Precios, costes laborales unitarios y márgenes: un análisis sectorial para España y sus regiones

El Centro de Estudios Andaluces es una entidad de carácter científico y cultural, sin ánimo de lucro, adscrita a la Consejería de la Presidencia de la Junta de Andalucía.
El objetivo esencial de esta institución es fomentar cuantitativa y cualitativamente una línea de estudios e investigaciones científicas que contribuyan a un más preciso y detallado conocimiento de Andalucía, y difundir sus resultados a través de varias líneas estratégicas.

El Centro de Estudios Andaluces desea generar un marco estable de relaciones con la comunidad científica e intelectual y con movimientos culturales en Andalucía desde el que crear verdaderos canales de comunicación para dar cobertura a las inquietudes intelectuales y culturales.

Las opiniones publicadas por los autores en esta colección son de su exclusiva responsabilidad

© 2011. Fundación Centro de Estudios Andaluces. Consejería de Presidencia. Junta de Andalucía © Autores

Ejemplar gratuito. Prohibida su venta.

E2011/05

PRECIOS, COSTES LABORALES UNITARIOS Y MÁRGENES: UN ANÁLISIS SECTORIAL PARA ESPAÑA Y SUS REGIONES*

Mª Ángeles Caraballo Pou**
Francisco Gómez García
Eva Mª Buitrago Esquinas

Resumen:

El objetivo de este trabajo es analizar, desde una perspectiva macroeconómica, los elementos determinantes de la competitividad-precio de los distintos sectores productivos en España y cinco de sus regiones: Andalucía, Cantabria, Extremadura, Navarra y País Vasco, en el periodo 2000.I- 2010.IV. Para ello, partimos de un modelo en que los precios se definen como un margen sobre los costes laborales unitarios y los precios de importación. En este marco teórico, estimamos los márgenes para las distintas regiones y los distintos sectores, y estudiamos su relación con el ciclo económico. Asimismo, planteamos un análisis del orden de la causalidad entre las variables implicadas. Los resultados sugieren que: 1) Hay evidencia de que los márgenes –proxy de la competitividad- son acíclicos. 2) A largo plazo los costes laborales unitarios determinan los precios, pero a corto plazo este resultado no se mantiene, llegando en algún caso a invertirse la dirección de la causalidad.

Palabras clave: **Precios**, **costes laborales unitarios**, **márgenes**, **cointegración**, **causalidad**.

Clasificación JEL: E30, E31.

Guillén.

^{*} Este trabajo se enmarca dentro del proyecto de investigación "La convergencia de Andalucía con las regiones españolas: productividad, competitividad y márgenes", financiado por el Centro de Estudios Andaluces (PRY070/10). Agradecemos la excelente asistencia de investigación por parte de Isabel

^{**} E-mail de contacto: mcaraba@us.es

Abstract:

The aim of this paper is the sectorial analysis of competitiveness in Spain, Andalusia, Cantabria, Extremadura, Navarre and the Basque Country over the period 2000.I-2010.IV from a macroeconomic point of view. In order to do this, we start from a model where prices are defined as a markup over unit labour costs and import prices. Within this theoretical framework, we estimate the regional and sectorial markups and study the relationship between the margins and the economic cycle. Moreover, we carry out a causality analysis between the variables involved. Our results suggest that: 1) Markups—proxy of competitiveness- seem to be acyclical. 2) In the long-run causality runs from unit labour costs to prices, but in the short-run this result doesn't hold, actually in some cases the direction of causality reverses.

Keywords: prices, unit labour costs, markups, cointegration, causality.

^{*} Este trabajo se enmarca dentro del proyecto de investigación "La convergencia de Andalucía con las regiones españolas: productividad, competitividad y márgenes", financiado por el Centro de Estudios Andaluces (PRY070/10). Agradecemos la excelente asistencia de investigación por parte de Isabel Guillén.

^{**} E-mail de contacto: mcaraba@us.es

1. Introducción

En este trabajo se investigan dos cuestiones principales. Por una parte, cómo afecta el ciclo económico a la evolución de los márgenes. Y, por otra, la dirección de la causalidad entre los precios y los costes laborales unitarios (CLU).

Los principales resultados de nuestra investigación, centrada en los sectores productivos de la economía española y algunas de sus regiones, señalan, en primer lugar, que los márgenes – variable *proxy* de la competitividad- son acíclicos y, en segundo lugar, que a largo plazo los CLU determinan los precios, pero que este resultado no siempre se mantiene a corto plazo (dependiendo de la Comunidad Autónoma o el sector), llegando incluso en algunos casos a invertirse el orden de la causalidad.

En el actual contexto de crisis económica mundial, uno de los grandes retos de muchas economías es la mejora de la competitividad para eliminar las brechas existentes respecto a dicha variable clave. Esto es especialmente relevante en países como España, donde la crisis económica ha puesto de manifiesto los problemas estructurales de la economía española y la respuesta desigual de sus regiones. Así, el ajuste vía desempleo ha situado la tasa de paro española en un 20,89% en el segundo trimestre de 2011, según datos de la EPA. A este respecto resulta llamativo, para ese mismo periodo, el contraste entre Andalucía, con una tasa de desempleo del 29,71% y el País Vasco, con una tasa de paro del 11,63% -con una importante incidencia general del desempleo en el sector de la construcción-.

En el contexto de tipos de cambio fijos e irrevocables del área del Euro, en el que no se dispone del mecanismo de corrección de los "precios relativos" que proporcionaba el tipo de cambio, los ajustes se desplazan hacia el mercado de trabajo. Por tanto, en este marco los CLU (salarios ajustados por los avances de la productividad) pasan al centro de las discusiones de política económica (la reforma del mercado de trabajo, especialmente en lo que se refiere al rediseño del modelo de negociación colectiva).

En este trabajo abordamos el análisis de la competitividad desde una doble perspectiva: sectorial y regional. Concretamente, nos planteamos determinar las variables que explican la competitividad y la relación entre las mismas, estudiar los efectos del ciclo económico sobre la competitividad, así como analizar si hay un comportamiento homogéneo de las regiones españolas y los sectores económicos con respecto a la evolución de la competitividad. Finalmente, contrastamos la dirección de la causalidad entre las principales variables implicadas (precios y CLU).

La teoría macroeconómica explica la competitividad fundamentalmente a partir de tres variables: CLU, precios y margen sobre el precio. Las dos primeras variables son directamente observables, pero para el análisis de los márgenes es necesario hacer una labor previa de estimación. El margen es una variable tipo residuo que, en un modelo de formación de precios a largo plazo, recoge todos aquellos elementos que no quedan explicados ni por los CLU ni por los precios de las importaciones. Por ello, consideramos que el estudio de los márgenes puede

ayudar a explicar los diferenciales de competitividad de la economía española. Para su estimación, emplearemos el modelo del *mark-up*, que permite relacionar las tres variables y, por lo tanto, obtener los márgenes.

Para la aplicación de este modelo, hemos construido una base de datos homogénea con desagregación regional y sectorial. La disponibilidad de datos necesarios para la realización de las estimaciones econométricas nos ha llevado a centrarnos en el análisis de España y 5 CCAA (Andalucía, Cantabria, Extremadura, Navarra y País Vasco) y tres sectores económicos (industria¹, construcción y servicios). El periodo considerado ha sido desde el 1er trimestre de 2000 al 4º trimestre de 2010. Desde el trabajo seminal de Brouwer y Ericsson (1998) se ha estimado el modelo del *mark-up* para distintos países –véase, por ejemplo, el trabajo reciente de Kurita (2010) para el caso de Japón-, sin embargo este es el primer trabajo que, explotando una base de datos novedosa y elaborada por nuestro equipo de investigación, realiza un análisis regional-sectorial para la economía española.

Utilizando esta base de datos, se estima el modelo del *mark-up* para España, las CCAA y los sectores económicos. Dado el comportamiento no estacionario de los datos macroeconómicos con los que trabajamos, hemos empleado la metodología de la cointegración. Para los casos en los que es posible, se calculan los márgenes, que pueden interpretarse como una variable *proxy* de la competitividad. A partir de aquí, analizamos la relación de los márgenes con el ciclo económico y las posibles diferencias regionales y sectoriales en el comportamiento de los márgenes.

Finalmente, el modelo del *mark-up* también nos permite estudiar los vínculos, tanto en el largo como en el corto plazo, entre las variables que determinan la competitividad. En concreto, nos centraremos en las relaciones entre los CLU y los precios, poniendo el énfasis en la investigación empírica del orden de la causalidad entre estas dos variables. Como es bien conocido, el modelo del *mark-up* explica el proceso de formación de los precios a partir de la evolución de los CLU, aceptando, por tanto, que los precios constituyen la variable endógena. Sin embargo, hay que explorar otra posibilidad teórica, pues en el contexto analítico de una curva de Phillips original son los precios (esperados) los que causan los salarios (componente fundamental de los CLU).

