
GPU-based cellular automata simulations of
laser dynamics

M.R. López-Torres 1, J.L. Guisado1, F. Jiménez-Morales2 and F. Diaz-del-Rio1

Resumen—
We present a parallel implementation for Graphics

Processing Units (GPUs) of a model based on cel-
lular automata (CA) to simulate laser dynamics. A
cellular automaton is an inherent parallel type of algo-
rithm that is very suitable to simulate complex sys-
tems formed by many individual components which
give rise to emergent behaviours. We exploit the par-
allel character of this kind of algorithms to develop a
fine-grained parallel implementation of the CA laser
model on GPUs. A good speedup of up to 14.5 over
a sequential implementation running on a single core
CPU has been obtained, showing the feasibility of this
model to run efficient parallel simulations on GPUs.

Palabras clave— GPU, CUDA, parallel computing,
cellular automata, laser dynamics, modelling and sim-
ulation, laser physics.

I. Introduction

Cellular Automata (CA) are a class of fully dis-
crete, spatially-distributed dynamical systems that
are characterized by local interaction and syn-
chronous parallel dynamical evolution [1, 2]. They
are a powerful tool to describe, understand and simu-
late complex systems in which a global behaviour re-
sults from the collective action of many simple com-
ponents that interact locally.

In recent years, CA have been successfully applied
to build simulations of complex systems in many
different fields of science and technology: physics
(fluid dynamics, magnetization in solids, reaction-
diffusion processes), bio-medicine (viral infections,
epidemic spreading), engineering (communication
networks, cryptography), environmental science (for-
est fires, population dynamics), economy (stock ex-
change markets), etc [3, 4, 5].

One of the fields for which the CA approach can
be used is laser physics. Guisado et. al. have in-
troduced a CA-based model for simulating laser dy-
namics, showing that it can reproduce much of the
phenomenology of laser systems [6, 7, 8]. This model
can be very useful as an alternative to the standard
modelling approach —differential equations— in dif-
ferent situations such as lasers ruled by stiff differen-
tial equations, difficult boundary conditions, or very
small devices for which the approximations consid-
ered for the differential equations are not valid.

The execution of complex systems simulations us-
ing CA models has large runtime requirements be-
cause a large system with many interacting cells must
be used. The reason is that global and collective

1Dpto. de Arquitectura y Tecnoloǵıa de Computadores,
Universidad de Sevilla, Seville, Spain, e-mail:
rlopez@atc.us.es, jlguisado@us.es, fdiaz@atc.us.es.

2 Dpto. de F́ısica de la Materia Condensada, Universidad
de Sevilla, Seville, Spain, e-mail: jimenez@us.es.

properties cannot be deduced from its simpler com-
ponents, but emerge from the evolution and interac-
tion of many elements [9, 10].

However, a cellular automaton is a distributed
type of algorithm with an inherent parallel nature,
because it is composed of many individual compo-
nents or cells that are simultaneously updated, and
also with a local nature, since the evolution of the
cells is determined by strictly local rules. These char-
acteristics make them ideally well suited to be imple-
mented very efficiently on parallel computers.

In order to exploit this parallelism in the case of
the CA-based model of laser dynamics, a parallel im-
plementation for distributed-memory parallel com-
puters was introduced [11, 12]. It was found that the
parallel implementation offers a good performance
running on dedicated computer clusters [13] and also
on heterogeneous non-dedicated clusters with a dy-
namic load balancing mechanism [14].

However, it is not always easy to have inmediate
access to a large computer cluster. On the other
hand, in the last half decade, Graphics Processing
Units (GPUs) have revolutionized the landscape of
high performance scientific computing. GPUs are
massively parallel processors which are capable of
running thousands of programming threads in paral-
lel. Depending on the application, they are offering
a 10 to 100 times speedup at price points extremely
affordable. For that reason, in the present work, we
present a parallel implementation of the CA-based
model of laser dynamics for GPUs.

GPUs are traditionally used for interactive graph-
ics applications, but their characteristics have made
it possible to use them to accelerate arbitraty appli-
cations, what is usually known as GPGPU (General
Purpose Computation on GPU) [15]. The architec-
ture of a GPU is formed by a number of multipro-
cessors, each of them with a number of cores. All of
the cores in a multiprocessor share a memory unit
called shared memory and all of the multiprocessors
share a memory unit called global memory.

