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This paper presents a fully automatic parallel software for the localization of the optic disc (OD) in reti- 

nal fundus color images. A new method has been implemented with the Graphics Processing Units (GPU)

technology. Image edges are extracted using a new operator, called AGP-color segmentator . The resulting

image is binarized with Hamadani’s technique and, finally, a new algorithm called Hough circle cloud is

applied for the detection of the OD. The reliability of the tool has been tested with 129 images from the

public databases DRIVE and DIARETDB1 obtaining an average accuracy of 99.6% and a mean consumed

time per image of 7.6 and 16.3 s respectively. A comparison with several state-of-the-art algorithms

shows that our algorithm represents a significant improvement in terms of accuracy and efficiency.
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. Introduction

Image analysis and processing have great significance in the

eld of medicine, especially in non-invasive treatment and clin-

cal study. However, with the development of new technologies,

arger quantity of data, especially high quality images, is available.

herefore, there is a new necessity of efficient and fast algorithms

apable of processing and extracting meaningful features from

mages in a reasonable time. This is the case of mass screening

rograms for the early detection of retinal diseases such as glau-

oma or diabetic retinopathy. Visual inspection of the large number

f images so obtained is a time consuming task for the medical

xperts. Moreover, CAD (Computer Aided Diagnosis) tools based on

etinal image processing developed in the past are limited by the

alance between accuracy and complexity due to their sequential

rogramming. 

The OD is seen on fundus color photographs as a bright yel-

owish disc in human retina from where the blood vessels and

ptic nerves emerge. Its relevance resides in the fact that it is

 key point for the diagnosis of a wide variety of diseases such

s glaucoma or diabetic retinopathy. Moreover, it is usually taken
p  

e  

s  

T  

i

s a base for detecting other anatomical structures (macula, blood

essels) and retinal abnormalities (microaneurysms, hard exudates,

rusens, etc.). Most of the methods found in the literature are

emi-automatized. This means that the computer treatment is cru-

ial in the localization and detection of the OD, but the human

xpert is who takes the final decision. In this paper, a fully autom-

tized method is presented where no human expert is necessary

or the detection of the OD. 

Changes in the OD can indicate the current state and progres-

ion of a certain disease while its diameter is usually used as a

eference for measuring retinal distances and sizes [1] . Therefore,

ccurate OD localization and detection of its boundary is a princi-

al and basic step for automated diagnosis systems [2] . 

In the literature, the number of methods that take into account

he vectorial nature of the color retinal image is limited. Instead,

ts gray level representation or a single color plane are adopted.

or instance, in [3] and [4] , the gray level image is thresholded in

rder to retain the brightest pixels of the image. From them, the

ocation where all vessels converge is encountered and denoted as

he OD center. In [5] , the grey level version of the color original

mage is used to segment the OD on two of the three different ap-

roaches presented: multi-thresholding and active contour without

dges. In [6] , the authors also use images in gray scale. Instead of

egmenting the OD, several points delimiting them are provided.

he system needs to be previously trained with a set of labelled

mages. 
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Intensity (I) plane from the HIS color space is selected in

[7] . The method applies an adaptive local contrast enhancement

technique to retinal images and identifies the position of OD by

variance measurement between the intensity of each pixel and in-

tensities of adjacent pixels. 

Morphology techniques are adopted in [8] with a preprocessing

step added at the beginning to correct illumination and enhance

contrast. Next, the OD region is found through a morphological op-

eration. The relative constancy of the position between the fovea

and the OD is utilized in [9] , locating both regions at once. Other

image processing techniques frequently used in the literature are

gradient vector flow [10] and graph cuts [11] , always applied on a

single color plane. 

A well-known set of methods based on the processing of the

red (R) color plane is ARGALI (Automatic cup-to-disc Ratio mea-

surement system for Glaucoma detection and AnaLysIs) [12–14] .

These methods share a common structure that comprise the loca-

tion of a region of interest (ROI) by the automatic selection of 0.5%

of the brightest pixels of the image, OD segmentation with a vari-

ational level set technique and contour refinement with an ellipse

fitting final stage. Trying to improve the ARGALI system, AGLAIA

(Automatic Glaucoma Diagnosis and Its Genetic Association Study

through Medical Image Informatics) system introduces a cascade

of modified level set steps [15] . Another method using the R color

plane is presented in [16] . The authors segment the cup and the

OD by using Candy method and circular Hough to recognize the

initial disk. 

