
Time-Recovering PCI-AER interface for Bio-inspired Spiking Systems 

R. Paz-Vicente, A. Linares-Barranco, D. Cascado, S. Vicente, G. Jimenez, A. Civit.
1Dpto. de Arquitectura y Tecnología de Computadores, Universidad de Sevilla, Av. Reina Mercedes 

s/n, 41012 Sevilla, Spain. Phone: , Fax: , E-mail: rpaz@atc.us.es  
2Instituto de Microelectrónica de Sevilla, Ed. CICA, Av. Reina Mercedes s/n, 41012 Sevilla, Spain.

 

ABSTRACT 
    Address Event Representation (AER) is an emergent neuromorphic interchip communication protocol that allows 
for real-time virtual massive connectivity between huge number neurons located on different chips. By exploiting 
high speed digital communication circuits (with nano-seconds timings), synaptic neural connections can be time 
multiplexed, while neural activity signals (with mili-seconds timings) are sampled at low frequencies. Also, 
neurons generate ‘events’ according to their activity levels. More active neurons generate more events per unit 
time, and access the interchip communication channel more frequently, while neurons with low activity 
consume less communication bandwidth. When building multi-chip muti-layered AER systems it is absolutely 
necessary to have a computer interface that allows (a) to read AER interchip traffic into the computer and visualize it 
on screen, and (b) inject a sequence of events at some point of the AER structure. This is necessary for testing and 
debugging complex AER systems. 
    This paper presents a PCI to AER interface, that dispatches a sequence of events received from the PCI bus 
with embedded timing information to establish when each event will be delivered. A set of specialized states 
machines has been introduced to recovery the possible time delays introduced by the asynchronous AER bus. On the 
input channel, the interface capture events assigning a timestamp and delivers them through the PCI bus to MATLAB 
applications. It has been implemented in real time hardware using VHDL and it has been tested in a PCI-AER 
board, developed by authors, that includes a Spartan II 200 FPGA. The demonstration hardware is currently 
capable to send and receive events at a peak rate of 8,3 Mev/sec, and a typical rate of 1 Mev/sec.  

1. INTRODUCTION

Address-Event-Representation (AER) was proposed in 1991 by Sivilotti 1 for transferring the state of an array of 
neurons from one chip to another. It uses mixed analog and digital principles and exploits pulse density modulation for 
coding information. The state of the neurons is a continuous time varying analog signal.  
     Fig. 1 explains the principle behind the AER basics. The emitter chip contains an array of cells (like, for example, a 
camera or artificial retina chip) where each pixel shows a continuously varying time dependent state that changes with a 
slow time constant (in the order of milliseconds). Each cell or pixel includes a local oscillator that generates digital 
pulses of minimum width (a few nanoseconds). The density of pulses is proportional to the state or intensity of the pixel. 
Each time a pixel generates a pulse (which is called "event"), it communicates with the array periphery and a digital 
word representing its code or address is placed on the external inter-chip digital bus (the AER bus). Additional 
handshaking lines (Acknowledge and Request) are also used for completing the asynchronous communication. 

fig. 1 AER inter-chip communication scheme. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/158965162?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


     In the receiver chip the pulses are directed to the pixels or cells whose code or address was on the bus. This way, 
pixels with the same code or address in the emitter and receiver chips will "see" the same pulse stream. The receiver cell 
integrates the pulses and reconstructs the original low frequency continuous-time waveform. Pixels that are more active 
are accessing the bus more frequently than those less active. 

     Transmitting the pixel addresses allows performing extra operations on the images while they travel from one chip to 
another. For example, inserting properly coded memories (ie. EEPROM) allows transformation (ie. shifting and 
rotation) of images. Also, the image transmitted by one chip can be received by many receiver chips in parallel, by 
properly handling the asynchronous communication protocol. The peculiar nature of the AER protocol also allows for 
very efficient convolution operations within a receiver chip [2]. 