II. Related work

There are not many works previous to 2007 that
study the implementation of cellular automata on
GPUs. They used a shading language such as
OpenGL, a special programming language intended
for graphics applications. Thus the programming
was very difficult since the developer had to somehow
adapt his/her application to a graphics language.
For example the paper from Gobron et. al. [16]
studies a CA model for a biological retina obtaining
a 20x speedup as compared to the CPU implemen-

Actas de las XXIII Jornadas de Paralelismo, Elche (Alicante), 19-21 Septiembre 2012

JP2012 - 261

tation.

The introduction in 2007 of CUDA (Compute Uni-
fied Device Architecture), a general purpose pro-
gramming language for GPUs of the NVIDIA man-
ufacturer, was a milestone that boosted the usage of
GPUs in scientific computing. Soon after, another
one called OpenCL was introduced, which is multi-
platform. They both offer the flexibility of a gen-
eral purpose language so that the programming of
arbitrary applications is much more easy. Therefore,
there has been more CA implementations from that
date. We will refer to some of them.

Rybacki et. al. [17] studied the performance of
seven different very simple cellular automata stan-
dard models running on a single core processor, a
multi core processor and a GPU. They found that
whether GPU implementations are useful or not de-
pends strongly on the model to be simulated.

Bajzát et. al. [18] studied the GPU implementa-
tion and peformance of a CA model for an ecological
system.

Balasalle et. al. [19] have studied how to im-
prove the performance of the GPU implementation of
one of the simplest two-dimensional CAs —the game
of life— by optimizing the memory access patterns.
They showed that a carefully optimized implemen-
tation can give up to a 65% improvement in runtime
from a baseline implementation, but they did not
study other CA models.

GPU implementations have been specially inves-
tigated for Lattice Boltzmann methods, a particular
class of CA, obtaining dramatic speedups of up to
234x over single-core CPU execution without using
SSE instructions or multithreading [20].

III. Cellular automaton model for laser
dynamics simulation

We have developed a GPU-based implementation
of the cellular automaton model of laser dynamics
introduced by Guisado et. al. [6, 7, 8]. In this model,
a laser system is represented by a two-dimensional
CA that corresponds to a transverse section of the
active medium in the laser cavity. The cellular space
is a two-dimensional square lattice of Nc = L × L
cells with periodic boundary conditions.

Two variables ai(t) and ci(t) are associated with
each node of the CA. The first one, ai(t), repre-
sents the state of the electron in node i at time t: if
ai(t) = 0 the electron is in the laser ground state and
if ai(t) = 1 it is in the upper laser state. The second
variable, ci(t) ∈ {0, 1, 2, ..., M}, represents the num-
ber of photons in node i at time t. A large enough
upper value of M is taken to avoid saturation of the
system.

The state variables ai(t) and ci(t) represent
“bunches” of real photons and electrons. Their val-
ues are obviously smaller than the real number of
photons and electrons in the system and are con-
nected to them by a normalization constant.

The Moore neighborhood is employed. Each cell
has nine neighbours: The cell itself, its four nearest

neighbours (at positions north, south, east and west)
and the four next neighbours (at positions northeast,
southeast, northwest and southwest).

The evolution of the system is governed by a set of
transition rules, which represent the different phys-
ical processes taking place in a laser system at the
microscopic level:

• Rule 1. Pumping: If ai(t) = 0 then ai(t+1) = 1
with a probability λ.

• Rule 2. Stimulated emission: If ai(t) = 1
and the sum of the values of the laser pho-
tons states in the nine neighbor cells is greater
than a certain threshold (1 in our model), then
ci(t + 1) = ci(t) + 1 and ai(t + 1) = 0.

• Rule 3. Photon decay: A finite life time τc is
assigned to each photon when it is created. The
photon will be destroyed τc time steps after it
was created.

• Rule 4. Electron decay: A finite life time τa is
assigned to each electron that is promoted from
the ground level to the upper laser level. That
electron will decay to the ground level again τa

time steps after it was promoted, if it has not
yet decayed by stimulated emission.

In addition, a small number of photons in the laser
mode are introduced in the system in random posi-
tions at every time step. To this end, a small number
Nn of cells (< 0.01% of total) with randomly chosen
positions are selected and ci(t + 1) = ci(t) + 1 is
applied for them. These random photons simulate
spontaneous emission as well as thermal contribu-
tions and are responsible —as in real lasers— of the
initial start-up of the laser action.

Initialize system
Input data
for time step = 1 to maximum time step do

for each cell in the array do
Apply stimulated emission rule (Fig. 2)
Apply rules for pumping, photon and elec-
tron decay and evolution of temporal vari-
ables (Fig. 3)
Apply noise photons creation rule (Fig. 4)

end for
Calculate populations after this time step
Optional additional calculations on intermedi-
ate results

end for
Final calculations
Output results

Fig. 1. Pseudo code diagram for the implementation of the
main program for the CA laser model.