Green (G) plane is the image color channel selected by the au-

thors in [9,17–19] . More precisely, in [18] , the geometric relation-

ship between the OD and main blood vessels is utilized to iden-

tify the disc location. The described method is based on a fuzzy

voting mechanism. In [17] , a method based on Hoover’s algorithm

is presented. In this approach, the location of the OD is approxi-

mated by searching for regions of high intensity, diversity of gra-

dient directions, and convergence of blood vessels. The method of

[19] is based on a pyramidal decomposition of the G plane image

and the use of the Hausdorff distance based template matching.

In [20] , the OD is not segmented, it is only detected. In this ap-

proach, the generalized Hough transform and the G or R plane are

used. 

A less frequent color space is used in [21] where the gray

level version of color retinal image is processed along with the

u -coordinate from the UCS color coordinate system. The method

localizes the OD by detecting the vessels in the image and back-

tracking them to their origin. 

Only a few methods make use of the three planes of a certain

color space, usually RGB along with HSI family, for its simplicity on

the first case and its intensity separation on the second one. The

methods proposed in [22] and [23] are based on the independently

processing of the R, G and B (blue) planes of RGB color space. In

[22] , a system based on PCA analysis is proposed. In [23] , color

segmentation is carried out in the original RGB image with a sta-

tistical classification method used to detect the objects with bright

yellowish color. A group of features are defined as non-intersecting

classes in the feature space and then they can be easily identified

with a classifier. In [24] , the authors presented the idea of detect-

ing the OD by an entropy filter applied to the image expressed in

the HSI color space. 

The a priori knowledge about OD shape has propitiated the de-

velopment of algorithms that search for circles in the image with

the well-known Hough transform. This is a feature extraction tech-

nique that tries to find imperfect instances of objects within a cer-

tain class of shapes by a voting procedure. G color plane form

RGB color space is the most widely used image representation in

these kind of methods [25–30] . In this way, [25] used the repeated
hresholding technique on G to find the brightest areas in the im-

ge. Afterwards, they introduced the roundness of the object to de-

ect OD features and finally localized the OD by using the Hough

ransform. However, gray level image is used by other techniques

uch as in [26] or [31] . 

In [32] , the OD is detected by using the three color planes sep-

rately. The method used is KNN and it is trained by a set of 500

mages and considers vessel analysis. We would like to highlight

he method presented in [33] , where a color space is used for

tereo color images. Such method uses a KNN classifier and the

raining images are preprocessed in parallel. 

The above mentioned Hough based methods forget the color

ontent of the image and need some parameters to be experimen-

ally fixed such as the minimum and maximum radius values. The

limination of these fixed parameters would be translated into a

rohibitive increase in computational time. To overcome these two

rawbacks while improving the quality of the results, we propose

n algorithm that considers the complete RGB color space for im-

ge processing and does not need any parameter to be fixed. This

econd point is achieved due to its implementation in parallel in-

tead of sequential that makes the technique very fast and leads it

o deal with high complexity with a low consumed time. In this

aper, the proposed algorithm detects shapes which correspond to

nexact or approximate circles in an image. Such technique is based

n the classical Hough Transform (HT), but instead of choosing a

ircle candidate, it takes a set of circumferences (a cloud). The set

f pixels on such circumferences are a region in the image. The

keleton of such image is the obtained OD. Such skeleton is not a

erfect circle and fit the shape of the OD better than an exact cir-

le. The computation of the circle cloud requires a computational

ime which is not admissible for sequential computers. This draw-

ack is sorted in this paper by using GPU. This architecture allows

o implement a parallel software which with competitive average

ccuracy and computational time. 

Graphics Processing Units (GPU) have emerged as general-

urpose coprocessors in recent years. Traditionally designed for

aming applications, GPUs offers many computing threads ar-

anged in a Single-program Multiple-data (SPMD) model. The cho-

en hardware architecture for our parallel implementation has

een the Compute Unified Device Architecture, (CUDA 

TM ), which

llows the parallel NVIDIA GPUs to solve many complex computa-

ional problems in a more efficient way than on a sequential Cen-

ral Processing Unit (CPU). 

The choice of this parallel architecture is supported by sev-

ral reasons. Firstly, CUDA 

TM allows programmers a friendly model

or implementing easily parallel programs. From the practical side,

here exists an increasing interest in the specialized industry for

he development of more and more powerful GPUs which can be

sed for general purposes. This interest leads, on the one hand, to

 more economically accessible (and hence, more extended) hard-

are and, on the other hand, to the development of more power-

ul computational units. The use of this new parallel architecture is

urrently explored as a tool for paralleling the treatment of digital

mages [34,35] . 

