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Abstract. Laser dynamics is traditionally modeled using differential
equations. Recently, a new approach has been introduced in which laser
dynamics is modeled using two-dimensional Cellular Automata (CA). In
this work, we study a modified version of this model in order to simulate
the dynamics of pulsed pumped lasers. The results of the CA approach
are in qualitative agreement with the outcome of the numerical integra-
tion of the laser rate equations.

1 Introduction

A laser device generates or amplifies electromagnetic radiation based on the
phenomenon of stimulated emission. It is basically composed of:

1. A laser medium: an appropriate collection of atoms, molecules, ions or a
semiconductor crystal (we will refer to these elements in general as ”atoms”).

2. A pumping process that excites electrons from those atoms to upper energy
levels, due to some external electrical, optical or chemical energy source.

3. Optical feedback elements that reflects repeatedly the radiation beam into
the laser medium (in a laser oscillator), or allow it to pass only once through
it (in a laser amplifier).

The working principle of laser is stimulated emission: an excited atom can
decay to a lower state stimulated by the presence of a photon with energy equal 
to the difference between the two energy levels, emitting a second photon with 
the same frequency and propagating in the same direction. The process of ab-
sorption has the same probability, so stimulated emission dominates only when 
a population inversion is induced in the material by some pumping mechanism. 

A simplified but still realistic model of many real lasers is the four-level laser 
system shown in Fig. 1. The population dynamics of a laser (the variation with
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Fig. 1. Schematic view of a four-level laser system.

time in the number of laser photons and in the population inversion, or number
of electrons in the upper laser level minus the number of electrons in the lower
laser level) is usually described as a system of coupled differential equations
called laser rate equations.

The rate equations can be put in its simplest form in the case in which
the life times of electrons in levels E1 and E3 are negligible compared to the
life time of electrons in level E2. Then the electron population of level E1 is
N1 � 0, so the population inversion is approximately equal to the upper laser
level population N(t) = N2(t) − N1(t) � N2(t); and the absorption of laser
photons by electrons at level E1 is negligible. Additionally, the pumping into
level E2 can be described by a simple pumping rate R, which is constant for
many lasers. For a pulsed laser, the pumping is time dependent, R ≡ R(t).

Under these assumptions, we can take into account only levels E0 and E2,
and write a simplified form of the laser rate equations including the spontaneous
emission process, which is still realistic to describe some dynamic laser behavior
-such as relaxation oscillations or gain switching-, as [1,2]:

dn(t)
dt

= K N(t) n(t) − n(t)
τc

+ ε
N(t)
τa

(1)

dN(t)
dt

= R(t) − N(t)
τa

− K N(t) n(t) (2)

Equation (1) gives the variation with time on the number of laser photons,
n(t), which is related to the laser beam intensity. The first term on its right
hand side, +KN(t)n(t), represents the increasing on the number of photons



by stimulated emission (K is the coupling constant between radiation and the
population inversion). The next term, −n(t)/τc, introduces the decaying process
of laser photons inside the cavity and τc is the decay time of the laser photons.
The term +εN(t)/τa represents the spontaneous emission process, where ε is
the fraction of inversion decay processes which are radiative and for which the
emited photon has the same frequency and direction of the laser radiation and
τa is the decay time of the population inversion. This contribution was not
taken into account in our previous study [3]. Here, this term has been taken
into account in order to get more precise results and to be able to integrate the
differential equations (1) and (2) with the initial conditions n(0) = N(0) = 0,
because otherwise the solution for the number of photons is always n(t) = 0.

Equation (2) represents the temporal variation of the population inversion,
N(t). The term +R(t) introduces the pumping of electrons with a pumping rate
R to the upper laser level. The term −N(t)/τa represents the decaying process
of the population inversion with the characteristic time τa. Finally, the product
term −KN(t)n(t) accounts for the decreasing of the population inversion by
stimulated emission.

In this work, the dynamics of a pulsed pumped laser is explored. We suppose
that the pumping has a pulsed form of width 2tp which is greater than the life
time τa of the population inversion. The time dependence of the pumping rate
that has been used is:

R(t) =
{

Rm φ(t); 0 < t < 2tp
0; t < 0, t > 2tp

(3)

where Rm is the maximum value of the pumping rate at the time tp and

φ(t) =
1
2

[1 − cos(
πt

tp
)] (4)

The value of R(t) is represented in Figure 2 with the legend ”Pumping”.