IV. Sequential implementation of the
model

The main structure of the CA laser model algo-
rithm is shown in Fig. 1. After initializing the sys-
tem, there is a time loop. At each time step, firstly
the state of all the cells of the lattice are updated by

Actas de las XXIII Jornadas de Paralelismo, Elche (Alicante), 19-21 Septiembre 2012

JP2012 - 262

applying the transition rules, and secondly the total
populations of laser photons and electrons in the up-
per state are calculated by summing up the values of
the state variables a~r(t) and c~r(t) for all the cells.

The implementations of the CA rules are described
in the algorithms shown in Figs. 2 to 4. In par-
ticular, Fig. 2 describes the implementation of the
stimulated emission rule. This rule uses a function
that calculates the sum of laser photons in the neig-
bourhood of a cell, including the effect of periodic
boundary conditions.

for j = 0 to Ly − 1 do
for i = 0 to Lx − 1 do {CA lattice loop}

if aij = 1 then
if neighbours(i, j) > δ then
{Look for first value of k for which c̃k

ij =
0}
k ←− 1
while c̃k

ij 6= 0 and k ≤M do
k ←− k + 1

end while
if k <= M then

aij ←− 0
ãij ←− 0
c′
ij ←− c′

ij + 1

c̃k
ij ←− τc + 1
{τc + 1 is assigned because 1 is sub-
stracted in the decay loop}

end if
end if

end if
end for

end for
{Refresh value of c matrix with contents of c′

matrix}
for j = 0 to Ly − 1 do

for i = 0 to Lx − 1 do {CA lattice loop}
cij ←− c′

ij

end for
end for

Fig. 2. Pseudo code diagram for the implementation of the
stimulated emission rule.

In the algorithmic description of the implementa-
tion of the model, Lx and Ly represent the width of
the lattice in the x and y directions. Two indices i
and j are used explicitly instead of a vector ~r = (i, j)
to indicate the location of a cell. Thus, the state
variable a~r for the cell located at ~r = (i, j) is repre-
sented as aij and c~r is represented as cij . Two tem-
poral variables, ãij and c̃k

ij , are used as time counters,
where k distinguishes between the different photons
that can ocupy the same cell. When a photon is cre-
ated, c̃k

ij = τc. After that, 1 is substracted to c̃k
ij

for every time step and the photon will be destroyed
when c̃k

ij = 0. When an electron is initially excited,
ãij = τa. After that, 1 is substracted to ãij for every
time step and the electron will decay to the ground
level again when ãij = 0.

Fig. 3 describes the implementation of the pump-
ing, photon and electron decay and the evolution of

the temporal variables rules. Finally, the implemen-
tation of the noise photons creation rule is described
in Fig. 4.

for j = 0 to Ly − 1 do
for i = 0 to Lx − 1 do {CA lattice loop}

if cij > 0 then {Apply photon decay rule}
for k = 1 to M do
{Substract 1 to every photon’s lifetime}
if c̃k

ij > 0 then

c̃k
ij ←− c̃k

ij − 1

if c̃k
ij = 0 then {One photon decays}

cij ←− cij − 1
c′
ij = cij

end if
end if

end for
end if
if aij = 1 then {Apply electron decay rule}
{Substract 1 to time of life of every excited
electron}
ãij ←− ãij − 1
if ãij = 0 then
{One electron decays}
aij ←− 0

end if
else if aij = 0 then {Apply pumping rule}
{Generate random number in (0, 1) inter-
val}
ξ ←− random number(0, 1)
if ξ < λ then {λ: pumping probability}
{One electron is pumped}
aij ←− 1
ãij ←− τa

end if
end if

end for
end for

Fig. 3. Pseudo code diagram for the implementation of the
pumping, photon and electron decay and evolution of tem-
poral variables rules.