Finally, we would like to emphasize the OD obtained in this

aper is not a perfect circle, as it is usual in the most of pa-

ers from above. We try to adapt our results to the real shape

f the OD that appear in the different images used in our exper-

ment. So, we go a step further to obtain the best segmentation

pproach. 

The paper is organized as follows: Firstly, we recall some ba-

ic aspects of the Hough transform. Next we give a brief descrip-

ion of our algorithm and some experimental results on the GPU

mplementation. The paper finishes with some final remarks and

onclusions. 
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. Hough circle clouds

The Hough transform is a well-known feature extraction tech-

ique used in image analysis. The classical Hough transform was

oncerned with the identification of lines in the image, but later

he Hough transform has been extended to identifying positions of

rbitrary shapes, most commonly circles or ellipses [36–38] . The

oting procedure is carried out in a parameter space, from which

bject candidates are obtained as local maxima in a so-called ac-

umulator space that is explicitly constructed by the algorithm for

omputing the Hough transform. 

The basic idea behind the Hough transform is to convert the

mage into a parameter space that is constructed specifically to

escribe the desired shape analytically. Maxima in this parameter

pace correspond to the presence of the desired shape in image

pace. As OD can be considered as an imperfect circle on a fundus

mage, the usual mathematical parametrization as (x − a ) 2 + (y −
) 2 = r 2 (where ( a , b ) are the coordinates of the center of the cir-

le that passes through ( x , y ) and r is its radius) is used. Each circle

an be identified as a point ( a , b , r ) in a 3D parametric space, and

ach point ( a , b , r ) receive votes which are accumulated in an ac-

umulator array for all parameter combinations. The accumulation

pace presents a high value when an imperfect circle is found in

he original image. 

The search of circles with the Hough transform is based on a

recise radius value, that is, only circles with the desired radius

ill be detected. State-of-the-art techniques usually introduce this

alue as an experimentally fixed parameter [28,31] . Obviously, the

se of experimental parameters could lead to erroneous results

nd must be avoided. 

In order to avoid these drawbacks, in this paper we propose

 new technique called Hough Circle Cloud for the detection of

he OD. It exploits the massive parallelism of the GPU technology.

irst of all, the algorithm searches for the best radius value within
ig. 1. Original images (up, in color) and segmented ones using the proposed AGP

dge detector (down, in grey scale).

Fig. 2. Workflow of the algorithm working on a GPU card.
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 wide range of possible ones. Searching the proper radius in a

ange of feasible candidates is performed in a competitive time

ue to the massive parallelization of the voting procedure of the

ough transform implemented on a GPU. Since the OD is not a

erfect circle, many different circles are proposed as approaches to

he OD by the use of the Hough transform. The set of pixels of all

hese circumferences is usually a thick irregular ring including the

eal limits of the OD. This irregular ring is called the Hough Circle

loud. All the pixels in the Hough circle cloud correspond to an ap-

roach to the OD. The proposed method provides an skeletoniza-

ion of this Hough Circle Cloud via an adaptation of the Hall and

uo method. This skeletonization is an imperfect circle obtained

rom the set of circles proposed as candidates by the Hough trans-

orm which captures the irregularities of the real OD. 

. Algorithm of the detection of the optic disc

Next, a description of the different phases of the algorithm is

rovided. A detailed workflow can be seen in Fig. 2 . The algorithm

akes the image as an input and it outputs the location and border

f the OD. The key feature of the process is that it is fully auto-

atic. No human expert is needed in any step. The structure of

ur algorithm to detect the OD is the following: 

• Phase 1: Compression of the input image. It could be an un-

expected step when you are working in parallel with GPUs, but

the reason is found in the phase 2. We work for each pixel of



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Binarized images from Fig. 1 .

Fig. 4. (Top) Images from Fig. 3 without eye border. (Bottom) Initial ODs of such

images.

 

 

 

 

 

the input image with a neighborhood of pixels whose size is

fixed. The compression is performed by sampling. In this way,

the new image is not distorted with respect to the original one.

Firstly, the image is split into squares of four connected pixels

and secondly, the upper left pixel is taken from each square.

Each image of size a × b with max { a , b } > 1200 is compressed,

but the new maximum is never less than 600. 