El presente trabajo se estructura en seis epígrafes. En el segundo exponemos el modelo teórico que sirve de base para estimar los márgenes. El tercer epígrafe presenta la base de datos y las variables utilizadas en el análisis econométrico posterior. A continuación, en el epígrafe cuarto se implementa el análisis econométrico, a partir del análisis de integración y cointegración de las variables implicadas, y se estiman los márgenes. El quinto epígrafe plantea distintos contrastes de causalidad para estudiar la relación entre los precios y los CLU. Y, finalmente, en el epígrafe sexto, recogemos las principales conclusiones que se derivan de nuestro trabajo.

_

¹ El sector industria incluye el sector energético.

2. Precios, costes laborales unitarios y márgenes: marco teórico y revisión de la literatura

Sin despreciar la importancia de los factores estructurales y cualitativos (que requerirían un análisis microeconómico de la competitividad, que excede del ámbito de este trabajo), nos vamos a centrar en los factores cuantitativos, desarrollando un análisis de tipo macroeconómico. En concreto, utilizamos, aplicándolo al caso de los sectores productivos en España y algunas de sus regiones, el siguiente modelo de formación de precios a largo plazo:

$$P_{t} = \mu (CLU_{t})^{\alpha} (Pimp_{t})^{\beta}$$
 (1)

Es decir, que los precios agregados (P) se forman estableciendo un margen (μ) sobre los costes laborales unitarios (CLU) y los precios de importación (Pimp)². Esto se ve claramente si linealizamos la expresión anterior y bajo la hipótesis de homogeneidad de grado uno en precios, donde μ es el margen sobre los costes:

$$\ln P_{t} = \ln \mu + \alpha \ln CLU_{t} + \beta \ln Pimp_{t}$$
 (2)

Dado que μ no es una variable directamente observable, es necesaria su estimación. Los datos macroeconómicos con los que trabajamos exhiben un comportamiento no estacionario, por lo que se hace necesario tratarlos como procesos integrados. En este contexto, utilizamos el análisis de cointegración, que contribuye a clarificar las relaciones a largo plazo entre las variables integradas. Como también nos interesa analizar la información a corto plazo contenida en los datos, estimamos asimismo un mecanismo de corrección del error que vincula el comportamiento a corto y a largo plazo (en el cuarto apartado explicitamos más detalladamente la metodología econométrica que emplearemos para dicha estimación).

El modelo del *mark-up* se ha hecho estándar en la Macroeconomía –véase, por ejemplo, Franz y Gordon (1993)-. Este modelo es lo suficientemente general para incluir otros modelos de formación de precios agregados (curva de Phillips –consideración del *output gap* o de alguna variable de desempleo agregado-, hipótesis de la paridad del poder adquisitivo, etc.). Uno de los trabajos de referencia en este ámbito, con una gran repercusión en la literatura macroeconómica, es el de Brouwer y Ericsson (1998).

En los últimos años se han publicado diversos trabajos empíricos en este contexto analítico: Podemos destacar, entre otros, los de Martin (1997) para el Reino Unido; Brouwer y Ericsson (1998) para Australia; Welfe (2000) para Polonia; Morales (2004) para datos agregados de la zona euro; Vizek y Broz (2009) para Croacia y Kurita (2010) para Japón. Estos trabajos

² De forma general, hemos utilizado los precios de importación (Índice de Valor Unitario de Importación-IVU) aunque, en determinados, casos hemos considerado más conveniente utilizar el precio de algún producto de importación concreto, como, por ejemplo, el petróleo.

emplean técnicas de cointegración multivariante y modelos de corrección del error y concluyen, para distintos países, que los precios internos están determinados tanto por los costes internos como por los precios mundiales –aunque la variable más relevante, desde el punto de vista empírico, son los CLU-.

Especialmente interesante es la posible conexión entre la evolución de los márgenes y las condiciones cíclicas de la economía. Efectivamente la variación de los márgenes tiene una gran importancia para la Macroeconomía. La cuestión central es determinar qué variable responde más rápido a un cambio en el exceso de demanda agregada, si los precios o los costes marginales³.

Por ejemplo, en el modelo del mercado de clientelas de Phelps y Winter (1970) se predice que los márgenes deseados por las empresas aumentarán cuando el exceso de demanda corriente es elevado, lo que lleva a unos márgenes procíclicos, correlacionados positivamente con el exceso de demanda. Sin embargo, existe también un considerable cuerpo de literatura que fundamenta unos márgenes contracíclicos (que son relativamente bajos en las expansiones y altos en las recesiones). En este sentido, podemos destacar el modelo de colusión implícita de Rotemberg y Woodford (1992) y el modelo de precios rígidos de Kimball (1995), los cuales implican que los márgenes están negativamente correlacionados con el exceso de demanda.

Por tanto, la teoría económica es ambigua respecto a dar una respuesta a cómo responden los márgenes a los cambios cíclicos de la demanda. Esto hace necesario examinar la evidencia empírica sobre el comportamiento de los márgenes. Un trabajo reciente y centrado específicamente en esta cuestión, para el caso del Reino Unido, es el de Macallan y Parker (2008), en el que se obtiene que los márgenes son procíclicos tanto a nivel agregado como sectorial. Por el contrario, Kryvtsov y Midrigan (2011) encuentran unos márgenes contracíclicos para el caso de Canadá.

Por otro lado, uno de los primeros trabajos empíricos sobre este tema en España, desde un punto de vista macroeconómico, es el de López-Salido y Velilla (2002). En dicho trabajo se concluye que los márgenes (promedio de los sectores industria y servicios para el periodo 1977-1995) tienden a responder positivamente a las expectativas de demanda futura, dado un nivel de demanda corriente. Así, por ejemplo, al inicio de las fases expansivas los márgenes son procíclicos y al final (expectativa "bajista") de dichas fases, contracíclicos. En el presente trabajo ofrecemos una evidencia sectorial adicional para España y sus regiones.

Por último, también es relevante plantearse el análisis del orden de la causalidad entre las variables implicadas. En la literatura de referencia sobre el modelo del *mark-up* se acepta, en general, que los precios constituyen la variable endógena. Una excepción es el trabajo de Kenny y McGettihgan (1999), para el caso de Irlanda, donde demuestran –utilizando técnicas de cointegración multivariante y modelos de corrección del error- que existe una relación bidireccional entre precios y salarios. En un trabajo anterior, Mehra (1993), para el caso de los EE.UU.,

³ Bajo determinadas circunstancias los costes marginales (nominales) pueden ser aproximados por los costes laborales unitarios.

encontró que la relación de la causalidad va desde los precios a los CLU. Posteriormente, también para los EE.UU., Cheng (1999) y Strauss y Wohar (2004) concluyen que los precios ejercen una influencia significativa en los CLU, lo que apunta hacia la curva de Phillips original —en la que los precios (esperados) causan los salarios-. En nuestro trabajo aportamos evidencia adicional para España y sus regiones.

3. Datos y variables

La estimación del modelo propuesto requiere disponer de información relativa a las siguientes variables: 1) costes laborales unitarios (CLU), 2) VAB real y *output gap*, 3) índice general de precios e 4) índice de precios de las importaciones. Para el logro de los objetivos del presente trabajo es necesario disponer de información desagregada regional y sectorialmente. La estimación econométrica requiere de series largas, por lo que optamos por utilizar series trimestrales.

El primer año para el que se dispone de series trimestrales homogéneas de todas las variables señaladas con desagregación sectorial y regional es 2000. No obstante, la mayor desagregación sectorial disponible únicamente considera tres sectores y no para todas las CCAA. Estas limitaciones estadísticas explican que la elección de los sectores y CCAA responda a la disponibilidad de datos.

A partir de esta información hemos elaborado una base de datos trimestral (1ºT2000-4ºT2010) para las variables señaladas. Se ha desagregado en tres sectores (industria, construcción y servicios. También se incluye el total para toda la economía) y en 5 CCAA (Andalucía, Cantabria, Extremadura, Navarra, País Vasco. Consideramos asimismo el caso de España). A continuación se recogen las fuentes utilizadas y las limitaciones metodológicas encontradas para cada una de las variables.

3.1. Coste Laboral Unitario (CLU).

La construcción de la variable CLU (cociente entre la remuneración por asalariado y la productividad) requiere disponer de información homogénea referente a cuatro indicadores. Para la construcción del numerador: 1) un indicador de los ingresos totales obtenidos por los asalariados (a precios corrientes) y 2) un indicador de la fuerza laboral asalariada. Para la construcción del denominador: 3) un indicador de la producción a precios constantes y 4) un indicador del empleo total.