V. Parallel implementation of the model
for GPUs

Before describing the parallel implementation of
the CA laser dynamics model, let us briefly review
some concepts from general purpose programming
on GPUs (GPGPU Programing) and in particular
of nVidia’s CUDA architecture. Unlike CPUs, de-
signed to run many different programs with hetero-
geneous data, GPUs are designed to run the same
set of operations on a large number of homogeneous
data (ie. pixels of an image) repetitively: SIMD (Sin-
gle Instruction, Multiple Data) model. In CUDA,
these repetitive operations are organized into a spe-
cial type of function called a kernel. Usually these
functions are designed to process a single element of

Actas de las XXIII Jornadas de Paralelismo, Elche (Alicante), 19-21 Septiembre 2012

JP2012 - 263

{Introduce nn number of photons in random po-
sitions}
for n = 0 to nn − 1 do
{Generate two random integers in (0, size− 1)
interval}
i←− random number(0, Lx − 1)
j ←− random number(0, Ly − 1)
{Look for first value of k for which c̃k

ij = 0}
while c̃k

ij 6= 0 and k ≤M do
k ←− k + 1

end while
if k ≤M then
{Create new photon}
c′
ij ←− c′

ij + 1

c̃k
ij ←− τc

end if
end for

Fig. 4. Pseudo code diagram for the implementation of the
noise photons rule.

a homogeneous set of data (for example an element
of a vector integer, of a float, of a complex structure,
etc.).

When a CUDA kernel is executed, the GPU
launches many threads as elements must be pro-
cessed, and each of these threads run an ”instance”
of the kernel. If the number of items exceeds the
maximum number of threads that the GPU can sup-
port, each thread will process more than one element.
CUDA groups the threads in sets of three dimen-
sions called blocks. These blocks are also grouped in
sets of three dimensions called grids. The total num-
ber of blocks per grid dimension and the number of
threads per block dimension are set when the ker-
nel is launched, depending on the data size and the
characteristics of the problem to be solved. There
are several global variables that are used to identify
which element should be processed by each thread.
One of them (blockIdx) indicates in which block a
thread is allocated. Another one, called threadIdx,
is the thread identifier. With this information, and
knowing the number of threads per block dimension,
we can write a formula to calculate the index or in-
dexes of the elements to be processed.

Taking into account that matrices are stored in
memory row after row contiguously as if they were a
vector, we have chosen to use only one of the dimen-
sions of grids and blocks for our implementation of
laser simulation. In this way we can simplify the for-
mula that calculates the index or indexes, as shown
in Fig. 5.

The main program algorithm is very simple as
shown in Fig. 6. It consists of initializations, mem-
ory allocation of data on the GPU, and a tempo-
ral loop that launches three kernels which perform
the cellular automaton simulation. This code is ex-
ecuted on the CPU in order to avoid racing condi-
tions, because CUDA does not provide a synchro-
nization mechanism of threads from different blocks.
Global memory keeps its contains (which are shared

0 N-1

Block 0 Block 1 Block 2 Block K-1

Block 0

0 NUM_THREADS - 1

a[i] is computed by threadIdx.x thread

where i = blockDim.x * blockIdx.x + threadIdx.x

Vector a

Vector a (section)

Fig. 5. Determination of the element to be processed by a
thread.

between all threads of any block) between successive
calls to the kernels in CUDA. It is therefore possible
to write the algorithm as described. The synchro-
nization problem has led us to write the simulation
in three kernels, to avoid race conditions that would
occur if we try to count, for example, the number of
photons in the vicinity while another thread is per-
forming the decay of photons.

Initialize system
Input data
Allocate GPU memory for grids
Inizialize random numbers seeds for each cell
for time step = 1 to maximum time step do
{blocks =Lx * Ly / threads}
Call phothon decay kernel <<<blocks,
threads>>>
Call pumping and electron decay kernell
<<<blocks, threads>>>
Call noise photons creation kernel <<<1,
1>>>

end for
Copy results (populations) from GPU to CPU
Optional additional calculations on intermediate
results
Final calculations
Output results

Fig. 6. Pseudo code diagram for the CUDA implementation
of the main program for the CA laser model.

The first one of the kernels simulates the photon
decay rule. The second kernel simulates electron de-
cay, pumping, stimulated emission and count of elec-
trons and photons. The third one is responsible for
generating the random photons noise. The code of
the first two kernels is a slightly modified version of
the bodies of the sequential loops in the equivalent al-
gorithms shown in Figs. 2 and 3. The main program
runs the temporal loop, while the iterations through
the grid are performed by thousands of threads that
are created on the GPU. In order to avoid the need of
synchronization to prevent collisions when different
threads access the same cell (race conditions again),
the third kernel is launched with a single block con-
taining a single thread that executes sequentially the
operations described in Fig. 4.

