
possible speed because of its asynchronous nature.
In the receiver chip, the pulses are directed to the pixels
whose code or address was on the bus. This way,
pixels with the same code or address in the emitter and
receiver chips will ‘‘see’’ the same pulse stream. The
receiver pixel integrates the pulses and reconstructs
the original low-frequency continuous-time waveform.
Pixels that are more active access the bus more frequently
than those less active.

Transmitting the pixel addresses allows performing extra
operations on the images while they travel from one chip to
another. For example, inserting properly coded EEPROMs
allows shifting and rotation of images. Also, the image
transmitted by one chip can be received by many receiver
chips in parallel, by properly handling the asynchronous
communication protocol. The peculiar nature of the AER
protocol also allows for very efficient convolution opera-
tions within a receiver chip [28].

There is a growing community of AER protocol users
for bio-inspired applications in vision and audition
systems, as demonstrated by the success in the last years
of the AER group at the Neuromorphic Engineering
Workshop series [4]. The goal of this community is to build
large multi-chip and multi-layer hierarchically structured
systems capable of performing complicated array data
processing in real time. The success of such systems will
strongly depend on the availability of robust and efficient
development and debugging AER tools. One such tool is a
computer interface that allows not only reading an AER
stream into a computer and displaying it on its screen in
real time, but also the opposite: from images available in
the computer’s memory, generate a synthetic AER stream
in a similar manner as would do a dedicated VLSI AER
emitter chip [2,17,16].

In the following sections we present and compare three
hardware implementations of one of the already existing
methods for synthetic AER generation (the random
method) [14], by evaluating the nature of the distribution
of the events with respect to their inter-spike-intervals
(ISIs). For this analysis we have used a hardware
USB–AER interface developed by RTCAR group.
2. Synthetic AER generation by hardware

One can think of many software algorithms that would
transform a bitmap image into an AER stream of pixel
addresses [17]. At the end, the frequency of appearance of
the address of a given pixel must be proportional to the
intensity of that pixel.
The precise location of the address pulses should not be

critical. The pulses can be slightly shifted from their
nominal positions because the AER receivers will integrate
them to recover the original pixel waveform.
However there are coding schemes where the precise

location of the address in time is critical, like Rank-order
coding proposed by Thorpe et al. [8,9], but in another
spike-timing-based computation it is not, as the Poisson
distribution [10], or rate coding [14].
From the software methods already proposed [14], we

present the hardware implementation in VHDL of the
random method. Some modifications have been made to
reduce the resources needed in the FPGA.
This method sends a sequence of addresses to the AER

bus without any buffer. Next event to be sent is selected in
real time from an image composed by N�N pixels, with N

a power of 2, and each pixel can have up to k gray levels,
with k ¼ 255 in this implementation. Each event needs a
time to be sent. Let us call it time slot. The algorithm would
implement a particular way of selecting the next address
to be transmitted, through the AER bus, in the current
time slot.
At each time slot an event could be placed in the AER

bus, or not. This method uses a linear feedback shift
register (LFSR) [20,15] for selecting the pixel of the image
in charge of sending an event, and also to decide if the
event is going to be sent or not. The LFSR has a resolution
of log(N�N� k), so the random number obtained for
each time slot is divided into:
1.
 an address for selecting a pixel of the image; and

2.
 a gray level value.
Thanks to the LFSR, each gray-level value of each pixel
is generated only once. If a pixel in the image has a value p,
then the method will validate p events along time and will
send those p events, from the k possible, for this pixel. They
will not be perfectly equidistant in time, but in average they
will be reasonably well spaced. This method has two
fundamental characteristics:
�
 It is relatively simple to be implemented in hardware.

�
 The use of the LFSR for generating the pixel and the

decision to send or not the event give to this method a
random behavior, what implies a Poisson-like distribu-
tion of events along time.