In our case study, the images of DIARETDB1 (whose size is 1500

× 1152 pixels) have been compressed, not the ones from the

database DRIVE (whose size is 565 × 584 pixels). 
• Phase 2: Segmentation (Color AGP Segmentator). In order to

detect image edges, a variant of the usual gradient operator has

been implemented. Our software can consider neighborhoods

of 3 × 3, 5 × 5, …(2 n + 1) × (2 n + 1) (where (2 n + 1) × (2 n +
1) is the size of the square of pixels centered in the chose

pixel). In the current study, a 5 × 5 neighborhood is used in

order to control the blur effect. A new improved algorithm has

been developed for this paper from the previous ideas pre-

sented in [39] that we called Color AGP Segmentator. This new

operator is based on the changes of the intensity of the color

of the image. Each plane from the RGB original color image is

independently processed (regardless which of them is the most

informative). The three color planes from the RGB color space

are considered and the final result for each pixel corresponds to

the highest value obtained from the planes R, G and B. In this

way, the possible saturation problems are sorted ( Fig. 1 ). 

The basic idea is to work with more information data than the

3 × 3 Sobel operator, but to be more efficient than 5 × 5 Sobel

operator, always from a parallel processing point of view. We

consider to work with a dynamical perspective. Firstly, for each

pixel, we take the possible four directions and look for the ap-

propriate direction. Later, we control the efficiency of our algo-

rithm considering to work with only 12 pixels (the 5 × 5 Sobel

operator uses 20 pixels). 

So, given a digital image with n 2 pixels ( n ∈ N ), we define a

tissue P system with cellular division whose input is given by

the set { a ij : 1 ≤ i , j ≤ n } where a ∈ RGB . 

Next, we give outline of how we can obtain a new approxima-

tion of the intensity gradient function AGP operator , of an image

using tissue P systems with cell division. 

The bio-inspired algorithm (tissue P systems) consists on the

following stages: 

1. Generating stage: The system creates the necessary number

of copies of the pixels for the following stage. To do this, the

P system uses the environment and division rules .

2. Choosing a direction stage: The system decides among four

directions: west-east, northwest-southeast, north-south and

northeast-southwest.

3. Gradient stage: Chosen a direction, the system approximates

the intensity gradient function.

4. Output stage: The system sends to the output cell the re-

sults of the previous stage.

The bio-inspired algorithm is described in the Appendix (a de-

tailed description can be found at [39] ). 
• Phase 3: Binarization (Hamadani algorithm). In order to

choose an appropriate threshold to the binarization, a recent

implementation [40] of the Hamadani algorithm [41] is ap-

plied. In this way, a linear combination of the mean and the

standard deviation of the values of pixels of the images is

used. Fig. 3 shows the grey scale images of Fig. 1 after the

binarization.
• Phase 4: Mask deletion. In order to avoid erroneous results,

the obtained image is processed by eliminating the eye border.

This is performed by applying a threshold on each color plane

of the original image with the algorithm presented in [40] . All

the pixels with zero value on the three color channels are con-
sidered as background in our final binarized image. Examples of

these resulting black and white images from Fig. 3 are shown

in Fig. 4 (Top). 
• Phase 5: Computing of Hough maximums. Initially, the black

connected components in the binarized image are checked as

candidates for the OD. To this aim, firstly the circular Hough

transform is applied in parallel to the image in an interval of

radius wide enough to consider all the possible OD. The interval

is automatically chosen by the software according to the image

size. The distance between two consecutive circle is one pixel.

This phase is crucial in the drastic time improvement of this

method with respect to others found in the literature.

The Hough transform is based in a voting process which is per-

formed for each black pixel of the image. Our algorithm pro-

cesses the black pixels of the image in a sequential way, but

the voting processing is parallel on the set of pixels.

For each radius in the interval, the Hough transform is per-

formed in parallel via a computation matrix. At this stage, a

threshold is sequentially chosen. This threshold will filter the

values of the matrix Hough which a reasonable number of

points on a circumference.

One of the main novelties of this method is that the concept

of cloud . Instead of searching a maximum value, our software



Fig. 5. Several Examples. Our results vs. the ground truth provided by experts.
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(a) Execution time

(b) Accuracy

(c) Oratio

(d) Sensitivity

(e) Specificity

Fig. 6. Statistics for DRIVE database.
consider all the radius which surpass a percentage of successes.

Such percentage is iteratively searched in order to consider a

representative cloud of values. 

The graphical representation of the cloud is a set of circumfer-

ences instead of a single one (see Fig. 4 bottom). The software

also considers the case where the set of circumferences are dis-

joint. In this case, only one set of circumferences is chosen after

a process of erosion and dilation. 
• Phase 6: Creation of OD. The initial OD is a circle set by the

maximum on the Hough voting procedure. Some examples of

candidates to OD resulting from the images appear in Fig. 4 .