An efficient implementation of the algorithm used
to count the number of photons and electrons in
each temporal iteration, necessary to extract statis-

Actas de las XXIII Jornadas de Paralelismo, Elche (Alicante), 19-21 Septiembre 2012

JP2012 - 264

tical data from the simulation, is very important for
the final performance of the GPU simulation. This
is a typical problem—a parallel reduction of values
stored in a vector—that has been solved previously
in various ways. We have chosen a binary tree re-
duction algorithm based in the work of Sengupta et.
al. [21].

This algorithm performs a reduction of vector por-
tions in each of the blocks, using shared memory
and synchronization barriers between the threads of
a block. As a result, as many partial sums as the
number of blocks used in the simulation are obtained.
When all the blocks have finished computing these
partial sums, they are reduced to GPU global mem-
ory using the atomic addition operation. This oper-
ation is the main bottleneck in the performance of
our simulation.

VI. Performance evaluation

The performance has been evaluated in two differ-
ent systems whose characteristics are shown in Table
I. Each system is configured including GPU technol-
ogy from the same period as its CPU. This allows us
to compare the performance improvement of GPU
versus CPU on equal terms, as well as to follow the
evolution of CPUs and GPUs performance.

TABLA I

Tested systems characteristics

System 1 System 2

CPU Core2 Quad Core i5
(Intel) Q6600 750

Clock (GHz) 2.40 2.67
Cores 4 4

L1 Cache (KB) 4 x 32 4 x 32
L2 Cache (KB) 2 x 4096 4 x 256
L3 Cache (KB) - 8192
Memory Type DDR2 DDR3

(Single Ch.) (Dual Ch.)
Memory (GB) 2 4

GPU 9500 GT GTX 285
(nVidia)

Stream Proc. 32 240
Core clock (MHz) 550 648

Shaders clock MHz) 1350 1476
Memory clock (MHz) 400 1242

Memory (MB) 512 1024
Bus Width (bits) 128 512

The running time spent in processing each cellular
automata cell for one time iteration is shown in Fig.
7, for different values of the CA lattice side. The fig-
ure shows the timing of sequential and parallel algo-
rithms executed in each of the test system (tCPU and
tGPU). The performance of the sequential algorithm
is reduced with the CA size because of a finite cache
memory size effect: as the CA size increases, the
distance between neighboring cells grows, increasing
the probability that the cache line in which these
cells were stored has been used for another portion
of the system.

The speedup S = tGPU/tCPU obtained by each
GPU over his CPU in both tested systems for differ-
ent sizes of lattice side is shown in Fig. 8. In both

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

256 512 1024 2048

Core2 Quad 2.40 GHz

i5 2.67 Ghz

GeForce 9500 GT

GTX 285

CA lattice side, L (cells)

T
im

e
 (

u
s)

Fig. 7. Running time (in microseconds) spent in process-
ing each cellular automata cell for one time iteration, for
different values of the CA lattice side.

systems it is observed that the speedup increases
with the size of the problem due to the aforemen-
tioned finite cache memory size effect. We can also
see how the acceleration GPU/CPU in a few years
has increased for our case study. A maximumum
speedup value of 14.5 has been obtained.

CA lattice side, L (cells)

0

2

4

6

8

10

12

14

16

256 512 1024 2048

9500GT/C2Q

GTX 285/i5

S
p

e
e

d
u

p

Fig. 8. Speedup obtained by each GPU over his CPU in both
test systems for different sizes of CA lattice side.

VII. Conclusions and future work

A parallel implementation for GPUs of a discrete
model of laser dynamics using cellular automata
(CA) has been presented. This kind of model is an
alternative to the standard description based on dif-
ferential equations that offer advantages in different
situations in which they can not be applied. Our
GPU parallel implementation exploits the inherent
parallelism of cellular automata to obtain a speedup
of up to 14.5 over a sequential implementation run-
ning on a single core CPU.

After proving that this model can be successfully
implemented on GPU with a good speedup, in the
future we will try to further optimize our implemen-
tation to obtain higher performance gains.

Actas de las XXIII Jornadas de Paralelismo, Elche (Alicante), 19-21 Septiembre 2012

JP2012 - 265

References

[1] S. Wolfram, Cellular automata and complexity,
Addison-Wesley, Reading, MA, 1994.

[2] A. Ilachinski, Cellular automata. A discrete
Universe, World Scientific, Singapore, 2001.

[3] Bastien Chopard and Michel Droz, Cellular Au-
tomata Modeling of Physical Systems, Cam-
bridge University Press, Cambridge, MA, USA,
1998.

[4] P. M. A. Sloot and A. G. Hoekstra, “Model-
ing dynamic systems with cellular automata,”
in Handbook of dynamic system modeling, P. A.
Fishwick, Ed., pp. (21) 1–6. Chapman &
Hall/CRC, 2007.