     There is a growing community of AER protocol users for bio-inspired applications in vision and audition systems, as 
demonstrated by the success in the last years of the AER group at the Neuromorphic Engineering Workshop series [3]. 
The goal of this community is to build large multi-chip and multi-layer hierarchically structured systems capable of 
performing complicated array data processing in real time. The powerful of these systems can be used under computer 
based systems under co processing. This purpose strongly depend on the availability of robust and efficient AER 
interfaces [4]5. One such tool is a PCI-AER interface that allows not only reading an AER stream into a computer 
memory and displaying it on screen in real-time, but also the opposite: from images available in the computer's memory, 
generate a synthetic AER stream in a similar manner as would do a dedicated VLSI AER emitter chip [1]67.  

     In Section 2 we comment the problems behind the AER sequencing and monitoring. In Section 3 and 4 we present a 
hardware architecture for the CAVIAR PCI-AER interface developed into VHDL for European project CAVIAR. In 
Section 5 we present experiment results. Finally Section 6 present the conclusions. 

2. SEQUENCING AND MONITORING AER EVENTS.
To be useful for debugging an AER tool should be able to receive and also send a long sequence of events interfering

as little as possible with the system under test. Let’s start explaining the meaning of interfacing in the context. 

    As neurons have the information coded in the frequency (or timing) of their spikes, the pixels that transmit their 
address through an AER bus also have their information coded in the frequency of appearance of those addresses in the 
bus. Therefore, inter-spike-intervals (ISIs) is critical for this communication mechanism. Thus, a well designed tool 
shouldn’t modify the ISIs of the AER. 

    The ISIs may be difficult to preserve depending on the nature of the emitter and/or receiver chips. Let’s suppose the 
case of having an AER emitter chip connected to an AER receiver chip, and we want to debug their communication. In 
principle, there are two possibilities: connecting to the bus an AER sniffer element, or to introducing a new AER 
element in between the emitter and the receiver. 

- The sniffer element will consist on an AER receptor that captures the address and stores it with a timestamp in
memory for each request that appears on the AER bus. The problem in this case is that the speed of the emitter and
receiver protocol lines could be faster than the maximum speed supported by the sniffer (15 ns per event in some
existing chips), causing events to be lost. Another typical problem could be that the throughput of the AER bus
(unknown in principle) would be so high that the interface memory cannot be downloaded to the computer’s
memory on time. This also implies that events are lost.

- The other possibility is to introduce a new AER element between the two chips. In this case the emitter sends the
event to the AER element and the AER element sends the same event to the receiver chip. The problem now is that
the new AER element will always introduce a delay in the protocol lines, and may also block the emitter if it is not
able to keep up with its throughput. Therefore, ISIs are not conserved. But the behaviour will be the same than if
we connect the emitter to a slower receiver.

The throughput problem requires using very fast PC interfaces and the problem of very fast emitter or receiver protocols 
can be reduced by using a very high frequency clock for the stages that interface with the AER protocols. 



3. PCI-AER INTERFACE: Considerations and PCB
Before the development of our tools the only available PCI-AER interface board was developed by Dante at ISS-

Rome (See [2]). This board is very interesting as it embeds all the requirements mentioned above: AER generation, 
remapping and monitoring. Anyhow its performance is limited to 1Mevent/s approximately. In realistic experiments 
software overheads reduce this value even further. In many cases these values are acceptable but, currently many 
address event chips can produce (or accept) much higher spike rates. 

    As the Computer interfacing elements are mainly a monitoring and testing feature in many address event systems, the 
instruments used for these proposes should not delay the neuromorphic chips in the system. Thus, speed requirements 
are at least 10 times higher than those of the original PCI-AER board. Several alternatives are possible to meet these 
goals: 

- Extended PCI buses.
- Bus mastering.
- Hardware based Frame to AER and AER to Frame conversion.