Las estadísticas nacionales y regionales españolas nos permiten disponer de estos indicadores con frecuencia trimestral desde distintas fuentes: Contabilidad Nacional Trimestral (CNT), Contabilidad Regional Trimestral (CRT), Encuesta Trimestral de Costes Laborales (ETCL), Encuesta de Población Activa (EPA). Para evitar posibles problemas metodológicos se recomienda, en la medida de lo posible, utilizar la misma fuente para la estimación de los cuatro

indicadores. Las únicas fuentes que lo permiten son la Contabilidad Nacional y Regional elaborada por el INE⁴.

En nuestro caso, no es posible utilizar únicamente la información del INE dado que para la desagregación regional únicamente ofrece datos anuales. Por ello, ha sido necesario acudir a la información ofrecida por las propias CCAA. No obstante, no todas las CCAA elaboran Contabilidad Regional Trimestral y, las que la elaboran, no utilizan la misma metodología, ni realizan la misma desagregación sectorial, ni ofrecen información para el mismo periodo. Por otro lado, las Cuentas Económicas Trimestrales publicadas por los Institutos de Estadística regionales no recogen información suficiente para la construcción del CLU. En su mayoría, únicamente incluyen la estimación de la producción vía oferta, por lo que no es posible obtener ni la remuneración de los asalariados ni los datos de empleo. En el cuadro se ha sintetizado la información publicada por las CCAA que elaboran Cuentas Económicas Trimestrales:

Cuadro 1. CUENTAS ECONÓMICAS TRIMESTRALES DE LOS INSTITUTOS REGIONALES DE ESTADÍSTICA

CCAA	DATOS	PRODUCCIÓ	N VÍA:	DESDE:
COAA	OFERTA	DEMANDA	RENTA	DLODL.
Andalucía	Sí	Sí	Sí	1 ^{er} T2000 (†)
Cantabria	Sí	No	No	1 ^{er} T2001
Castilla y León	Sí	Sí	No	1 ^{er} T2008
Cataluña (*)	Sí	Sí	No	1 ^{er} T2001
Extremadura	Sí	No	No	1 ^{er} T1995
Navarra	Sí	Sí	Sí	1 ^{er} T2000
País Vasco	Sí	Sí	No	1 ^{er} T1995

Notas: (*) El Instituto de Estadística de Cataluña únicamente publica las tasas de crecimiento de las variables incluidas en sus Cuentas Económicas.

(†) Los datos de producción vía oferta y demanda están disponibles desde 1^{er}T1995 **Fuente:** Elaboración propia a partir de los Institutos Estadísticos Regionales.

Una vez descartada la posibilidad de utilizar únicamente la Contabilidad Nacional y/o Contabilidad Regional para la construcción del CLU, proponemos una formulación alternativa tomando como base los datos disponibles en otras fuentes estadísticas. En concreto: ETCL (Encuesta Trimestral de Costes Laborales), EPA (Encuesta de Población Activa) y datos de producción de las Contabilidades Regionales Trimestrales disponibles (Andalucía, Cantabria,

_

⁴ Los ingresos totales de los asalariados (1) se pueden obtener directamente de la variable remuneración total de los asalariados de las series de producción vía ingresos (PIB pm. Rentas); la producción en términos reales (3) (tanto el VABpb como el PIBpm) se puede calcular a partir de las series de producción vía oferta en datos corrientes y de los índices encadenados de volumen (PIB pm. Oferta); los datos de fuerza laboral asalariada y total (2 y 4) se obtienen de las series de empleo de la Contabilidad Nacional (total de asalariados y total de ocupados).

Extremadura, Navarra y País Vasco⁵). Para el resto de las CCAA, no es posible calcular el CLU trimestral⁶. Por tanto, el CLU se obtiene de la forma siguiente:

 $CLU = \frac{Remuneraci6n \ media \ por \ asalariado \ (ETCL)}{\frac{VAB \ real \ (CN \ o \ CTR)}{N^{\circ} \ o \ cupados \ (EPA)}}$

CN = Contabilidad Nacional; ETCL = Encuesta Trimestral de Costes Laborales; CTR = Contabilidades Trimestrales Regionales; EPA = Encuesta de Población Activa.

Para el cálculo del numerador (remuneración media por asalariado) utilizamos la información recogida en la ETCL. La ETCL proporciona información mensual sobre el coste total medio del trabajador asalariado (trabajador/mes) por CCAA. A pesar de que la ETCL proporciona información sobre los diferentes componentes del coste total (coste salarial y otros costes) hemos utilizado los datos de coste total por ser la variable que se corresponde con la remuneración de los asalariados de la Contabilidad Nacional. Para obtener el valor trimestral se ha determinado multiplicar por tres el valor proporcionado por la ETCL, que es un valor medio a partir de la encuesta realizada.

La desagregación sectorial de la ETCL no incluye la agricultura y únicamente permite obtener información homogénea con el resto de variables de nuestro modelo para tres sectores: industria, construcción y servicios⁷.

La ETCL experimenta un cambio metodológico de importancia como consecuencia del paso de la CNAE 93 a la CNAE 09 (se amplia considerablemente las actividades que abarca en su ámbito de estudio). En este sentido, para el periodo considerado, la ETCL publica dos series: 1T2000- 4T2008 según CNAE-93 y 1T2008-4T2010 según CNAE-09. Hemos enlazado ambas series⁸ y analizado los datos homogéneos para todo el periodo tanto para la CNAE-93 como para la CNAE-09. Dado que los resultados obtenidos son muy similares, únicamente presentamos la serie de la CNAE-09.

Para el cálculo de la productividad (denominador de la variable CLU), necesitamos: un indicador de la producción a precios constantes y un indicador del empleo total.

Como indicador de producción a precios constantes, a partir de la Contabilidad Nacional y/o Regional, disponemos de información trimestral del PIB a precios de mercado (pm) y del VAB

⁵ No ha sido posible incluir a Cataluña dado que solo publica las tasas de crecimiento de las variables incluidas en sus Cuentas Económicas.

⁶ Por lo tanto, la elección de las CCAA obedece a la existencia de información estadística.

⁷ Una vez comparadas las desagregaciones sectoriales disponibles en las diferentes fuentes que vamos a utilizar para la construcción de la base de datos, únicamente ha sido posible obtener información homogénea de estos tres sectores; lo que explica la elección de la desagregación sectorial utilizada.

⁸ El INE ofrece un enlace oficial para los datos nacionales tanto totales como desagregados por sectores. Para los datos regionales únicamente disponemos del enlace oficial para las variables totales. Para la desagregación sectorial estimamos los enlaces a partir de las tasas de crecimiento de cada una de las dos series que publica la ETCL.

a precios básicos (pb) desagregados sectorialmente (datos corrientes e índices encadenados de volumen). Utilizamos el VABpb por considerarse que proporciona una medida más ajustada de la productividad al dejar de lado el valor de los impuestos.

Tal y como hemos señalado, los datos de la ETCL no incluyen el sector primario. Por ello y para homogeneizar la información, al valor total del VABpb le hemos descontado la producción de este sector.

Dado que no todas las Contabilidades Regionales Trimestrales ofrecen datos completos de empleo, como indicador de empleo total para el cálculo de la productividad optamos por utilizar el número de ocupados de la EPA9. Esta fuente también se ve afectada por el cambio metodológico que supone la modificación de la CNAE y ofrece dos series separadas. De igual modo que lo señalado para la ETCL, hemos enlazado ambas series10 y analizado los datos homogéneos de todo el periodo tanto para la CNAE-93 como para la CNAE-09. Al no haber encontrado diferencias significativas en los resultados del análisis de ambas series, hemos optado por presentar únicamente la serie de la CNAE-09.

Tanto la ETCL como la EPA únicamente recogen datos brutos. Por ello, para mantener la homogeneidad en todas las variables del CLU, utilizamos datos brutos de producción. Una vez construido el CLU bruto, lo ajustamos de estacionalidad y calendario con el método Census X-12.

De este modo, hemos construido el CLU para tres sectores: industria (que incluye tanto las ramas industriales como la energía), construcción y servicios. Así, trabajamos con los datos nacionales y la desagregación regional para las siguientes CCAA: Andalucía, Cantabria, Extremadura, Navarra y País Vasco.

3.2. VAB real y Output gap.

El cálculo del VAB real para España y las CCAA seleccionadas se ha realizado a partir de los datos de la Contabilidad Nacional Trimestral (INE) y de las Contabilidades Trimestral Regionales (Institutos Regionales de Estadística), respectivamente. Estas fuentes nos ofrecen, para la base contable 2000, series completas y homogéneas desde el 1^{er} trimestre de 2000¹¹. A partir de las series de PIBpm (oferta) a precios corrientes y de los índices encadenados de volumen correspondientes, se han calculado las series del VAB a precios constantes de 2001. Se

⁹ El indicador de empleo más recomendado para el cálculo de la productividad son los puestos de trabajo equivalentes a tiempo completo; pero la disponibilidad de datos nos obligan a utilizar el número de ocupados.