Next sections explain in more details the implementation
issues for this method with three variations to improve the



Poisson behavior. An example scenario of use is presented
and evaluated.
3. Random method

This method is an implementation of LFSR-based
random number generators. LFSR random number gen-
erators are based on a linear recurrence of the form

xn ¼ ða1xn�1 þ . . .þ akxn�kÞmod2, (1)

where k41 is the order of the recurrence, ak ¼ 1, and
ajA{0, 1} for each j. This recurrence is always purely
periodic and the period length of its longest cycle is 2k

�1 if
and only if its characteristic polynomial

PðzÞ ¼ �
Xk

i¼0

aiz
k�i (2)

is a primitive polynomial over the Galois field with two
elements [22].

With these premises and limiting the maximum number
of address events necessary to transmit an image, we know
the number of bits needed for the LFSR and the primitive
polynomial. For this implementation, the limit corresponds
to a 64� 64 image of 256 gray levels, which implies a 20-bit
LFSR.

The characteristics polynomial P(z) used for 20 bits is

PðzÞ ¼ z20 þ z17 þ 1 (3)

which corresponds to the LFSR of Fig. 2 [1].
One possible implementation could have all bits set to ‘1’

after a reset, which is the seed of the random numbers
generator. This way, the 20-bit numbers are divided into
two parts: the gray level corresponds with the 8 more
significant bits, and the address of the pixel in the image is
represented by the other 12 bits. The method works as
follows:
�
 For each time slot, the LFSR generates a 20-bit random
number.

�
 The 12 less-significant bits are used to define the address

of the pixel.

�
 Once addressed that pixel, its gray level is compared

with the 8 more significant bits of the LFSR.

�
 If the gray level of the pixel is greater or equal than the 8

MSB of the LFSR, an event is transmitted with the 12
LSB of the LFSR as the address.

�
 In the other case, no event is produced for this time slot.
Fig. 2. Linear feedback shift register for
The LFSR ensures that each possible event of each pixel
is obtained from the LFSR only once per each (220�1) time
slots.
To improve the Poisson distribution we have considered

three variations on the LFSR. The comparisons are
presented in Section 4.
This 20-bit LFSR will generate 220�1 numbers in a

random way. This can be called the period of the LFSR.
The next 220�1 numbers will be generated in the same
order than in the previous period. As these numbers covers
all the events for one image, if the gray level of the pixel is
low (for example with gray level 1), then the time between
consecutive events for this pixel will be always the same,
and equal to the period of the LFSR. This implies a no
Poisson-like distribution, but a uniform distribution. So
the behavior of the method with the LFSR presented above
seems to follow a uniform distribution for low gray-level
pixels and a Poisson distribution for high gray levels. We
will probe this with the Kolmogorov–Smirnov (K–S) test in
Section 4.
There are two parameters in the LFSR, the seed, and the

length. In the next paragraphs we present two variations
attending to the seed, and one for the length:
A.
ran
LFSR with an incremental seed. In this case, the seed of
the LFSR is changed for every 220�1 numbers
generated, and the seed is changed attending to a
counter.
B.
 LFSR with a bitwise incremental seed. Now the seed is
changed attending to a decremental counter. The
counter output is taken in the opposite order for the
seed: the less significant bit of the counter is the most
significant bit of the seed and vice-versa.
C.
 Twenty-eight-bit LFSR. To increase the period of
the LFSR we propose to increase the number of bits.
The 8-MSB are used for the gray level comparator, the
12-LSB are used for the pixel selection, and the other 8
bits are not used.
Fig. 3 shows the block diagram of the hardware
implementation of the random method for the USB–AER
FPGA. The FPGA receives a bitmap from the PC through
the USB port of the board. The image is stored into an
internal memory implemented into the FPGA. The Control
unit then obtain a number from the LFSR, uses 12 bits to
address the memory and read a pixel, and it uses another 8
bits from the LFSR to compare with the pixel value and
decide if an event is sent or not. Events to be sent are stored
dom synthetic AER generation.



Fig. 3. Hardware implementation of random method.