[5] P. M. A. Sloot A. G. Hoekstra, J. Kroc, Ed.,
Simulating Complex Systems by Cellular Au-
tomata, Springer, 2010.

[6] J. L. Guisado, F. Jiménez-Morales, and J. M.
Guerra, “Cellular automaton model for the sim-
ulation of laser dynamics,” Physical Review E,
vol. 67, no. 6, pp. 066708, 2003.

[7] J. L. Guisado, F. Jiménez-Morales, and J. M.
Guerra, “Computational simulation of laser dy-
namics as a cooperative phenomenon,” Physica
Scripta, vol. T118, pp. 148–152, 2005.

[8] J. L. Guisado, F. Jiménez-Morales, and J. M.
Guerra, “Simulation of the dynamics of pulsed
pumped lasers based on cellular automata,”
Sixth International conference on Cellular Au-
tomata for Research and Industry, ACRI 2004.
Lecture Notes in Computer Science, vol. 3305,
pp. 278–285, 2004.

[9] D. Talia and N. Naumov, Simulating Complex
Systems by Cellular Automata, chapter Paral-
lel cellular programming for emergent computa-
tion, pp. 357–384, Springer, 2010.

[10] S. Bandini, G. Mauri, and R. Serra, “Cellular
automata: from a theoretical parallel computa-
tional model to its application to complex sys-
tems,” Parallel Computing, vol. 27, no. 5, pp.
539–553, 2001.

[11] J. L. Guisado, F. Fernández de Vega,
F. Jiménez-Morales, and K. Iskra, “Parallel
implementation of a cellular automaton model
for the simulation of laser dynamics,” Inter-
national Conference on Computational Science,
ICCS 2006. Lecture Notes in Computer Science,
vol. 3993, pp. 281–288, 2006.

[12] J. L. Guisado, F. Jiménez-Morales, and
F. Fernández de Vega, “Cellular automata and
cluster computing: An application to the simu-
lation of laser dynamics,” Advances in Complex
Systems, vol. 10, no. Suppl. No. 1, pp. 167–190,
2007.

[13] J. L. Guisado, F. Fernández de Vega, and
K. Iskra, “Performance analysis of a parallel dis-
crete model for the simulation of laser dynam-
ics,” in 2006 International Conference on Par-
allel Processing, ICPP 2006, Workshops. 2006,
pp. 93–99, IEEE Computer Society.

[14] J. L.. Guisado, F. Fernández de Vega,

F. Jiménez-Morales, K. A. Iskra, and P. M. A.
Sloot, “Using cellular automata for parallel sim-
ulation of laser dynamics with dynamic load bal-
ancing,” International Journal of High Perfor-
mance Systems Architecture, vol. 1, no. 4, pp.
251–259, 2008.

[15] “Gpgpu. general-purpose computation on
graphics hardware.,” http://gpgpu.org, as
available on may 2012., 2012.

[16] S. Gobron, F. Devillard, and B. Heit, “Retina
simulation using cellular automata and GPU
programming,” Machine Vision and Applica-
tions, vol. 18, pp. 331–342, 2007.

[17] S. Rybacki, J. Himmelspach, and A. M. Uhrma-
cher, “Experiments with single core, multi
core, and GPU-based computation of cellular
automata,” in Advances in System Simulation,
2009. SIMUL’09. First International Confer-
ence on, 2009.

[18] T. Bajzát and E. Hajnal, “Cell automaton mod-
elling algorithms: Implementation and testing
in GPU systems,” in INES 2011, 15th Inter-
national Conference on Intelligent Engineering
Systems, 2011.

[19] J. Balasalle, M. A. Lopez, and M. J. Rutherford,
GPU Computing Gems Jade Edition, chapter
Optimizing Memory Access Patterns for Cellu-
lar Automata on GPUs, pp. 67–75, Elsevier -
Morgan Kaufmann - NVIDIA, 2011.

[20] R. Geist and J. Westall, GPU Computing Gems,
Emerald Edition, chapter Lattice-Boltzmann
Lighting Models, pp. 381–399, Elsevier - Mor-
gan Kaufmann - NVIDIA, 2011.

[21] S. Sengupta, M. Harris, Y. Zhang, and J. D.
Owens, “Scan primitives for GPU com-
puting,” in Proceedings of the 22nd ACM
SIGGRAPH/EUROGRAPHICS symposium on
Graphics hardware, 2007, pp. 97–106.