¹⁰ El INE ofrece un enlace oficial para los datos nacionales tanto totales como desagregados por sectores. Para los datos regionales únicamente disponemos del enlace oficial para las variables totales. Para la desagregación sectorial estimamos los enlaces a partir de las tasas de crecimiento de cada una de las dos series que publica la EPA. Para comprobar la consistencia del enlace propuesto hemos realizado los cálculos sectoriales para España y hemos comparado los resultados obtenidos con los oficiales.

¹¹ A excepción de Cantabria que comienza la publicación de sus Cuentas Económicas Trimestrales en 2001.

ha elegido 2001 por ser el primer año para el que se dispone de información en Cantabria. Para ello, se han realizado los siguientes cálculos:

$$VAB_{cte\ t} = VAB_{corr2001} * IVE_t / IVE_{2001}$$
 (3)

VAB_{cte t}= VAB del año t a precios constantes de 2001 VAB_{corr2001} = VAB corriente del año base (2001) IVE_t = Índice de volumen encadenado t IVE₂₀₀₁ = Índice de volumen encadenado año base (2001)

Siguiendo el mismo procedimiento especificado anteriormente y utilizando los datos desagregados sectorialmente, se han calculado las series de VAB a precios constantes para cada uno de los tres sectores seleccionados.

El *output gap* se obtiene como la diferencia entre el valor actual del VAB y su tendencia. La tendencia se ha calculado aplicando el filtro de Hodrick-Prescott.

3.3. Índices de precios.

Como índice de precios general de la economía, hemos escogido el deflactor del VAB¹² principalmente por dos motivos. Por un lado, por poder calcularlo a partir de las mismas fuentes estadísticas que hemos empleado para tanto para el cálculo de las series de CLU como para las series de VAB real (Contabilidad Nacional y Regional). Por otro lado, por ofrecer un enfoque de oferta que permite una desagregación sectorial idéntica a la considerada para el cálculo del resto de variables implicadas en el modelo.

De este modo, el deflactor del VAB se ha calculado como el cociente entre el VAB a precios corrientes, obtenido directamente de las series de la Contabilidad Nacional y Regional, y el VAB a precios constantes de 2001 obtenido del VAB corriente y de los índices encadenados de volumen. A partir de la desagregación sectorial del VAB hemos calculado las series del deflactor del VAB para cada uno de los tres sectores considerados.

3.4. Índice de precios de las importaciones.

Hemos estimado el modelo para todos los sectores (excepto industria) aproximando los precios de importación por los Índices de Valor Unitario de Importación (IVUs), elaborados trimestralmente por la Subdirección General de Análisis Macroeconómico (SGAM) del Ministerio de Economía y Hacienda (MEH). El MEH no publica los IVUs desagregados por CCAA y, salvo

¹² Para contrastar la robustez de los resultados hemos utilizado otros índices de precios: Índice de precios de consumo (IPC), Índice de precios de los servicios y bienes elaborados no energéticos (IPSEBENE), Índice de Precios del Sector Servicios (IPS). El IPC, IPSEBENE e ÍPS están disponibles para cada una de las CCAA, aunque los dos últimos sólo desde 2002; por lo que utilizamos el valor específico de cada una de ellas. Todos los índices los publica el Ministerio de Economía y Hacienda con frecuencia mensual. Al no disponer de datos trimestrales, se ha optado por utilizar los datos correspondientes al último mes de cada trimestre (3°, 6°, 9° y 12°).

Andalucía, ninguna de las CCAA consideradas estima sus propios IVUs. Por ello, hemos utilizado los datos nacionales para todas las CCAA consideradas con excepción de Andalucía, región para la que hemos utilizado los datos publicados por el Instituto Andaluz de Estadística.

Para el sector industria¹³, se ha estimado el modelo utilizando los precios del petróleo publicados el Ministerio de Economía y Hacienda con frecuencia mensual. Al no disponer de datos trimestrales, se ha optado por utilizar los datos correspondientes al último mes de cada trimestre (3°, 6°, 9° y 12°).

Finalmente, a modo de síntesis, se incluye la ficha técnica de la base de datos construida:

Cuadro 2. FICHA TÉCNICA DE LA BASE DE DATOS CONSTRUIDA

VARIABLES:	CLU (remuneración media por asalariado/productividad), VAB a precios de 2001, Deflactor del VAB (base 2001), IPC, IPSEBENE, IPS, IVUs e Indice de Precios del Petróleo.		
DESAGREGACIÓN SECTORIAL:	Total, industria, construcción, servicios.		
DESAGREGACIÓN ESPACIAL:	España, Andalucía, Cantabria, Extremadura, Navarra y País Vasco.		
DESAGREGACIÓN TEMPORAL:	Trimestral: 1 ^{er} T2000-4°T2010		
FUENTES:	Contabilidad Nacional Trimestral (INE), Contabilidades Regionales Trimestrales (Institutos de Estadística Regionales), Encuesta Trimestral de Costes Laborales (INE), Encuesta de Población Activa (INE), Subdirección General de Análisis Macroeconómico (Ministerio de Economía y Hacienda).		

Fuente: Elaboración propia.

4. Integración y cointegración

En este apartado se describe la estrategia econométrica seguida en nuestra investigación y se presentan los principales resultados de nuestras estimaciones.

4.1. Integración

Para determinar el orden de integración de las variables se han aplicado los test de raíces unitarias de: Dickey-Fuller aumentado (1981) –ADF-, de Phillips y Perron (1988) –PP- y de Kwiatkowski, Phillips, Schmidt y Shin (1992) –KPSS-. Se ha realizado cada uno de ellos para tres estructuras deterministas: con constante y tendencia, con constante, y sin constante ni tendencia. Por otro lado, se han considerado las variables en nivel y en primera diferencia.

¹³ Para el total de la economía también se ha estimado el modelo con los precios del petróleo. Dado que los resultados son muy similares a los obtenidos con el IVU, no se han incluido en este trabajo.

Cuando se producen contradicciones en los resultados obtenidos de los tres tests realizados, escogemos aquel que hay sido avalado por un mayor número de tests. Cuando, en un mismo test, encontramos contradicciones entre las conclusiones alcanzadas por las distintas estructuras deterministas, nos centramos en los resultados de: "constante y tendencia" de la variable en nivel, y en los resultados de "solo constante" o "sin constante ni tendencia" de la variable en primera diferencia (si entre estos dos últimos hay contradicción, para la variable en primera diferencia consideramos únicamente los resultados de "solo constante").

En el anexo 1 se recogen todos los contrastes para las distintas variables, sectores productivos y regiones¹⁴.

Del análisis de los resultados de los contrastes de raíces unitarias realizados podemos concluir que la mayor parte de las variables consideradas son I(1).

Las variables para las que encontramos discrepancias en los resultados son: CLU total España, deflactor construcción y servicios España, CLU total Andalucía, deflactor construcción Cantabria, CLU industria Extremadura, CLU total y servicios PV, en estos casos sólo uno de los tres tests arroja el resultado de que la variable es I(1) mientras que los otros dos muestran que es I(2). En el caso de CLU industria para Navarra y Andalucía, CLU construcción Extremadura y deflactor total Extremadura, los resultados son extremadamente sensibles tanto a los tests como a la inclusión de constate y/o tendencia, de hecho aparece evidencia de que las variables son I(0) ó I(1) dependiendo del tipo de test empleado. A pesar de estas discrepancias, finalmente hemos optado por asumir que todas las variables son I(1) ya que en ningún caso se rechaza de forma unánime el que lo sean. Las únicas dos variables que de forma prácticamente unánime (es decir, también para la inclusión o no de la tendencia y la constante) es I(2) es el deflactor del VAB para la construcción y los servicios de Navarra, por lo que los resultados para ambos sectores hay que tomarlos con extrema cautela.

4.2. Análisis a largo plazo: cointegración

El análisis de cointegración ayuda a clarificar las relaciones a largo plazo entre las variables integradas. Así, el primer paso en el análisis a largo plazo es desarrollar un modelo estadístico que nos permita representar la relación entre las variables objeto de estudio.

A continuación, llevamos a cabo el análisis de la cointegración a partir de la metodología de Johansen (1988, 1992). Para ello, se desarrolla un modelo VAR no restringido con variables deterministas (constante, tendencia). En primer lugar debemos especificar la longitud adecuada del modelo VAR, para lo cual empleamos los criterios de información de Akaike, Schwarz y Hannan-Quinn, respectivamente y los criterios del ratio de verosimilitud y el del error de predicción final. Si hay disparidad entre dichos criterios, se prueba con todos los *lags* óptimos que determina

¹⁴ En este documento presentamos únicamente los resultados de los contrastes realizados a las variables calculadas según la CNAE 09 dado que los resultados son muy similares a los que se obtienen para la CNAE 93.

cada criterio para ver si afecta a los resultados en lo que se refiere al modelo a utilizar y las relaciones de cointegración, y finalmente se presentan los resultados obtenidos con el menor número de *lags* posible atendiendo al principio de parsimonia.