Fig. 4. Expected cumulative exponential ISIs distribution versus mea-

sured ISIs distribution generated by the random method for gray levels.

Fig. 5. K–S test results for random method distribution A (first), B

(middle) and C (last).
in the FIFO and the AER out state machine send them to
the AER bus. All the system works with a 100MHz clock
obtained internally from the 50MHz input clock using an
internal DLL of the FPGA.

4. Inter-spike-intervals distribution analysis

In this section we will compare the ISIs of time of this
hardware synthetic AER generation method with the
normalized distribution that it should have (a Poisson
distribution), using the K–S statistical test.

In neuro-inspired systems, signals can often be modelled
by a Poisson distribution [7,21]. A Poisson distribution can
be described by the following formula [3]:

PnðTÞ ¼
ðlTÞn

n!
e�lT , (4)

where P is the probability of having n events time interval
T. The distribution of ISIs is the probability that no event



occurs in the interval

P0ðTÞ ¼ e�lT (5)

which is the exponential distribution.
A USB–AER board with a Spartan II 200 FPGA [19]

has been used for the first random method implementation
(without improvements), using images with all pixels to
zero, except one, with different gray values. Another
USB–AER board, configured as a datalogger [19] that
captures events and their timestamp, controlled through
MATLAB, has been also used to capture the ISIs. Fig. 4
shows the cumulative probabilistic distribution of ISIs for
the events of the pixel (10,10) of one image of 64� 64
pixels. It is shown the expected exponential distribution
(continuous line) versus the measured distribution gener-
ated by the random method (stair line) (with 20-bit LFSR
with any seed change), for one pixel and ISIs for gray levels
50–255, 10� 10. As can be seen, for high gray levels, the
theoretical and observed distributions are close to each
other, which imply that the spike train generated with the
random method is close to the Poisson distribution.

The K–S test quantifies the difference between two
distributions. We have applied this test to compare how
good the observed distribution of ISIs follows the
theoretical exponential distribution. If the test result is
under the 5% one can affirm that the distributions are
practically equal. For gray levels greater that 140, the
20-LFSR random method is Poisson like.

As a gray level of 140 is very high, several alternatives
have been proposed (described in Section 3) to decrease
this frontier.

Fig. 5 shows the result of applying the K–S test to the
Random distribution obtained for the three implementa-
tions A, B and C presented. In this case the 64 pixels of the
diagonal of the 64� 64 image have been analyzed. It is
shown the K–S test of the 64 pixels, the average (bold line)
and the 5% frontier (dotted line).

These 64 pixels do not have the same behavior. This is
due to the LFSR. For each pixel address, the sequence of
numbers that the LFSR generates is different. For this
reason we have calculated also the average. One can see
that in average only implementation C passes the K–S-test
for gray levels greater than 90.

It is shown that for small gray levels implementations A
and B are not much Poisson like. The K–S test is not
passed for the average curve, but is passed for some pixels.
Fig. 6. CAVIA
As the LFSR has a period in which the sequence is
repetitive, there are few differences on ISIs for a pixel with
low gray level. Furthermore, one can observe that there are
soft differences by changing the seed algorithm. This is due
to the property of the seed in the LFSR. The seed will
change the start point of the 220�1 sequence of random
numbers, but not the sequence. We address this problem by
increasing the number of bits in the LFSR (C), what
implies a longer period in the LFSR (256 frames longer in
this case). The K–S test has the best result for implementa-
tion C, where the average passes the test for a gray level
of 90, and there are pixels that pass the test with a 70
gray level.

5. CAVIAR scenario

Complex systems developed by Neuromorphic Engineers
require interfaces to interconnect them and to connect
them to PCs for debugging and/or other purposes. This
milestone was the start point for the development of a set
of AER tools under the European Project CAVIAR. We
are four different partners working together in the design
of a neuromorphic vision system totally based on AER.
CAVIAR has connected the biggest AER chain at the
moment [24]. This chain is composed by a 64� 64 retina
that spikes with temporal and contrast changes [13], two
convolution chips to detect a ball at different distances
from the retina [23], an object chip to filter the convolution
activity [18] and a learning stage composed by two chips:
delay line and learning [11]. To make all this vision system
possible, a set of AER tools for debugging and inter-
connection [19] purposes are not only useful, but also
necessary.
Fig. 6 shows the AER system mounted under CAVIAR.