These candidates are thinned with an improved version of the

bio-inspired implementation of the skeletonizing Hall & Guo al-

gorithm presented in [42] , where cellular automata are used for

the implementation. Since the searched boundary of the OD is

one-pixel width, the frames are closed considering 4-adjacency.

Fig. 5 shows some examples of the obtained OD. Rows 1 and

3 show the result obtained with our algorithm. Rows 2 and 4

show the ground truth provided by experts. The OD border is

marked in blue on the original image.

. Experimental results

Our algorithm has been tested on two different publicly avail-

ble databases i.e DRIVE [43] and DIARETDB1 [44] . The used

etrics are the usual in the literature. Performance is the percent-

ge of images where the OD is found. The other metrics are the

ollowing (based on true and false positives and true and false neg-

tives): 

Oratio = 

t p 

t p + f p + f n 

Sensit i v it y = 

t p 

t p + f n 

ccuracy = 

tn + t p 

t p + f p + tn + f n 

Speci f icit y = 

t n 

t n + f p 

In order to compare it with other algorithms found in the lit-

rature, several statistical data (Execution times, Accuracy, Oratio,

ensitivity and Specificity) have been computed for all images of

he two databases. The results are shown in Figs. 6 and 7 . To sum

p, Table 1 shows the average values for the statistics given for

ach database. Let us remark that the fully automatized detec-

ion of the OD in the DRIVE database (40 images) is performed

n 5.1 min with an average accuracy of 99.6 %. For the DIARETDB1

atabase, 89 images were fully processed in 24.2 min and 99.6%

verage accuracy. Finally, Table 2 shows a comparison of our algo-

ithm with other methods found in the literature. Let us remark

hat such table does not include the computational time needed

or processing the images since it is not usually provided by the

uthors. 



(a) Execution time

(b) Accuracy

(c) Oratio

(d) Sensitivity

(e) Specificity

Fig. 7. Statistics for DIARETDB1.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1

Statistics for databases DRIVE and DIARETDB1.

DRIVE DIARETDB1

Size (number of images) 40 89

Number of failed images 1 2

Performance (%) 97,5 97,7

Average Oratio (%) 83,3 84,3

Average Sensitivity (%) 89,9 91,8

Average Accuracy (%) 99,6 99,6

Average Specificity (%) 99,8 99,7

Average time (seconds) 7,6 16,3

Total time (minutes) 5,1 24,2
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4.1. Graphics Processing Units 

GPUs are high performance computing many-core processors

which has become available for compute intensive applications in

the last years. In particular, NVIDIA has developed the CUDA 

TM 

technology which allows to program efficiently GPUs for general

purposes. CUDA 

TM technology is based on a Single Instruction,

Multiple Threads (SIMT) programming model i.e., the same instruc-

tion is executed simultaneously on many data elements by differ-

ent threads. They are especially well-suited to address problems

that can be expressed as data-parallel computations since GPUs

devote more transistors to data processing than data caching and

flow control. 

General programming recommendations are optimizing load

balancing and increasing processor occupancy. However, depend-

ing on the algorithm structure, both recommendations cannot

be applied simultaneously. Thus, some kind of tradeoff must

be undertaken, since an optimally balanced implementation may
ncrease the use of registers and the need for sharing data among

hreads, which decreases occupancy. Moreover, parallelization be-

omes even more challenging, if the algorithm presents workload-

ependent computations and non-linear memory references. The

ormer produces divergence among threads, if the layout is not

arefully planned. The latter affects the locality of references,

hich entails serialized memory accesses. 

The used graphical card (GPU) used in the experiments has

een an NVIDIA Geforce GT240 composed by 12 Stream Processors

ith a total of 96 cores to 1340 MHz. It has 1 GB DDR3 main mem-

ry in a 128 bits bus to 700 MHz. So, the transfer rate obtained is

y 54.4 Gbps. The used Constant Memory is 64 KB and the Shared

emory is 16 KB. Its Compute Capability level is 1.2 (from 1.0 to

.1). The experiments have been performed on a computer with a

PU AMD Athlon II ×4 645, which allows to work with four cores

f 64 bits to 3.1 GHz. The computer has four blocks of 512 KB of

2 cache memory and 4 GB DDR3 to 1600 MHz of main memory. 

All the developed software can be scaled to a more power-

ul hardware. This represents a new advantage for future develop-

ents, since a simple adaptation of the software to new hardware

an lead to better results in time. 