    When the development of the CAVIAR PCI-AER board was started, using 64bit/66MHz PCI seemed an interesting 
alternative as computers with this type of buses were popular in the server market. When we had to make 
implementation decisions the situation had altered significantly. Machines with extended PCI buses had almost 
disappearing and, on the other hand, serial LVDS based PCI express [3] was emerging clearly as the future standard but 
almost no commercial implementations were in the market. Therefore, the most feasible solution was to stay with the 
common PCI implementation (32 bit bus at 33MHz) and consider PCI express for future implementations. Speed 
improvements, thus, should come from the alternative possibilities. 

    The previously available PCI-AER board uses polled I/O to transfer data to and from the board. This is possibly the 
main limiting factor on its performance. To increase PCI bus mastering is the only alternative. The hardware and driver 
architecture of a bus mastering capable board is significantly different, and more complex, than a polling or interrupt 
based implementation. 

    Hardware based frame to AER conversion doesn’t increase PCI throughput but, instead, it reduces PCI traffic. First 
some important facts have to be explained. It is well known that some AER chips, especially grey level imagers where 
pulse density is proportional to the received light intensity, require a very large bandwidth. This is also the case of many 
other chips when they are not correctly tuned. For example let’s consider a Grey level 128*128 imager with 256 grey 
levels. In a digital frame based uncompressed 25fps format, it would require a bandwidth of 128*128*25= 
0.39MBytes/s. The maximum requirements for an “equivalent” system that would output AER supposing the number of 
events in a frame period is equal to the gray level and considering the worst case where all pixels spike with maximum 
rate is: 

2bytes/event*256events/pixel*number of pixels/ frame period= 200MBytes/s 

    The meaning of this figure should be carefully considered. A well designed AER system, which produces events only 
when meaningful information is available, can be very efficient but, an AER monitoring system should be prepared to 
support the bandwidth levels that can be found in some real systems. These include systems that have not been designed 
carefully or that are under adjustment. Currently the available spike rates, even in these cases, are far from the value 
shown above but, some current AER chips may exceed the 40Mevents/s in extreme conditions.  

    The theoretical maximum PCI32/33 bandwidth is around 133Mbytes/s. This would allow for approximately 
44Mevent/s considering 2 bytes per address and two bytes for timing information. Realistic figures in practice are closer 
to 20Mbyte/s. Thus, in those cases where the required throughput is higher a possible solution is to transmit the received 
information by hardware based conversion to/from a frame based representation. Although this solution is adequate in 
many cases, there are circumstances where the developers want to know precisely the timing of each event, thus both 
alternatives should be preserved. 



    Implementing AER to Frame conversion is a relatively simple task as it basically requires counting the events over 
the frame period. Producing AER from a frame representation is not trivial and several conversion methods have been 
proposed [4][5].  

    The theoretical event distribution would be that where the number of events for a specific pixel is equal to its 
associated grey level and those events are equally distributed in time. The normalized mean distance from the 
theoretical pixel position in time to the resulting pixel timing with the different methods is an important comparison 
criterion. In [6] it is shown that, in most circumstances, the behavior of the methods is similar and, thus, hardware 
implementation complexity is an important selection criteria. From the hardware implementation viewpoint random, 
exhaustive and uniform methods are especially attractive.  

    As a result of these considerations the design and implementation of the CAVIAR PCI-AER board was subdivided 
into a set of intermediate steps in which initially no mastering was implemented. Later Bus mastering was included and 
hardware based frame to AER conversion was included as a last step. 

    The physical implementation of all the steps is equal. They differ in the VHDL FPGA code and in the operating 
system dependant driver. The first design was a VIRTEX based board which was completely redesigned after the first 
tests. It was established that most of the functionality, demanded by the users, could be supported by the larger devices 
in the less expensive SPARTAN-II family. The Spartan Version of the board is shown in fig. 2. 