In this chain, we have tested our random method generator
(implementation C) in the following ways:

Experiment 1. Using the framegrabber firmware of the
USB–AER board, we have connected the AER output of
the retina to the USB–AER board. The board is able to
integrate events during a period of 50ms. We have
recorded a sequence of frames (a video) of the retina.
The stimulus of the retina was a black circle over a white
sheet and an irregular black square rotating at a low speed.
Then, the retina chip was replaced by a USB–AER
configured with the random method AER generator
R scenario.



Fig. 7. Kolmogorov–Smirnov test results. Left column: retina events. Right column: Poison generator events. Second row: convolution chip output

(experiment 1). Third row: WTA chip output (experiment 2).



Table 1

KS test average results for the CAVIAR convolution and WTA chips

stimulated by Tmpdiff retina and random method generator

K–S retina/

generator

output

K–S

convolution

chip output

K–S WTA

chip output

Retina 0.43 0.80 0.27

Random method

generator

0.05 0.29 0.13
(implementation C). We logged the sequence of events at
the output of the generator and at the output of the
convolution chip. Fig. 7 shows the K–S test results for the
sequences of events of each pixel of the 64� 64 frame (dark
figure) and the 5% plane frontier of the test (light curve).
The K–S test has been applied to the output of the chips
using the retina sequence of events as the input, and using
the output of the random method. Table 1 shows the
average values of the K–S test. It can be seen that the
output of neither the retina, nor the convolution chip are
Poisson like. This is due to the design of the chips that are
based on the integrate and fire neuron. It is stated that this
model of neuron cannot produce a Poisson-like output
distribution [27], although the input is Poisson-like.

Experiment 2. We have recorded the sequence of events of
the output of the convolution chip with the same input
stimulus of the retina using a USB–AER board configured
as a framegrabber. Then we have replaced the retina and
the convolution chip with the random AER generator
28-LFSR (implementation C). Then we have logged the
output of the WTA chip. Fig. 7 shows the K–S test results
for each pixel of the 32� 32-output images. As can be seen
the WTA chip do not produce an output with a Poisson
distribution, because the chip is also based on the IF
neuron.

Although any output is Poisson like, if we use the
random method to stimulate the chips, the output
produced is more Poisson like than if we use the retina.

6. Conclusions

We have presented three hardware implementation of
the random method for synthetic AER generation. We
have demonstrated that the output distribution of events
follows a Poisson distribution quite well. Therefore, it
could be a very realistic method to be used for the output
stage of a neuro-inspired design.

We have demonstrated that for low frequency of events,
this method will need more bits in the LFSR implementa-
tion to pass the K–S test for the Poisson distribution.

In contrast to already existing AER generators like [6],
this USB–AER board with the random AER generator
firmware directly generates Poisson spike trains instead of
sequencing raw spike trains.
The experiment with the CAVIAR scenario reinforces
the Softky and Koch [27] hypothesis that says that
integrate-and-fire (IF) neurons require a Random number
generator inside the neuron to produce a Poisson distribu-
tion. Both, the convolution chip and the WTA object chip,
developed under CAVIAR have been designed around the
IF VLSI neuron model, with no random number generator
inside. Therefore, although one stimulates those chips with
a Poisson distribution, they do not reproduce it, as shown
in Fig. 7.
Using an implementation of this method at the output

stage of an AER chip, the output will warranty a Poisson
distribution. This Poisson distribution could be improved
by increasing the bits of the LFSR that generates the
output random sequence of events.
The USB–AER board running with a syntethic AER

generator, the datalogger, and with the MATLAB inter-
face, is a useful tool for testing and debugging AER
systems.
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