. Final remarks

In this paper, a fully automatic computer retinal image analysis

ystem for the localization and segmentation of OD in color digital

undus images has been presented. To this aim, different research

ork developed by some of the authors in the area of the bioin-

pired parallel image processing have been put together with some

ew parallel algorithms implemented for this paper on CUDA 

TM . 

The new implementations developed for this paper have been

n improvement gradient operator (color AGP Segmentator), a par-

llel mask deletion, a new transform for CUDA 

TM to detect the OD

Hough Circle Cloud) and an improved Hall & Guo algorithm for

 parallel thinning. Moreover, we would like to highlight that, on

he contrary of other approaches which only detect perfect circles,

ur algorithm find imperfect circular regions of interest obtaining a

etter approximation to the OD. Moreover, a previous training with

n images group is not needed by our algorithm. So, none time of

re-computation is considered in our case. 

We would like to remark that, on the one hand, the proposed

lgorithm is independent on the color space. This means a concep-

ual improvement since, if the optical technology changes in the

ext years, the current parallel implementation of our algorithm

ill continue obtaining accuracy results in a competitive time. We

ave created a parallel tool not depending of the input images. On

he other hand, the proposed algorithm is completely automatized

nd no human expert supervision is required in any stage of the

rocess. 

Finally, the technique of the cloud HT presented in this paper

an be used in further studies related to pathologies or abnormal-

ties in retinal fundus color images. 



Table 2

Comparisons with other algorithms for database DRIVE (Top) and DIARETDB1 (Bottom). [( ∗) Taken from [45] ]. 

Method Oratio (%) Sensitivity (%) Accuracy (%) Specificity (%) Performance (%)

Topology cut ( ∗) 55,91 65,12 − − −
Adaptive morphologic ( ∗) 41,47 − − − −
Graph cut ( ∗) 55,32 73,98 − − −
Graph cut with vad ( ∗) 70,70 84,44 − − −
[27] − − 95,5 − 100

[18] − − − − 89

[4] − − − − 97,5

[46] − − − − 97,5

Compensation factor ( ∗) 70,9 84,64 − − −
MRF image reconstruction ( ∗) 82,4 98,19 − − −
Our method 83,3 89,9 99,6 99,8 97,5

Topology cut ( ∗) 38,43 55,30 − − −
Adaptive morphologic ( ∗) 43,65 − − − −
Graph cut ( ∗) 54,03 76,35 − − −
Graph cut with vad ( ∗) 75,70 86,55 − − −
[27] − − 93,7 − 97,7

Compensation factor ( ∗) 75,94 86,75 − − −
MRF image reconstruction ( ∗) 78,5 87,50 − − −
Our method 84,3 91,8 99,6 99,7 97,7
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ppendix 

Next, we provide a family of tissue P systems to approximate an

ntensity gradient function of a 2D image. For each image of size

 

2 with n ∈ N , we consider the tissue P system and cell division of

egree n 2 + 2 : 

�2 (r, n ) = (�, �, E, w 1 , w 2 , w (1 , 1) , . . . , w (n,n ) , w (1 , 1) ′ , . . . , w (n,n ) ′
R , i �2 

, o �2 
)

where 
• � = � ∪ E ∪ { β, T , γ } ,
• � = { a i j : a ∈ C, 1 ≤ i, j ≤ n } ,
• E = { t i , (t, 1) i , (t, 2) i , (t, 3) i , αi : 1 ≤ i ≤ n }

∪{ a i j , (a, l) i j , : 1 ≤ i, j ≤ n, 1 ≤ l ≤ 6 , a ∈ C}
∪{ z i : 1 ≤ i ≤ β1 + 1 , β1 = � log 2 |C|�}
∪{ δi , δi , δ

′ 
i 
, δ′′

i 
: 1 ≤ i ≤ 4 } ∪ { y 1 , y 2 , x 1 , x 2 , x 3 }

∪ {( A , l ) ij : 1 ≤ i , j ≤ n , 1 ≤ l ≤ 4} ∪ { A l : 1 ≤ l ≤ 4} 

∪{ p 1 , p 2 , q 1 , q 2 , q 3 , μ, } ∪ { o l : 1 ≤ l ≤ β1 + 1 }
• w 1 = α1 ; w 2 = t 1 , . . . , t n ; w (1 , 1) · · · = w (n,n ) = T , γ 255 

,

• R is the following set of communication rules:

1. (1, a ij /( a , 1) ij ( a , 2) ij ( a , 3) ij , 0) for 1 ≤ i , j ≤ n and a ∈ C,