Actas de las XXIII Jornadas de Paralelismo, Elche (Alicante), 19-21 Septiembre 2012

JP2012 - 266

ORGANIZADORES

PATROCINADORES

COLABORADORES

Secretaría técnica JS2012 – www.libelula producciones.com

ISBN: 978-84-695-4471-6

View publication statsView publication stats

https://www.researchgate.net/publication/258452223

	Preámbulo
	Editores
	Información de Publicación
	Comités
	Entidades
	Presentación

	Índice de las Actas JP2012
	Algoritmos y técnicas de programación paralelas
	Composition of Parallel Objects to implement Communication Patterns
	Factores de rendimiento en aplicaciones híbridas (MPI+OpenMP)
	Evaluación comparativa de modelos de programación paralela en arquitectura de memoria compartida
	Paralelización de un algoritmo de calibrado para el modelado de ecosistemas
	Implementación de Patrones de Diseño Paralelos en JAVA como una biblioteca de clases de Objetos Paralelos
	Transformada paralela 3D-DWT para multicores
	CU2rCU: a CUDA-to-rCUDA Converter
	Paralelizacion en la interpolacion de la decodificacion por listas de codigos Reed-Solomon
	Procesamiento paralelo de los pronósticos meteorológicos del modelo WRF mediante NCL
	Nuevas funcionalidades de PyPANCG usando OpenMP y CUDA
	Paralelización de Heurísticas en Procesadores Multi-núcleo: Aplicación en Problemas de Enrutado de Vehículos
	Desarrollo de un motor de paralelización especulativa con soporte para aritmética de punteros
	Generación Automática de Funciones de Migración de Agentes en FLAME
	Trasgo Frontend: hacia una generación automática de código paralelo eficiente
	ParallDroid: A Framework for Parallelism in Android
	Evaluando el Rendimiento Multicore de una Aproximación Multiobjetivo de Inteligencia de Enjambre para la Inferencia Filogenética
	Aceleración de la Simulación de Dinámicas Poblacionales en el Neolítico Europeo
	Acelerando la Búsqueda por Rango con un Sistema Híbrido de Memoria Compartida
	Análisis de BLAST en multicores
	Un Sistema Híbrido MPI/OpenMP Basado en el Algoritmo NSGA-II para la Inferencia de Árboles Filogenéticos

	Aplicaciones de la computación de altas prestaciones
	Un Equipo Paralelo Multi-Núcleo para Descubrir Motifs en Secuencias de ADN
	Optimización de Redes Ópticas WDM Mediante Paralelismo e Inteligencia Colectiva
	Estructura híbrida MPI-OpenMP para predicción de incendios forestales
	Acoplando modelos complementarios para la mejora de un sistema de predicción de incendios forestales
	Paralelización de un algoritmo de reconstrucción tomográfica de rayos X para plataformas híbridas basadas en multi-GPU y multi-core
	Optimización y Paralelización de Software de Monte Carlo para el Estudio de Nano-Dispositivos Semiconductores
	Optimizando la Eficiencia Energética en Redes de Sensores Inalámbricos Mediante Computación Evolutiva Paralela
	Paralelización de Algoritmos Multi-objetivo: Aplicación al Transporte de Mercancías
	Ajuste de la compilación a través de un sistema paralelo multi-objetivo. Aplicación a la mejora del servidor web Apache
	Efecto de la virtualización sobre el rendimiento, la productividad y el consumo

	Arquitecturas del procesador, multiprocesadores y chips multinúcleo
	TOPAZ: Un simulador de redes de interconexión para CMPs y supercomputadores
	OSR-Lite: Fast and Deadlock-Free NoC Reconfiguration Framework
	Infraestructuras de Barrera Eficientes para Sistemas Clusterizados MPSoC
	Balanceo Dinámico con Control de Consumo en Sistemas Multinúcleo de Tiempo Real
	Uso de Redes Heterogéneas para Mejorar la Eficiencia Energética de la Coherencia Directa en Many-Core CMPs

	Arquitecturas, algoritmos y aplicaciones sobre aceleradores hardware
	Procesamiento de múltiples flujos de datos con Growing Neural Gas sobre Multi-GPU
	Implementación Multi-GPU del método Smoothed Particle Hydrodynamics
	Transformada Wavelet 3D en GPUs
	Resolución de ecuaciones de Lyapunov dispersas en GPU
	Evaluation of state-of-the-art polyhedral tools for automatic code generation on GPUs
	Influencia de las mesetas en la implementación de watershed sobre GPUs
	Análisis de Suffix-Array y FM-Index en Multi-ManyCore
	GPU-based cellular automata simulations of laser dynamics
	Speeding up LIP-Canny with CUDA programming
	Proyección del método de segmentación del conjunto de nivel en GPU

