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ABSTRACT 

 

A critical study of the use of isoconversional methods for the kinetic analysis of 

non isothermal data corresponding to processes with either a real or an apparent 

variation of the activation energy, E, with the reacted fraction, α, has been carried out 

using for the first time simulated curves. It has been shown that the activation energies 

obtained from model-free methods are independent of the heating rate. However, the 

activation energy shows a very strong dependence of the range of heating rates used for 

simulating the curves if the apparent change of E with α is caused by overlapping 

processes with different individual activation energies. This criterion perhaps could be 

used for determining if a real dependence between E and α is really occurring.  
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INTRODUCTION 

 

The non isothermal methods are the most commonly used for performing the 

kinetic analysis of solid state reactions. A number of papers on this topic have been 

recently published in this Journal [1-9]. These methods were originally developed by 

assuming a “n order” kinetic models. We have carried out a great effort [10-30] in 

generalizing the non-isothermal methods for being used for all the kinetic models 

describing solid state reactions. It must be pointed out that all the methods proposed 

have been developed by assuming that both the activation energy and the kinetic model 

do not change along the process. However, many authors [31- 47] have concluded from 

model free kinetic methods of analysis that the activation energy is a function of the 

reacted fraction.   The Friedman [48] and the Ozawa [49] isoconversional methods have 

been the most generally used for determining the activation energy as a function of the 

reacted fraction without any previous assumption on the kinetic model fitted by the 

reaction. The use of the Ozawa method has been strongly criticised because this 

equation was developed by integrating the Arrhenius equation by assuming that neither 

the activation energy nor the kinetic model change all over the reaction, suggesting that 

reliable values of the activation energy would be obtained only if the activation energy 

remains constant. Vyazovkin [37] has developed an iterative method for overcoming 

this problem. However, it must be pointed out that a theoretical analysis of the influence 

of the variation of the activation energy along the process on the α-T plots and the errors 

in the determination of the activation energies from isoconversional methods is still 

missing. This is the scope of the present work. 
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THEORETICAL 

 

 The rate of a solid state reaction can be written in the form: 
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where A is the preexponential factor of Arrhenius, E is the activation energy, T is the 

absolute temperature, R is the gas constant and f(α) is a function of the reacted fraction, 

α, that depends on the reaction model. 

If the reaction is studied under non-isothermal conditions at a linear heating rate 

β = dT/dt, eqn. (1) becomes: 
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Integration of eqn. (2), after replacing E/RT by x and rearranging, leads to 
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where p(x) is a function known as the Arrhenius integral that has not analytical solution, 

but can been resolved either by numerical methods or by using different 

approximations. If we use the Doyle´s approximation [50] for p(x) we get from eqn. (3) 

the popular equation proposed by Ozawa for determining the activation energy by 

isoconversional methods: 
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Eqn. (4) shows that, provided that g(α) is constant at a given value of α, the slope of the 

plots of lnβ versus the reciprocal of the temperature for particular values of α lead to the 

activation energy as function of α independently of the kinetic model fitted by the 

reaction.  

 The above equations have been derived by assuming that the activation energy is 

an invariant of the reaction. For the case of varying activation energy, we would 

consider a logarithmic variation of the activation energy with (1- α) and a compensation 

effect between A and E as it has been proposed in literature [31,32,42]: 

 

)1(ln10  EEE             (5) 

 

lnA = aE + b             (6), 

 

E0, E1, a and b being constants. 

 The system constituted by eqns. (2), eqn. (5) and eqn. (6) can be resolved by the 

Runge-Kutta method of numerical integration by means of the MathCad software for 

simulating dα/dt- α- T plots of varying activation energy processes. 

 The analysis by means of isoconversional methods of solid state processes 

taking place through competitive or parallel reactions is of interest because it would 

lead to an apparent dependence of E with α. If two competitive reactions were involved 

the reaction rate would be expressed in the following form: 
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where the subscripts 1 and 2 refer to the particular kinetic parameters of the competitive 

reactions 1 and 2, respectively. 

 Eqn. (7) can be resolved by the numerical integration method of Runge-Kutta in 

order to simulate a series of  dα/dt- α- T curves at different heating rates. 

   

 

RESULTS AND DISCUSSION 

 

Fig. 1 shows the sets of dα/dt-T curves simulated by assuming a first order 

kinetic model [i.e. f(α) = (1-α)] and the following relationships between E and α and 

lnA and E, respectively: 

 

E = 250 + 65 ln (1- α)  kJ/mol       (8) 

 

ln A = 0.25 E -5         (9), 

 

where A is expressed in min-1. 

 

Eqn. (8) has been chosen in such a way that the activation energy undergoes changes as 

large as 150% as a function of the reacted fraction that are considerably larger than 

those generally reported in literature as obtained from model free methods.  

The values of E obtained as a function of α from the Friedman’s and the 

Ozawa’s methods, respectively, are included in Table 1. The values of the activation 
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energies obtained from the Friedman method are in excellent agreement with those 

expected from Eqn (8). However, the error in the activation energies obtained from the 

Ozawa isoconversional method is significant and largely increases as far as the 

conversion increases. This behaviour is due to the fact that the Ozawa’s equation was 

derived integrating the Arrhenius equation by assuming that the activation energy 

remains constant all over the reaction, what in the case of variable activation energy is 

far to be true. Finally, it is noteworthy to remark that although the Ozawa’s method 

would not lead to reliable values of the activation energy, the perfect linear relationship 

obtained in the Ozawa plot for the whole set of heating rates considered (r = 1.0000, see 

table 1) indicates that the activation energy obtained is independent of the range of 

heating rates selected.  