2. (2, t i /( t , 1) i , 0) for 1 ≤ i ≤ n ,

3. (1, ( a , 1) ij ( a , 2) ij / λ, 2) for 1 ≤ i , j ≤ n ,

4. (2, ( t , 1) i /( t , 2) i , 0) for 1 ≤ i ≤ n ,

5. (1 , αi /α
2
i +1 

, 0) for 1 ≤ i ≤ n , 

6. (2 , (a, 1) i j / (a, 4) 4 
i j 
, 0) for 1 ≤ i , j ≤ n , 

7. (2, ( t , 2) i /( t , 3) i , 0) for 1 ≤ i ≤ n ,

8. [( t , 3) i ] 2 → [ β] 2 [ β] 2 for 1 ≤ i ≤ n ,

9. (1 , (a, 3) i j αn +1 / (a, 5) i j , 0) for 1 ≤ i , j ≤ n ,

10. (1, ( a , 5) ij / T , ( i , j )) for 1 ≤ i , j ≤ n ,

11. (( i , j ), ( a , 5) ij /( a , 6) ij z 1 , 2) for 1 ≤ i , j ≤ n ,

12. ((i, j) , z i /z 2
i +1 

, 0) for i = 1 , . . . , β1 , 

13. ((i, j) , (a, 6) i j

/ 

(b, 2) i −1 j−1 (c, 2) i −1 j (d, 2) i −1 j+1 

(e, 2) i j−1 (a, 2) i j ( f, 2) i j+1 

(g, 2) i +1 j−1 (h, 2) i +1 j (k, 2) i +1 j+1 

, 2 

) 

for 2 ≤ i, j ≤ n + 1 , 

14. ((i, j) , (b, 2) i −1 j−1 (k, 2) i +1 j+1 /δ
b 
1 
δ

k 

1 , 0) for 1 ≤ i , j ≤ n and

b, k ∈ C,

15. ((i, j) , (c, 2) i −1 j (h, 2) i +1 j /δ
c 
2 
δ

h 

2 , 0) for 1 ≤ i , j ≤ n and c, h ∈
C,
16. ((i, j) , (d, 2) i −1 j+1 (g, 2) i +1 j−1 /δ
d 
3 
δ

g 

3 , 0) for 1 ≤ i , j ≤ n and

d, g ∈ C,

17. ((i, j) , (e, 2) i j−1 ( f, 2) i j+1 /δ
e 
4 
δ

f 

4 , 0) for 1 ≤ i , j ≤ n and e, f ∈
C,

18. ((i, j) , δl δl /λ, 0) for 1 ≤ i , j ≤ n and 1 ≤ l ≤ 4,

19. ((i, j) , z (β1 +1) /y 1 z 
4
(β1 +2) 

, 0) for 1 ≤ i , j ≤ n , 

20. ((i, j) , z (β1 +2) δl /δ
′ 
l 
, 0) for 1 ≤ i , j ≤ n and l = 1 , 2 , 3 , 4 , 

21. ((i, j) , z (β1 +2) δl /δ
′ 
l 
, 0) for 1 ≤ i , j ≤ n and l = 1 , 2 , 3 , 4 , 

22. (( i , j ), y 1 / y 2 , 0),

23. ((i, j) , δ′ 
l 
δ′ 

l+1 
/λ, 0) for 1 ≤ i , j ≤ n and l = 1 , 3 ,

24. ((i, j) , y 2 /x 1 y 
2 
3 
, 0) for 1 ≤ i , j ≤ n , 

25. ((i, j) , x l /x l+1 , 0) for 1, 2 and l = 1 , . . . , β1 + 1 ,

26. ((i, j) , y 3 δ
′ 
l 
/δ′′ 

l 
, 0) for 1 ≤ i , j ≤ n and l = 1 , 2 , 3 , 4 , 

27. ((i, j) , δ′′ 
l 
δ′′ 

k 
/λ, 0) for 1 ≤ i , j ≤ n and 1 ≤ l < k ≤ 4, 

28. ((i, j) , x 3 δ
′′ 
l 
/ (A, l) i j , 0) for 1 ≤ i , j ≤ n and l = 1 , 2 , 3 , 4 , 

29. (( i , j ), ( A , l ) ij / A l s 1 , 0)

30. ((i, j) , s l /s 2 
l+1 

, 0) for 1 ≤ i , j ≤ n and l = 1 , . . . , 24 β1 , 

31.