    Currently a Windows driver that implements bus mastering is being tested. The Linux version with bus mastering is 
still under development. An API that is compatible, as much as permitted by the different functionality, with that used in 
the current PCI-AER board has been implemented. MEX files to control the board from MATLAB have also been 
developed. 

fig. 2 CAVIAR PCI-AER board 



4. PCI-AER INTERFACE: Hardware design
The final goal is to transmit an AER sequence to an AER based system (for example a convolution chip) to perform

video processing. An adequate sequence of events can be generated by software for testing an AER based system. This 
sequence of events need to be sent to the AER based system. For this purpose it is necessary an interface between the 
computer and the AER bus. Fig. 3 shows the architecture of the present hardware interface. This is a PCI interface 
developed under the European project CAVIAR. The interface, called CAVIAR PIC-AER G1, has two operation modes 
that can work in parallel: 

4.1. From PCI to AER. 
     The AER-stream is stored in the computer memory and then it is sent to the AER system through the OFIFO. This 
stream is saved in memory using 32 bits for each address event. The sixteen less significant bits represents the address 
of the pixel that is emitting the event. And the another more significant bits represent a time difference from the 
previous event in clock cycles. The clock cycle can be configured. The OUT-AER state machine keeps continuously 
reading 32-bit words from OFIFO if the ENOF signal is active. For each word the state machine will wait for the 
configured number of clock cycles before transmitting the address through the AER output bus. If the acknowledge is 
delayed, the timer of the OUT-AER state machine will discount this time to the wait state of the next event. If the result 
of the discount is negative no wait will be done for the next event and this value will be used as initial wait for the 
following event. With this treatment the delay between events is not relative to the previous one, and a delay in the ACK 
reception will not cause a distortion in the time distribution of all the events along the time period.  

4.2. From AER to PCI. 
     The AER sequence arrives to the CAVIAR PCI-AER interface through the input AER port. The AER-IN state 
machine keeps storing the incoming data into the IFIFO. This sequence of events is stored with temporal information. 
Every time a new event arrives, the number of clock cycles since the last event is stored in the IFIFO in the sixteen more 
significant bits of the 32 bit word, and the counter of clock cycles is cleared.  
     Counters for both IFIFO and OFIFO can be clock divided. 

     The connection to the PCI bus is done by a VHDL bridge [12] that attend to the plug & play protocol of the PCI bus, 
decodes the access to the base address by the operating system, allows the burst access and the interruption. This 
interruption tries to avoid overflows at the incoming FIFO. 



fig. 3. Hardware Interface Architecture. 

5. EXPERIMENT
The output AER bus has been connected with the input AER bus of the same board. With this configuration the

board, in burst mode is able to read or write an AER event every Tpulsemin=60ns. This implies the restriction that 
NxMxK ≤ Tframe/Tpulse=3,3·105. This restriction implies that for avoiding errors in the channel the resolution of the 
image has to carry out with the previous condition. This restriction doesn’t imply that a large image can’t be transmitted 
without error or with a minimum error. In fact, due to the pause or wait states between events along the sequence of 
events associated to one image, the delay that the channel includes to the transmission can be compensated by reducing 
the pauses if there exist enough pauses and they are well distributed. 

     The experiment consist on transmitting a sequence of events associated to an image using different methods for 
synthetic AER generation: Scan, Uniform, Random and Exhaustive [4][5]. Then it can be calculated the maximum and 
minimum time between events. The minimum one is equal to Tpulsemin=120ns, and this has been obtained during a 
burst transmission with the OFIFO full as initial condition. And the maximum one is equal to Tpulsemax=1,14µs and it 
was obtained by transmitting a sequence of events through the PCI bus with the OFIFO empty as initial condition. 

     The hardware can reduce the delays due to the transmission by avoiding or reducing the wait states. It has been 
transmitted and received a Test Image Set (TIS) synthesized by all the methods using the CAVIAR PCI-AER. TIS is 
composed by 9 Gaussian histogram images that implies a growing charge of events in the AER bus. Figure 5 shows the 
average inter-spike time difference between the expected (10 ns per event) and the transmitted/received by the interface 
(120 ns per event). In the worst case, the difference is 2,4 ms per event. Around the 30 % and 40 % of charge of events 
there exist a local maximum due to the proximity to the saturation of the input FIFO. Although the IFIFO is almost 
collapsed, there still are some pauses that allow to the board to make some wait state. This situation affect to the error 
due to the reduced hoped time.  



fig. 4. Average Time Delay of CAVIAR PCI-AER for TIS and all the methods. 