El propio Johansen sugiere, para elegir el modelo correcto, aplicar el llamado principio de Pantula (1989), que consiste en avanzar desde el modelo más restrictivo al menos, contrastando sucesivamente la hipótesis nula de ausencia de relación de cointegración, después, la hipótesis nula de 1 relación de cointegración, etc. El proceso se detiene en el primer modelo que no rechaza la hipótesis nula, resultando de este proceso el número de relaciones de cointegración que se admiten y la especificación adecuada del modelo¹⁵.

Cuadro 3. CONTRASTES DE COINTEGRACIÓN DE JOHANSEN. TOTAL

ESTADÍSTICOS	TRAZA		VALOR PROPIO MÁXIMO			
RANGO (r)	r = 0	r <u><</u> 1	r <u><</u> 2	r = 0	r <u><</u> 1	r <u><</u> 2
ESPAÑA	36,208**	15,941	6,764	20,266*	9,176	6,764
ANDALUCÍA	44,791***	12,424	2,435	32,366***	9,988	2,435
CANTABRIA	42,399***	13,044	3,018	29,355***	10,025	3,018
EXTREMADURA	32,503***	10,146	1,221	22,356***	8,924	1,221
NAVARRA	25,425**	3,772	0,119	21,652**	3,653	0,119
PAÍS VASCO	53,302***	19,071*	0,119	34,230	13,868	5,202

***, **, * indican rechazo de la hipótesis nula (ausencia de cointegración) al 1%, 5% y 10% de significatividad, respectivamente.

Cuadro 4. CONTRASTES DE COINTEGRACIÓN DE JOHANSEN. SECTOR INDUSTRIA

ESTADÍSTICOS		TRAZA		VALOR PROPIO MÁXIMO		MÁXIMO
RANGO (r)	r = 0	r <u><</u> 1	r <u><</u> 2	r = 0	r <u><</u> 1	r <u><</u> 2
ESPAÑA	40,987**	19,174	5,308	21,812*	13,865	5,308
ANDALUCÍA	28,679*	12,170	0,095	16,509	12,074	0,095
CANTABRIA	34,678*	14,058	4,756	20,619*	9,301	4,756
EXTREMADURA	46,748***	17,341	6,432	29,407***	10,909	6,432
NAVARRA	28,304**	10,101	1,487	18,202**	8,614	1,487
PAÍS VASCO	39,898*	13,890	4,789	26,008**	9,100	4,789

***, **, * indican rechazo de la hipótesis nula (ausencia de cointegración) al 1%, 5% y 10% de significatividad, respectivamente.

¹⁵ Este principio también se ha utilizado para decidir sobre la oportunidad de introducir la tendencia determinística en el test.

Cuadro 5. CONTRASTES DE COINTEGRACIÓN DE JOHANSEN. SECTOR CONSTRUCCIÓN

ESTADÍSTICOS	TRAZA			VALOR PROPIO MÁXIMO		
RANGO (r)	r = 0	r <u><</u> 1	r <u><</u> 2	r = 0	r <u><</u> 1	r <u><</u> 2
ESPAÑA	27,136**	6,194	0,130	20,941**	6,064	0,130
ANDALUCÍA	24,076**	8,892	0,770	15,183	8,121	0,770
CANTABRIA	22,426*	3,075	0,192	19,350**	2,883	0,192
EXTREMADURA	43,662***	10,740	0,703	32,921***	10,037	0,703
NAVARRA	14,252	3,569	0,274	10,683	3,295	0,274
PAÍS VASCO	36,949***	6,050	1,637	30,898***	4,413	1,637

Nota: ***, **, * indican rechazo de la hipótesis nula (ausencia de cointegración) al 1%, 5% y 10% de significatividad, respectivamente.

Cuadro 6. CONTRASTES DE COINTEGRACIÓN DE JOHANSEN. SECTOR SERVICIOS

ESTADÍSTICOS	TRAZA		VALOR PROPIO MÁXIMO		AXIMO	
RANGO (r)	r = 0	r <u><</u> 1	r <u><</u> 2	r = 0	r <u><</u> 1	r <u><</u> 2
ESPAÑA	33,130*	13,054	2,445	20,075*	10,608	2,445
ANDALUCÍA	33,003*	13,443	4,591	19,559	8,851	4,591
CANTABRIA	29,139**	6,478	0,397	22,661***	6,080	0,397
EXTREMADURA	36,311***	16,088**	2,554	20,222*	13,534*	2,554
NAVARRA	25,201**	9,090	1,954	16,110*	7,136	1,954
PAÍS VASCO	61,707***	16,702	6,153	45,005***	10,548	6,153

Nota: ***, **, * indican rechazo de la hipótesis nula (ausencia de cointegración) al 1%, 5% y 10% de significatividad, respectivamente.

En los cuadros 3 a 6 se muestran los resultados del análisis de cointegración obtenidos aplicando la citada metodología, centrándonos en el contraste de la traza, aunque también presentamos en los cuadros el contraste del valor propio máximo¹⁶. Puede apreciarse –cuadro 3-que el contraste de la traza rechaza al 1% o al 5% de significatividad la hipótesis nula de ausencia de cointegración para España y todas las regiones consideradas, para el caso del total de la economía. Prácticamente la misma conclusión se mantiene cuando se realizan los contrastes a nivel sectorial, excepto en el caso del sector de la construcción de Navarra, donde hay indicios de ausencia de cointegración. Finalmente, para todos los sectores, con la excepción señalada de Navarra y la de Extremadura (sector servicios, donde se aceptan dos relaciones de cointegración), se acepta la existencia de una relación de cointegración.

¹

¹⁶ Para el total de la economía y los sectores de la construcción y de los servicios, los precios de importación se han aproximado por el IVU (en el caso de Andalucía, su IVU específico). En el sector de la industria se han aproximado por el precio del petróleo.

El vector de cointegración para cada región *i*, sector *j* y momento *t* sería:

$$\ln P_{i,j,t} = \beta_0 + \beta_1 \ln CLU_{i,j,t} + \beta_2 \ln Pimp_t \quad (4)$$

En los cuadros 7 a 10 presentamos la estimación de los vectores de cointegración para los distintos sectores y regiones¹⁷ (coeficientes a largo plazo en la relación entre las variables del modelo del *mark-up*).

Cuadro 7. VECTORES DE COINTEGRACIÓN. TOTAL

SECTOR	eta_0	β ₁	β_2
ESPAÑA (modelo 2)	0,817	0,796	0,136
	(3,494)	(28,556)	(2,140)
ANDALUCÍA (modelo 2)	1,384	0,647	0,151
ANDALOGIA (Modolo 2)	(4,249)	(20,966)	(1,781)
CANTABRIA (modelo 2)	0,239	0,640	0,417
CANTABINA (modelo 2)	(0,445)	(9,106)	(2,661)
EXTREMADURA (modelo 1)		0,692	0,396
EXTREMADORA (modelo 1)		(11,733)	(7,034)
NAVARRA (modelo 1)		0,714	0,423
INAVAINTA (IIIodelo 1)		(5,570)	(3,641)
PAÍS VASCO (modelo 2)	-0,743	0,847	0,436
I Alo VACCO (Illouelo 2)	(2,068)	(13,584)	(4,719)

Nota: Entre paréntesis figura el estadístico t.

Respecto a la especificación de la tendencia determinística tendríamos: a) Modelo 1: ni tendencia ni constante en la ecuación de cointegración (EC) o el VAR; b) Modelo 2: con constante pero no tendencia en la EC (no constante en el VAR); c) Modelo 3: constante pero no tendencia en la EC y el VAR; d) Modelo 4: constante y tendencia en la EC (no tendencia en el VAR).

Cuadro 8. VECTORES DE COINTEGRACIÓN. SECTOR INDUSTRIA

SECTOR	$oldsymbol{eta_0}$	β_1	β_2
ESPAÑA (modelo 2)	2,006 (2,472)	0,425 (1,743)	0,175 (3,747)
ANDALUCÍA (modelo 3)	1,863	0,544 (4,998)	0,104 (4,775)
CANTABRIA (modelo 2)	2,039 (7,770)	0,353 (4,768)	0,218 (13,737)
EXTREMADURA (modelo 2)	1,858 (5,564)	0,597 (4,904)	0,063 (1,472)
NAVARRA (modelo 1)		0,991 (22,482)	0,095 (2,884)
PAÍS VASCO (modelo 4)	-3,414	1,389 (3,599)	0,493 (6,035)

Nota: Entre paréntesis figura el estadístico t.

Respecto a la especificación de la tendencia determinística tendríamos: a) Modelo 1: ni tendencia ni constante en la ecuación de cointegración (EC) o el VAR; b) Modelo 2: con constante pero no tendencia en la EC (no constante en el VAR); c) Modelo 3: constante pero no tendencia en la EC y el VAR; d) Modelo 4: constante y tendencia en la EC (no tendencia en el VAR).