The purpose of this work is the study of the CA approach to model the
dynamics of pulsed lasers and the comparison with the results obtained by the
corresponding laser rate equations.

2 CA Model

We have recently introduced a CA model for simulating laser dynamics, which is
described in reference [3]. Further details are discused in references [4,5]. This CA
laser model has a similar nature to other models which have been used to describe
different reactive phenomena, such as the Belousov-Zhabotinsky reaction [6] or
the population dynamics of prey-predator systems [7]. In order to simulate the
behavior of pulsed pumped lasers, two main modifications from the original
model have been introduced in this work:



i) The pumping probability here is time dependent, whereas in the original
model it was constant.

ii) The spontaneous emission process is associated with the decaying of the
population inversion. This is more realistic than in the original model, where
this was introduced as a random level of noise photons.

The laser system is modeled by a 2-dimensional square lattice of 400 × 400
cells with periodic boundary conditions. The lattice represents a simplified model
of the laser cavity.

2.1 States of the Cells

Two variables ai(t) and ci(t) are associated to each node of the lattice. The
first one, ai(t), represents the state of the electron in node i at a given time
t. An electron in the laser ground state takes the value ai(t) = 0, while an
electron in the upper laser state takes the value ai(t) = 1. A temporal variable
ãi(t) ∈ {0, 1, 2, ..., τa} is also introduced, in order to take into account the finite
time, τa, that an electron can remain in the upper state. If the electron is in the
base state ãi(t) = 0, otherwise ãi(t + 1) = ãi(t) + 1 until the maximum value τa

is reached and then ãi(t + 1) = 0.

The second variable ci(t) ∈ {0, 1, 2, ..., M} represents the number of photons
in node i at time t. A large enough upper value of M is taken to avoid saturation
of the system. There is also another temporal variable, c̃j

i (t) ∈ {0, 1, 2, ..., τc},
which measures the amount of time since a photon j ∈ {1, 2, ..., M} was created
at node i. τc is the life time of each photon. For a given photon j, c̃j

i (t + 1) =
c̃j
i (t) + 1 until the life time τc is reached and then c̃j

i (t + 1) = 0.

2.2 Neighborhood

The Moore neighborhood has been used. Nine neighbors are taken into account
to compute the transition rules of any given cell: the cell itself, its four nearest
neighbors and the four next neighbors.

2.3 Transition Rules

The transition rules determine the state of any particular cell of the system at
time t + 1 depending on the state of the cells included in its neighborhood at
time t. The evolution of the temporal variables ãi(t) and c̃j

i (t) was described
beforehand. Here we describe only the evolution of ai(t) and ci(t).

– R1. If ai(t) = 0 then

ai(t + 1) = 1 with probability λ(t)

where λ(t) = λm φ(t) and λm is the maximum value of the pumping
probability λ(t).



– R2. If ai(t) = 1 and Γi(t) =
∑

neighbors ci(t) > δ then

{
ci(t + 1) = ci(t) + 1
ai(t + 1) = 0

where Γi is the number of photons included in the neighborhood of the cell
i, and δ is a threshold value, which has been taken to be 1 in our simulations.

– R3. If ci(t) > 0 and there is one photon j for which c̃j
i (t) = τc then

ci(t + 1) = ci(t) − 1

– R4. If ai(t) = 1 and ãi(t) = τa then
{

ai(t + 1) = 0
ci(t + 1) = ci(t) + 1 with probability θ

These transition rules represent the different physical processes at the
microscopical level in a laser system. Rule R1 represents the probabilistic
electron pumping process. Rule R2 models the stimulated emission: if the
electronic state of a cell has a value of ai(t) = 1 and the number of laser photons
in the neighborhood is greater than a certain threshold, then at the time t + 1 a
new photon will be created in that cell and the electron will decay to the ground
level. Rule R3 represents the photon decay. Rule R4 represents the electron
decay in a similar way to rule R3: after a time τa of the excited electrons, these
electrons will decay to the ground level. This rule represents both radiative and
non-radiative processes: a fraction θ of the electron decay processes involves
creating a new photon in the same cell. This models the spontaneous emission
with a probability θ. As in an ideal four level laser the population of level E1 is
negligible, stimulated absorption has not been considered.

3 Results

The expected behaviour of a pulsed pumped laser can be otained by integration
of the differential equations (1) and (2). The initial conditions that have been
used are: n(0) = N(0) = 0 and the values of the parameters are: τa = 45,
τc = 3, ε = 10−5, K = 6 · 10−6. The pumping pulse parameters are: Rm = 8000,
tp = 2000. Here τa, τc and tp are measured in time steps, K and Rm in
(time steps)−1.