6. CONCLUSIONS
AER format is a neuroinspired communication way between neuroinspired systems. Many efforts have been done in

real-time vision processing. This paper have presented a hardware interface with time delays recovery for transferring 
events from a PC to an AER system.  

     The hardware has been tested with the TIS. This set of images carry out with the same characteristics. There exists 
another kind of population of images with different characteristics that will cause a different respond along the methods. 
For example radar images, x-ray images, ultrasound-scan images, ... Therefore every method will result more 
appropriate switch the population of images selected. 

     A hardware interface that allows the communication between a PC and a AER based system is proposed and it has 
been tested with a bandwidth support from 1 Mevent/second (worst case) to 16,6 Mevent/second (best case). 

     Our group has available other kind of AER interfaces, based on USB bus and MMC, that can be also used from 
MATLAB. Some of the functionalities supported are: 
- Remapping the AER information while it is transmitted.
- Synthesizing AER format from digital video, frame by frame.
- AER data logging and reproduction.



ACKNOWLEDGEMENTS 
This work was in part supported by EU grant IST-2001-34124 (CAVIAR), and Spanish grant TIC-2000-0406-P4 
(VICTOR).  

REFERENCES 
1. M. Sivilotti, “Wiring Considerations in analog VLSI Systems with Application to Field-Programmable Networks”,

Ph.D. Thesis, California Institute of Technology, Pasadena CA, 1991.
2. Teresa Serrano-Gotarredona, Andreas G. Andreou, Bernabé Linares-Barranco. “AER Image Filtering Architecture

for Vision-Processing Systems”. IEEE Transactions on Circuits and Systems. Fundamental Theory and
Applications, Vol. 46, N0. 9, September 1999.

3. A. Cohen, R. Douglas, C. Koch, T. Sejnowski, S. Shamma, T. Horiuchi, and G. Indiveri, “Report to the National
Science Foundation: Workshop on Neuromorphic Engineering”, Telluride, Colorado, USA, June-July 2001.
[www.ini.unizh.ch/telluride]

4. A. Linares-Barranco. “Estudio y evaluación de interfaces para la conexión de sistemas neuromórficos mediante
Address- Event-Representation”. Ph.D. Thesis, University of Seville, Spain, 2003

5. A. Linares-Barranco, R. Senhadji-Navarro, I. García-Vargas, F. Gómez-Rodríguez, G. Jimenez and A. Civit.
“Synthetic Generation of Address-Event for Real-Time Image Processing”. ETFA 2003, Lisbon, September.
Proceedings, Vol. 2, pp. 462-467.

6. Kwabena A. Boahen. “Communicating Neuronal Ensembles between Neuromorphic Chips”. Neuromorphic
Systems. Kluwer Academic Publishers, Boston 1998.

7. Misha Mahowald. “VLSI Analogs of Neuronal Visual Processing: A Synthesis of Form and Function”. Ph.D.
Thesis. California Institute of Technology Pasadena, California 1992.

8. Kwabena A. Boahen. “Retinomorphic vision systems II: Communication channel design”. Proceedings of the IEEE
ISCAS, volume supplement, pp. 14-17. May 1996.

9. Mortara, Eric A. Vittoz, Philippe Venier. A communication Scheme for Analog VLSI Perceptive Systems. IEEE
Journal of Solid-State Circuits, vol. 30, No. 6, pp. 660-669, June 1995.

10. Pierre L'Ecuyer, François Panneton. A New Class of Linear Feedback Shift Register Genoerators. Proceedings of
the 2000 Winter Simulation Conference.

11. Linear Feedback Shift Register V2.0. Xilinx Inc. October 4, 2001. http://www.xilinx.com/ipcenter.
12. R. Paz. “Análisis del bus PCI. Desarrollo de puentes basados en FPGA para placas PCI”. Trabajo de investigación

para obtención de suficiencia investigadora. Sevilla, Junio 2003.