¹⁷ Para el caso del sector de la construcción de Navarra no se estima el vector de cointegración pues en dicho sector, como comentamos anteriormente, se acepta la ausencia de cointegración a los niveles habituales de significación.

Cuadro 9. VECTORES DE COINTEGRACIÓN. SECTOR CONSTRUCCIÓN

SECTOR	β_0	β1	β_2
ESPAÑA (modelo 1)		1,011	0,100
Lot AltA (modolo 1)		(8,265)	(0,839)
ANDALUCÍA (modelo 1)		0,582	0,473
7.1127.129 GI7 ((3,462)	(2,973)
CANTABRIA (modelo 1)		0,304	0,819
CARTABITIA (Medele 1)		(0,937)	(2,618)
EXTREMADURA (modelo 3)	0,670	0,723	0,112
EXTREMADORA (modelo o)	0,070	(14,651)	(0,708)
NAVARRA			
PAÍS VASCO (modelo 1)		1,380	-0,188
TAIG VAGGG (Modelo 1)		(2,419)	(0,351)

Nota: Entre paréntesis figura el estadístico t.

Respecto a la especificación de la tendencia determinística tendríamos: a) Modelo 1: ni tendencia ni constante en la ecuación de cointegración (EC) o el VAR; b) Modelo 2: con constante pero no tendencia en la EC (no constante en el VAR); c) Modelo 3: constante pero no tendencia en la EC y el VAR; d) Modelo 4: constante y tendencia en la EC (no tendencia en el VAR).

Cuadro 10. VECTORES DE COINTEGRACIÓN. SECTOR SERVICIOS

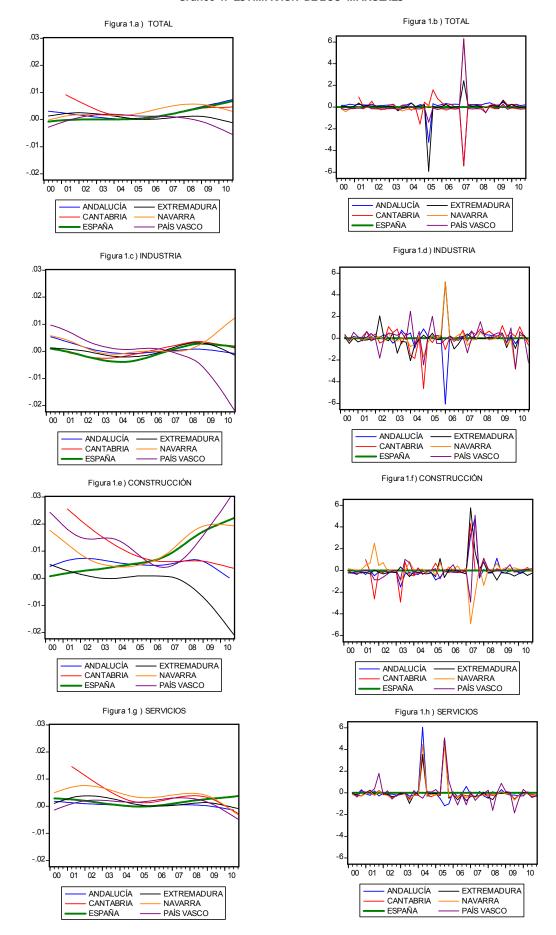
SECTOR	$oldsymbol{eta_0}$	β1	β_2
ESPAÑA (modelo 2)	1,390	0,654	0,149
Loi AitA (modelo 2)	(3,758)	(15,472)	(1,401)
ANDALUCÍA (modelo 2)	1,675	0,680	0,048
ANDALOGIA (modelo 2)	(21,737)	(29.709)	(2,680)
CANTABRIA (modelo 1)		0,226	0,857
CANTABINA (modelo 1)		(2,473)	(10,200)
EXTREMADURA (modelo 3)	-1,117	0,559	0,761
EXTREMADORA (modelo o)	-1,117	(6,060)	(3,896)
NAVARRA (modelo 1)		0,066	1,013
THATAINTA (IIIOGCIO 1)		(0,327)	(5,557)
PAÍS VASCO (modelo 2)	0,382	0,540	0,487
Alo VACCO (Modelo 2)	(0,486)	(5,73)	(2,327)

Nota: Entre paréntesis figura el estadístico t.

Respecto a la especificación de la tendencia determinística tendríamos: a) Modelo 1: ni tendencia ni constante en la ecuación de cointegración (EC) o el VAR; b) Modelo 2: con constante pero no tendencia en la EC (no constante en el VAR); c) Modelo 3: constante pero no tendencia en la EC y el VAR; d) Modelo 4: constante y tendencia en la EC (no tendencia en el VAR).

En los cuadros anteriores se observa que los coeficientes (elasticidades en el caso de los CLU y los Pimp), en general, presentan el signo esperado: el signo es positivo dado que cabe esperar que exista una relación directa entre los CLU y el precio, y entre los precios de las importaciones y el precio. Por otro lado, numéricamente, el coeficiente de los costes laborales unitarios (β_1) es notablemente mayor que el coeficiente de Pimp (β_2), lo que refleja la mayor repercusión de los CLU en la formación de los precios totales. Estos resultados confirman, sobre todo para el total de las economías regionales, las conclusiones obtenidas por los trabajos que revisamos en el apartado segundo.

4.3. Estimación de los márgenes


A partir de la expresión 4 (incorporando en la misma los parámetros estimados en los cuadros 7 a 10) se puede obtener directamente el margen, para cada región y sector, como un residuo. En el gráfico 1 representamos la tasa de crecimiento intertrimestral de dichos márgenes. En la columna de la izquierda, para apreciar con más nitidez si presentan una tendencia creciente o decreciente, aplicamos a dichas series el filtro de Hodrick-Prescott. En la columna de la derecha aparecen las tasas de crecimiento brutas y, para una interpretación más intuitiva, hemos normalizado los valores dando el valor 0 a la tasa de crecimiento de la economía española, lo que nos permite apreciar con mayor claridad la homogeneidad, o ausencia de ella, en el comportamiento de los márgenes. En el caso del sector de la construcción para Navarra, dado que no se puede estimar el vector de cointegración, se ha calculado el margen simplemente mediante la diferencia entre el crecimiento del deflactor del VAB y del CLU. En dicho gráfico se aprecian diferencias en el comportamiento de los márgenes de los sectores y CCAA. Así, en la evolución de los márgenes, se observan los siguientes comportamientos:

En primer lugar, a partir de la figura 1.a) que recoge la estimación del margen para el total de la economía, no puede apreciarse un patrón común de comportamiento para las CCAA que estamos estudiando. Más concretamente, la figura 1.b) señala que esa heterogeneidad se acusa en el periodo 2005-2007, como consecuencia de la disparidad del comportamiento de los sectores que describen las gráficas restantes.

En segundo lugar, si analizamos la evolución de los márgenes en cada uno de los tres sectores, podemos extraer las siguientes conclusiones. Por lo que se refiere a la industria, la figura 1.c) pone de manifiesto un patrón común de comportamiento de la industria desde 2000 a 2004/05, periodo en el que se detecta un decrecimiento de los márgenes en todas las CCAA. Sin embargo, a partir de 2005-06 esta homogeneidad desaparece. Este momento de cambio puede apreciarse también en la figura 1.d). En cuanto a la construcción, destaca su comportamiento errático, como se desprende de la figura 1.e). Además, en el gráfico 1.f) podemos apreciar que esa disparidad es destacable en el periodo 2001-03, pero muy especialmente en el año 2007. Finalmente, la figura 1.g) muestra un patrón común del comportamiento de los servicios de 2002 a 2008: de 2002 a 2004/5 hay un descenso en los márgenes y desde ahí a 2008 un aumento, después no hay homogeneidad en el comportamiento

En conjunto, por tanto, podemos afirmar que el inicio de la etapa del periodo de expansión se aprovechó para la mejora en la competitividad tanto en el sector de la industria como en el de los servicios, como pone de manifiesto la tendencia descendente de la tasa de crecimiento de los márgenes. Sin embargo, esa mejora no se mantuvo y a partir de 2005 se aprecian signos de relajamiento que han pasado una factura muy cara con el estallido de la crisis económica. A ello se une que la construcción, sector sobre el que se apoyó de forma importante el crecimiento económico de nuestro país, no ha mostrado signos de una mejora competitiva clara en todo el periodo.

Gráfico 1. ESTIMACIÓN DE LOS MÁRGENES

Finalmente, para obtener una primera aproximación a la evolución cíclica de dichos márgenes (datos brutos), presentamos en los cuadros 11 a 14 las correlaciones de la tasa de crecimiento de los márgenes con el *output gap* propio de cada sector y con el *output gap* total (para España y para cada región específica).