In this study, the values of τa, τc and tp have been chosen so that τa and τc

are much smaller than tp. In this regime, usually referred to as quasistationary
pumped laser, the solutions of the differential equations consist of a laser emission
pulse which follows the pumping pulse, and essentially no relaxation oscillations
appear. Figure 2 shows the results obtained by the integration of equations (1)



Fig. 2. Evolution of the system obtained by numerical integration of the differential
equations, using the values of the parameters indicated in the text. The y-axis values
have been normalized relative to the population inversion of the central plateau. The
curve with the legend ”Pumping” is the value of R(t).

and (2). In the initial phase, the population inversion N(t) increases in response
to the pumping, but until a threshold pumping is reached, stimulated emission
is not important and very few laser photons are created. When this threshold is
reached, the laser process is activated and the number of laser photons n(t) starts
to increase. When the pumping is over the threshold value, stimulated emission
reduces the population inversion, so N(t) reaches a maximum. After that, in the
differential equations solutions N(t) reaches a stable value and n(t) increases
towards a maximum, to decrease again, following the pumping pulse. Finally,
when the pumping decreases down the threshold value, stimulated emission is
no longer important so n(t) decays to zero. After that, N(t) decreases follow-
ing the tail in the pumping, to reach a zero value when the pumping falls to zero.

For pulsed pumped lasers the dynamics of n(t) and N(t) are strongly
dependent on the pumping function R(t). So in order to compare the output of
the laser rate equations with the CA we must stress that the pumping process
has a probabilistic nature following rule R1 for the CA, whereas for the laser
rate equations the pumping is a smooth function. Then a comparison between
both outputs should be made only from a qualitative point of view, because the
pumping is not exactly the same.

A typical result by the CA simulation is shown in Figure 3. For this
simulation λm = 0.1 and θ = 0.01. Initially there is no laser photon and all



Fig. 3. Evolution of the system obtained by running a simulation using the cellular
automata model, for values of the parameters equivalent to those of Figure 2. The
y-axis values have been normalized relative to the population inversion of the central
plateau. The curve with the legend ”Pumping” is the number of electron cells which
are pumped by rule R1 in each time step.

the atoms are in the ground state (ai(0) = 0, ci(0) = 0). The results of the
CA simulation reproduce in a qualitative way the behavior exhibited by the
solutions of the differential equations. It is remarkable that the CA model
reproduces the plateau in the population inversion, which is one of the main
features predicted by the equations: after the laser is above threshold, the
population inversion remains approximately constant. Another feature which is
reproduced by the CA model is the peak in the population inversion when the
threshold pumping is reached. A similar -but smaller- peak appears in the CA
simulation in the phase in which the pumping is decreasing, after the pumping
threshold is surpassed. This peak does not appear in the equations solutions,
but has a direct physical interpretation: after the stimulated emission decays to
zero, it doesn’t contribute to reduce the population inversion, so there is a net
increase in N(t), until it decreases again due to the fall in the pumping.

Finally we have found that the results from the integration of equations (1)
and (2) are not very sensitive on the values of the parameter ε. By running
different simulations changing the value of the equivalent parameter in the CA
model (θ), it can be observed that the results are not very sensitive on this value
either, in good agreement with the differential equations behavior.



4 Conclusions

Cellular automata models like the one used in this work have an interesting
heuristic nature, which helps to understand the physical phenomena being mod-
eled, in a more direct way than the differential equations [8,9]. In addition, this
kind of models can be useful as an alternative modeling tool for laser dynamics
when numerical difficulties arise, for example in lasers governed by stiff differen-
tial equations, with convergence problems. Due to their intrinsic parallel nature,
they can be implemented in parallel computers and offer a great advantage in
computing time [10,11].

In this work, we report a work in progress involving modifications in a previ-
ously introduced cellular automata model of laser dynamics, in order to simulate
pulsed pumped lasers. We have compared the results obtained by the numeri-
cal integration of the laser rate equations for a quasistationary pulsed pumping,
with those resulting from a simulation by a cellular automata model of this
type of laser. The results of the CA model reproduce in a qualitative way the
behavior exhibited by the numerical integration of the equations. After these
preliminary results, more work will be done in order to compare both results in
a more quantitative way.
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