	Redes y comunicaciones
	An enhanced vertical handover decision algorithm designed for vehicular networks
	A Road Topology Aware Protocol for Vehicular Networks
	Simulación de redes vehiculares: retos hacia un modelo más realista
	Estimación en tiempo real de la densidad de vehículos en entornos urbanos
	Video Transmission Simulations in Vehicular Adhoc Networks
	Collaborative Watchdog to Improve the Detection Speed of Black Holes in MANETs
	Testing an Admission Control Module for MANETs in real devices
	Modelado de redes de interconexión de altas prestaciones con OMNeT++
	Modelado de incendios forestales con WSNs mediante múltiples envolventes
	Study of Fault Tolerance for King Topologies
	The New EXTOLL Conduit for the GASNet Networking Layer
	BAHIA: Burst-Aware Head-of-Line Blocking Injection Avoidance
	Efficient Buffer Usage Through a New Flow-Control Mechanism
	Bubble Flow Control in High-Radix Hierarchical Networks

	Tecnologías Grid, clúster, cloud computing y plataformas distribuidas
	Gestión Eficiente de Recursos Grid Basada en la Búsqueda Dispersa. Facilitando la Auto-adaptación de Aplicaciones
	BoT-R: Una técnica para reducir la fragmentación en la meta-planificación por adelantado de Sistemas Grid
	Despliegue Adaptativo de Aplicaciones en Sistemas Grid Basado en el Concepto de Autómatas Celulares
	LBCL: multi-device automatic load balancing
	Jerarquización de la Calidad de Servicio en Grids mediante SLAs
	Performance of numerical simulations on the cloud
	Predictor de Prestaciones para la Planificación de Memoria en Clústers de Computadores
	Análisis del rendimiento de una aplicación cosmológica sobre máquinas virtuales
	Provisioning Hadoop Virtual Cluster in Opportunistic Cluster
	Diseño de un Sistema Cloud Aplicado a e-Health

	Arquitecturas del subsistema de memoria y almacenamiento secundario
	Caché de último nivel parcialmente compartida basada en distancia
	MemcachedFS: sistema de ficheros para clusters basado en memoria distribuida
	El directorio PS: Una caché de directorio multinivel escalable para CMPs
	Simulador de Cache Reconfigurable con Unidad de Anticipación (SICAREAN)
	A NoC-level Support for Broadcast-based Coherence Protocols
	Incremento en las prestaciones del algoritmo pMRU mediante el uso de una cache víctima
	Optimización de políticas de reemplazo cache para entornos PCM
	Planificación considerando el ancho de banda de la jerarquía de cache
	Towards Efficient Working Set Estimations in Virtual Machines
	Physical implementation of a reconfigurable cache. Optimization possibilities
	iLP-NUCA: Cache de Instrucciones Teselada para Procesadores Empotrados
	Designing a Prefetcher for a Hardware Distributed Shared-Memory System

	Docencia en arquitectura y tecnología de computadores y programación paralela
	Experiencias docentes prácticas en la asignatura Fundamentos de Informática
	RoboDist: Una Plataforma de juego P2P para incentivar la programación en los grados de Ingeniería
	Una Nueva Metodología para el Estudio de Procesadores Realistas en las Titulaciones de Informática
	Plataforma web para retroalimentación automática en la docencia de ensamblador

	Evaluación de prestaciones
	Un Entorno de Análisis del Consumo de Aplicaciones Paralelas
	GPUBenchmark: un banco de pruebas para GPUs
	Power performance models for parallel applications
	Performance of OpenMP simulations on the cloud
	INASim: Una herramienta para la evaluación de redes de interconexión de altas prestaciones
	Automating Threat Modeling through the Software Development Life-Cycle
	Message Passing Fault Tolerance Design at Socket Level
	Uso de algoritmos genéticos para la obtención de modelos estadísticos de rendimiento
	A Comparative Study of OpenACC Implementations

	Algoritmos y aplicaciones
	How Mobile Phones Perform in Augmented Reality Marker Tracking?
	Visibilidad total para observadores desligados del terreno
	An Advanced Authoring Tool for Augmented Reality Applications in Industry
	Fast zerotree wavelet depth map encoder for very low bitrates
	Characterization of CAR Servers for Augmented Reality Marker Tracking

	Índice de autores