On the other hand, it has been considered of interest to analyse the behaviour of 

a process constituted by two competitive reactions that would lead to an apparent 

dependence between E and α when analysed by isoconversional methods, in spite that 

such a dependence is not real.  Fig. 2 shows a set of dα/dt-T curves simulated for two 

competitive reactions from Eqn.  (7) by assuming the same F1 kinetic model for both 

reactions and the following kinetic parameters: A1 = 104 min-1, E1 = 80 kJ/mol, A2 = 

1011 min-1 and E2 = 200 kJ/mol.  

 The plots of the activation energies determined as a function of α from the 

Friedman’s and the Ozawa’s methods for different ranges of heating rates are compared 

in Fig. 3. These results demonstrate that the apparent activation energy obtained for 

competitive reactions from isoconversional methods depend on the heating rate; in other 

words, the activation energies determined from “model free” methods seem to be 

dependent of the experimental conditions that it is apparent rather than real. This is 

because the relative contribution of the two competitive reactions to the overall process 
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strongly depends on the heating rate as Fig. 4 shows.  Thus, considering the apparent 

activation energy obtained from the Friedman method as the real value of this parameter 

has no physical meaning if overlapping processes are concerned. In such a case, the 

Friedman´s activation energies cannot be taken as reference values for checking new 

integral methods that take into account the variation of the activation energy with α as 

some authors [37] have done. A rigorous kinetic analysis for discriminating the 

overlapping reactions rather than merely assuming that the activation energy is a 

function of α would be required for understanding the reaction mechanism.  Galwey 

[51, 52] suggests that a real dependence between E and α has not physical meaning and 

he reports a detailed analysis of the different causes that would lead to an apparent 

dependence of the activation energy with the reacted fraction. Thus, the varying 

activation energy processes reported in literature should be reanalysed carefully 

controlling the experimental conditions in order to identify the real factors that would 

cause the variation of the activation energy in order to determine if this variation is 

apparent or real. 

 

 

CONCLUSSIONS  

 

It has been shown by first time from theoretical simulated curves that if the 

activation energy is a real function of the reacted fraction, the differential model-free 

method, i.e. Friedman’s, provides accurate values of activation energies, while the 

conventional integral model-free methods, i.e. Ozawa, would lead to important errors in 

the determination of the activation energy. Additionally, the activation energy values 

obtained from both methods as a function of α are independent of the range of heating 
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rates selected. On the other hand, when the change of the activation energy with α 

occurs because of competitive reactions instead of a real dependence between E and the 

reacted fraction, the resulting activation energy values calculated by either model-free 

methods would seem to be dependent on the heating rate. Thus, this criterion could be 

used for discriminating if a real dependence between E and α is really occurring.  
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Table 1. Activation energies obtained from the Ozawa’s  and Friedman’s 

isoconversional methods for simulated curves obtained by assuming the following 

kinetic parameters: E=E0+65ln(1-)  (E0=250 KJ mol-1) lnA=0.25E-5 (A is in min-1), F1 

kinetic model. =1, 2, 5, 10, 15 , 20 ºC min-1. 

 

 

 Friedman’s Ozawa’s method 

 E (kJ mol-1) Ea (kJ mol-1)  (%) r 

0.10 242.9 241.5 -0.6 1.00 

0.20 235.4 238.2 1.2 1.00 

0.30 226.8 234.2 3.3 1.00 

0.40 216.8 229.6 5.9 1.00 

0.50 204.9 224.1 9.3 1.00 

0.60 190.7 217.4 13.9 1.00 

0.70 171.8 207.9 21.0 1.00 

0.80 144.6 193.3 33.7 1.00 

0.90 100.8 168.5 67.2 1.00 

 

 



 13

FIGURE CAPTIONS 

 

Fig. 1. Simulated curves obtained by assuming the following kinetic parameters: 

E=E0+65ln(1-)  (E0=250 KJ mol-1) lnA=0.25E-5 (A is in min-1), F1 kinetic model. 

=1, 2, 5, 10, 15 , 20 ºC min-1. 

 

 

Fig. 2. Simulated overlapping competitive reactions simulated by assuming the 

following kinetic parameters: A1=104 min.1, E1= 80 KJ mol-1, A2= 1011 min-1, and E2= 

200 KJ mol-1. For both reactions F1 kinetic model was assumed. = 1, 2, 5, 10, 15 , 20, 

40 and 60 K min-1 

 

Fig. 3. Values of  activation energies determined as a function of α from the Friedman 

( ) and the Ozawa (●) methods at different ranges of heating rates: a) 1, 2, 5, 10 K 

min-1 and b) 15, 20, 40, 60 K min-1 

 

Fig. 4. Contribution of the two competitive reactions to the overall process for = 1 and 

60 K min-1 
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Fig. 2 
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Fig. 4 