Cuadro 11. COEFICIENTES DE CORRELACIÓN DE PEARSON. TOTAL

	TOTAL-ESPAÑA	TOTAL- REGIÓN
ESPAÑA	0,017	
ANDALUCÍA	-0,008	-0,014
CANTABRIA	-0,030	0,030
EXTREMADURA	-0,088	-0,022
NAVARRA	0,116	0,162
PAÍS VASCO	-0,050	-0,038

Nota: ***, ** Correlación significativa al 1% y al 5% respectivamente

Cuadro 12. COEFICIENTES DE CORRELACIÓN DE PEARSON. SECTOR INDUSTRIA

	SECTOR- ESPAÑA	TOTAL-ESPAÑA	SECTOR- REGIÓN	TOTAL- REGIÓN
ESPAÑA	0,272	0,215		
ANDALUCÍA	0.184	0,121	0,222	0,093
CANTABRIA	0,237	0,141	0,172	0,103
EXTREMADURA	0,144	0,103	0,591***	0,334**
NAVARRA	0,064	-0,053	0,045	-0,060
PAÍS VASCO	0,176	0,111	0,190	0,156

Nota: ***, ** Correlación significativa al 1% y al 5% respectivamente

Cuadro 13. COEFICIENTES DE CORRELACIÓN DE PEARSON. SECTOR CONSTRUCCIÓN

	SECTOR- ESPAÑA	TOTAL-ESPAÑA	SECTOR- REGIÓN	TOTAL- REGIÓN
ESPAÑA	0,069	-0,041		
ANDALUCÍA	0,066	0,094	-0,028	0,053
CANTABRIA	-0,015	-0,052	-0,088	-0,084
EXTREMADURA	0,132	0,081	0,496***	0,288
NAVARRA	0,048	-0,002	0,046	0,010
PAÍS VASCO	-0,181	-0,176	-0,008	-0,220

Nota: ***, ** Correlación significativa al 1% y al 5% respectivamente

Cuadro 14. COEFICIENTES DE CORRELACIÓN DE PEARSON. SECTOR SERVICIOS

	SECTOR- ESPAÑA	TOTAL-ESPAÑA	SECTOR- REGIÓN	TOTAL- REGIÓN
ESPAÑA	0,203	0,105		
ANDALUCÍA	0,103	0,080	0,153	0,130
CANTABRIA	0,120	0,018	0,179	0,059
EXTREMADURA	-0,072	-0,153	-0,210	-0,288
NAVARRA	0,076	-0,029	0,163	-0,051
PAÍS VASCO	0,087	0,018	0,125	0,032

Nota: ***, ** Correlación significativa al 5% y al 1% respectivamente

Dado que el margen puede considerarse como una variable "proxy" de la competitividad, el análisis de su relación con el ciclo reviste importancia puesto que nos está indicando como reacciona la competitividad ante las fases expansivas o recesivas del ciclo. De forma intuitiva, podemos decir que si el margen es contracíclico, la economía responde ante las expansiones con una mejora de la competitividad pero ante las recesiones esa mejora se pierde. Un margen procíclico demuestra, por el contrario, que la economía reacciona positivamente ante los periodos recesivos pero se relaja en los periodos expansivos. Para la economía española, los cuadros anteriores sugieren para el conjunto nacional y las regiones consideradas un comportamiento acíclico de los márgenes, ya que las correlaciones no son significativas, excepto en el caso de Extremadura (construcción e industria) donde hay evidencia débil de un comportamiento procíclico. En definitiva, aunque no se pueden extraer resultados concluyentes, estos resultados están en la línea de los que se habían alcanzado con el análisis gráfico, puesto que los márgenes acíclicos muestran, al menos, que no hemos aprovechado la fase expansiva para una mejora de la competitividad.

5. Dirección de la causalidad entre precios y costes laborales unitarios

En cuanto a la relación entre las variables, nos vamos a centrar exclusivamente, a partir del modelo del *mark-up*, en la relación a largo y corto plazo entre los precios y los CLU. Esta relación puede cobrar protagonismo en el diseño de las políticas económicas. En este sentido, si los precios acaban determinando los CLU y dado que la formación de los precios tiene componentes difícilmente controlables (como, por ejemplo, los precios del petróleo), entonces la mejora de la competitividad pasa necesaria y, casi exclusivamente, por la consecución de la estabilidad de precios. Por el contrario, si los CLU determinan los precios en el largo plazo, la mejora de la competitividad requiere no sólo la estabilidad de precios sino, sobre todo, el aumento de la productividad y, en su caso, la moderación salarial.

Para este análisis de la causalidad vamos a estimar un modelo de corrección de error (MCE). Así, de acuerdo con el teorema de representación de Engle y Granger (1987), si existe una relación de cointegración entre un conjunto de variables se puede estimar un MCE que recoja el comportamiento a corto plazo.

Dada la elección de las variables y elegido el orden del VAR, condicionado a la existencia de un vector de cointegración, el punto de partida es el desarrollo de un modelo autorregresivo de retardos distribuidos de orden hasta cuatro en InP, InCLU y InPimp. La forma del MCE sería la siguiente:

$$\Delta \ln P_{t} = \alpha_{0} + \sum_{i=1}^{4} \alpha_{i} \Delta \ln P_{t-i} + \sum_{j=1}^{4} \lambda_{j} \Delta \ln CLU_{t-j} + \sum_{l=0}^{4} \gamma_{l} \Delta \ln Pimp_{t-l} + \phi_{1}MCE_{t-1}$$
 (5.1)

$$\Delta \ln CLU_{t} = \delta_{0} + \sum_{i=1}^{4} \delta_{i} \Delta \ln P_{t-i} + \sum_{i=1}^{4} \theta_{j} \Delta \ln CLU_{t-j} + \sum_{l=0}^{4} \rho_{l} \Delta \ln Pimp_{t-l} + \phi_{2}MCE_{t-1}$$
 (5.2)

$$\Delta \ln Pimp_{t} = \psi_{0} + \sum_{i=1}^{4} \psi_{i} \Delta \ln P_{t-i} + \sum_{j=1}^{4} \theta_{j} \Delta \ln CLU_{t-j} + \sum_{l=0}^{4} \omega_{l} \Delta \ln Pimp_{t-l} + \phi_{3}MCE_{t-1}$$
 (5.3)

El tamaño del coeficiente de ajuste (ϕ_1) recoge la corrección del desequilibrio en los precios existentes en el momento t-1.

Una vez estimado el modelo¹⁸ procedemos a estudiar la dirección de la causalidad entre las variables:

- **A)** El análisis de la exogeneidad débil (causalidad a largo plazo) de los CLU se realiza mediante el contraste de la siguiente restricción \mathbf{H}_1 : $\phi_2 = 0$ en la ecuación (5.2).
- **B)** El análisis de la exogeneidad fuerte (causalidad a corto plazo) de los CLU lo llevamos a cabo a través de los siguientes tests:
- 1) En este caso, utilizamos un test de Wald para contrastar la hipótesis nula. El estadístico se distribuye como una $\chi^2(k)$, siendo k el número de restricciones. Contrastamos en primer lugar la hipótesis de que los CLU no causan los precios, es decir, la hipótesis nula sería \mathbf{H}_2 : λ_j =0 en la ecuación (5.1), y en segundo lugar la hipótesis de que los precios no causan los CLU, y por tanto, la hipótesis nula sería \mathbf{H}_3 : δ =0 en la ecuación (5.2).
- 2) Prueba de causalidad de Granger: en este caso realizamos los siguientes contrastes, donde los estadísticos se distribuyen como una F-Snedecor.
 - 2.a) \mathbf{H}_4 : $\lambda j = 0$. Se realiza este contraste a partir de la estimación de la ecuación (6)

$$\Delta \ln P_t = \sum_{i=1}^4 \alpha_i \Delta \ln P_{t-i} + \sum_{i=1}^4 \lambda_j \Delta \ln CLU_{t-j}$$
 (6)

En este caso la hipótesis nula es que los CLU no causan los precios.

2.b) H_5 : $\delta = 0$. Se realiza este contraste a partir de la estimación de la ecuación (7).

$$\Delta \ln CLU_t = \sum_{i=1}^4 \delta_i \Delta \ln P_{t-i} + \sum_{j=1}^4 \theta_j \Delta \ln CLU_{t-j}$$
 (7)

Ahora, la hipótesis nula es que los precios no causan CLU.

En ambos casos (2.a y 2.b), para estudiar la sensibilidad de los resultados ante el número de retardos, hemos considerado tanto el número de retardos óptimos utilizados en el MCE, como

¹⁸ En el anexo 2 mostramos los resultados de los test de normalidad de los residuos del modelo estimado. Sólo se detecta ausencia de normalidad en el total para España y Andalucía, la industria y la construcción en Extremadura y los servicios en el País Vasco

cuatro retardos, dado que los datos son trimestrales. En los cuadros 15 a 18 presentamos los resultados de los distintos contrastes.