(a) ((i, j) , A 1

/ (a, 4) i −1 j−2 (b, 4) 3 
i −1 j−1

(c, 4) 2
i j−2

(d, 4) 4 
i j−1

(e, 4) i +1 j−2 ( f, 4) 3 
i +1 j−1

(g, 4) 3 
i −1 j+1

(h, 4) i −1 j+2 

(k, 4) 4 
i j+1

(l, 4) 2 
i j+2

(o, 4) 3 
i +1 j+1

(p, 4) i +1 j+2 

, 2 

⎞ 

⎠ 

for 2 ≤ i, j ≤ n + 1 and a, b, c, d, e, f, g, h, k, l, o, p ∈ C, 

(b) ((i, j) , A 2

/ (a, 4) 2
i −2 j−2

(b, 4) i −2 j−1 

(c, 4) i −1 j−2 (d, 4) 4 
i −1 j−1

(e, 4) 3 
i −1 j

( f, 4) 3 
i j−1

(g, 4) 3 
i j+1

(h, 4) 3 
i +1 j

(k, 4) 4 
i +1 j+1

(l, 4) i +1 j+2 

(o, 4) i +2 j+1 (p, 4) 2 
i +2 j+2

, 2 

⎞ 

⎠ 

for 2 ≤ i, j ≤ n + 1 and a, b, c, d, e, f, g, h, k, l, o, p ∈ C, 

(c) ((i, j) , A 3 /
(a, 4) i −2 j−1 (b, 4) 2 

i −2 j
(c, 4) i −2 j+1 

(d, 4) 3 
i −1 j−1

(e, 4) 4 
i −1 j

( f, 4) 3 
i −1 j+1

(g, 4) 3 
i +1 j−1

(h, 4) 4 
i +1 j

(k, 4) 3 
i +1 j+1 

(l, 4) i +2 j−1 (o, 4) 2 
i +2 j

(p, 4) i +2 j+1 
, 2 

)
for 2 ≤ i, j ≤ n + 1 and a, b, c, d, e, f, g, h, k, l, o, p ∈ C, 

(d) ((i, j) , A 4 /

(a, 4) i −2 j+1 (b, 4) 2 
i −2 j+2

(c, 4) 3 
i −1 j

(d, 4) 4 
i −1 j+1

(e, 4) i −1 j+2 

( f, 4) 3 
i j+1
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(g, 4) 3 
i j−1

(h, 4) i +1 j−2 (k, 4) 4 
i +1 j−1

(l, 4) 3 
i +1 j

(o, 4) 2 
i +2 j−2

(p, 4) i +2 j−1 

, 2 

⎞
⎠

for 2 ≤ i, j ≤ n + 1 and a, b, c, d, e, f, g, h, k, l, o, p ∈ C, 

32. ((i, j) , (z, 4) i j /γ
z 

1 
, 0) for 1 ≤ i , j ≤ n and z = a, b, c, d, e, f ∈ C,

33. ((i, j) , (z, 4) i j /γ
z 

2 
, 0) for 1 ≤ i , j ≤ n and z = g, h, k, l, o, p ∈ C,

34. (( i , j ), γ 1 γ 2 / λ, 0) for 1 ≤ i , j ≤ n ,

35. ((i, j) , s 24 β1 +1 γl γl /p 1 γ
′ , 0) for 1 ≤ i , j ≤ n , l = 1 , 2 ,

36. (( i , j ), p 1 q 1 / p 2 q 2 , 0) for 1 ≤ i , j ≤ n ,

37. ((i, j) , γ γ ′ /λ, 0) for 1 ≤ i , j ≤ n ,

38. (( i , j ), q 2 / q 3 , 0) for 1 ≤ i , j ≤ n ,

39. (( i , j ), p 2 γ
′ / μ, 0) for 1 ≤ i , j ≤ n ,

40. (( i , j ), μ/(0, 6) ij , 0) for 1 ≤ i , j ≤ n ,

41. (( i , j ), p 2 q 3 / q 4 , 0) for 1 ≤ i , j ≤ n ,

42. ((i, j) , q 4 γ / (1 , 6) i j o 1 , 0) for 1 ≤ i , j ≤ n ,

43. ((i, j) , γ (l, 6) i j / (l + 1 , 6) i j , 0) / for 1 ≤ i , j ≤ n and l =
1 , . . . |C| ,

44. ((i, j) , o l /o l+1 , 0) / for 1 ≤ i , j ≤ n and l = 1 , . . . β1 ,

45. ((i, j) , o β1 +1 (z, 6) i j /a i j , 1) / for 1 ≤ i , j ≤ n and a, z ∈ C,

• i �2 
= 1

• i o = 1 .
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