Cuadro 15. PRECIOS Y CLU. ORDEN DE LA CAUSALIDAD. TOTAL

COMUNIDAD	H ₁ :	H ₂ :	H ₃ :	H ₄ : λ _j =0	H ₅ : δ _i =0	H ₄ : λ _j =0	H ₅ : δ _i =0
AUTÓNOMA	$\phi_2 = 0$	λ _j =0	δ_i =0	Nº de retarc	los óptimo	Nº retardos=4	
ESPAÑA	0,321	3,583 $\chi^2(2)$	0,967 χ ² (2)	4,239**	3,782**	2,384*	1,036
ANDALUCÍA	0,289	5,586** χ ² (1)	6,276** χ ² (1)	0,083	14,34***	3,392**	2,513*
CANTABRIA	0,0003	6,339** χ ² (1)	6,770*** χ ² (1)	0,426	11,684***	1,671	2,305*
EXTREMADURA	0,036	2,935 χ ² (2)	4,714* χ ² (2)	0,038	2,505*	0,892	1,613
NAVARRA	6,469**	0,121 χ ² (1)	1,632 χ ² (1)	0,682	0,435	0,390	1,162
PAÍS VASCO	0,732	16,084*** χ ² (2)	1,833 χ ² (2)	1,933	0,365	1,996	0,312

Nota: ***, **, * indica rechazo de la hipótesis nula al 1%, 5%, 10% de significatividad respectivamente

Cuadro 16. PRECIOS Y CLU. ORDEN DE LA CAUSALIDAD. SECTOR INDUSTRIA

COMUNIDAD	H ₁ :	H ₂ :	H ₃ :	H ₄ : λ _j =0	H ₅ : δ _i =0	H ₄ : λ _j =0	H ₅ : δ _i =0
AUTÓNOMA	$\phi_2 = 0$	λ _j =0	δ_i =0	Nº de retar	dos óptimo	ı °N	retardos=4
ESPAÑA	0,428	6,393* χ ² (3)	12,587*** χ ² (3)	1,806	2,789**	2,880**	3,099**
ANDALUCÍA	1,558	$5,052$ $\chi^2(3)$	4,412 χ ² (3)	2,719*	1,612	2,306*	1,121
CANTABRIA	0,003	1,561 χ ² (3)	0,437 χ ² (3)	1,813	0,014	1,382	0,096
EXTREMADURA	0,013	8,688*** $\chi^2(1)$	0,187 χ ² (1)	0,554	0,003	2,081	1,113
NAVARRA	2,107	5,357* χ ² (2)	1,024 χ ² (2)	0,572	0,615	3,650***	1,934
PAÍS VASCO	1,152	3,834 χ ² (3)	3,095 $\chi^2(3)$	4,710***	0,730	3,557***	1,010

Nota: ***, **, * indica rechazo de la hipótesis nula al 1%, 5%, 10% de significatividad respectivamente

Cuadro 17. PRECIOS Y CLU. ORDEN DE LA CAUSALIDAD, SECTOR CONSTRUCCIÓN

Cuadro 17. FRECIOS F CEO. ORDEN DE LA CAUSALIDAD. SECTOR CONSTRUCCION								
COMUNIDAD AUTÓNOMA	H_1 : $\phi_2 = 0$	H ₂ : λ _j =0	H ₃ : δ _i =0	H ₄ : λ _j =0	H ₅: δ _i =0 dos óptimo	H ₄ : λ _j =0	H_5 : δ_i =0 rdos=4	
				in de retai	dos optimo	IN ICIA	1005-4	
ESPAÑA	7,014***	$0,400$ $\chi^{2}(3)$	11,943*** χ ² (3)	0,684	2,254	1,118	2,106	
ANDALUCÍA	0,019	5,227 χ ² (3)	1,346 χ ² (3)	2,213	0,998	1,668	0,825	
CANTABRIA	8,679***	0,009 χ ² (1)	22,307*** χ ² (1)	0,042	19,382***	1,448	6,667***	
EXTREMADURA	16,174***	3,349 $\chi^2(4)$	10,021** χ ² (4)	0,084	1,953	0,084	1,953	
NAVARRA						0,860	1,482	
PAÍS VASCO	0,031	0,348 χ ² (1)	2,490 χ ² (1)	1,467	2,609	0,612	2,245	

Nota: ***, **, * indica rechazo de la hipótesis nula al 1%, 5%, 10% de significatividad respectivamente

Cuadro 18. PRECIOS Y CLU. ORDEN DE LA CAUSALIDAD. SECTOR SERVICIOS

COMUNIDAD	H₁:	H ₂ :	H ₃ :	H ₄ : λ _j =0	H ₅ : δ _i =0	Η ₄ : λ _j =0	H₅: δ _i =0
AUTÓNOMA	$\phi_2 = 0$	λ _j =0	δ_i =0	Nº de retar	dos óptimo	Nº ret	ardos=4
ESPAÑA	0,041	2,439 χ ² (2)	9,727 χ ² (2)	0,310	5,935***	0,989	4,098***
ANDALUCÍA	1,603	1,753 χ ² (1)	16,120*** χ ² (1)	0,035	7,110**	1,457	5,605***
CANTABRIA	0,982	9,456*** χ ² (2)	0,621 χ ² (2)	3,230*	0,891	2,794**	0,811
EXTREMADURA	0,317	3,136 χ ² (2)	4,865* χ ² (2)	0,121	2,358	0,725	2,021
NAVARRA	0,624	1,867 χ ² (1)	0,078 χ ² (1)	2,881*	0,445	0,718	0,603
PAÍS VASCO	0,554	3,602* $\chi^2(1)$	0,305 χ ² (1)	1,042	0,041	1,064	0,166

Nota: ***, **, * indica rechazo de la hipótesis nula al 1%, 5%, 10% de significatividad respectivamente

A partir de los cuadros anteriores, podemos afirmar que a largo plazo, de forma general, los CLU son débilmente exógenos, es decir, los precios no afectan a los CLU a largo plazo. Por ello, no debemos hablar de la competitividad exclusivamente vía precios, sino que deben articularse políticas de oferta que actúen eficazmente sobre los CLU, que serán los que finalmente nos hagan competitivos vía precios.

A corto plazo, se observa una mayor disparidad sectorial, de hecho para la economía en su conjunto no hay un comportamiento homogéneo, consecuencia de dicha disparidad: Por lo que se refiere a los servicios, los resultados son muy diversos dependiendo de la Comunidad Autónoma, en el caso de la industria hay mayor evidencia de que los CLU estén causando los precios, y, por el contrario, en el sector de la construcción los resultados apuntan a que los precios están causando los CLU.

6. Conclusiones

En este trabajo se ha estimado el modelo del *mark-up* para España y cinco de sus regiones, desde una perspectiva a largo plazo. Este modelo explica satisfactoriamente el comportamiento de la inflación en España y dichas regiones, siendo el coste laboral unitario la variable más relevante en la explicación de los precios internos.

Se ha constatado, a partir de la base de datos que hemos construido, que la mayoría de las variables analizadas son I(1) y que para todas las regiones y los sectores productivos estudiados (con la excepción de la construcción en Navarra y los servicios en Extremadura) existe una relación de cointegración. El signo de los coeficientes de los vectores de cointegración estimados es positivo, dado que, como cabía esperar, existe una relación directa entre los CLU y el precio, y entre los precios de las importaciones y el precio. Por otro lado, numéricamente, el coeficiente de los CLU es notablemente mayor que el coeficiente del precio de las importaciones; lo que refleja la mayor repercusión de los CLU en la formación de los precios totales. Estos

resultados confirman las conclusiones obtenidas por los trabajos anteriores en esta línea de investigación.

Por otro lado, hemos computado la tasa de variación de los márgenes regionales-sectoriales. En el periodo analizado se observa que en el sector de la industria y de los servicios sólo se aprovechó el inicio de la etapa de expansión para mejorar la competitividad, mientras que en el sector de la construcción se observa un comportamiento bastante errático y sin mejoras competitivas relevantes. Este resultado es destacable pues el crecimiento de España ha pivotado fundamentalmente sobre dicho sector al menos hasta 2007. Asimismo, el comportamiento acíclico que muestran los márgenes para el conjunto nacional y regional, parecen confirmar que no se ha aprovechado la fase expansiva del ciclo para mejorar nuestra competitividad vía reducción de los márgenes.

Respecto a la dirección de la causalidad entre los precios y los costes laborales unitarios es preciso distinguir entre el corto y el largo plazo:

A largo plazo, las relaciones de cointegración estimadas sugieren que los CLU causan los precios, sin darse la causalidad en el sentido contrario. Este resultado refuerza la necesidad de implementar políticas de oferta que, por ejemplo, al aumentar nuestra productividad terminen disminuyendo nuestros CLU (mejora de la competitividad).

Sin embargo a corto plazo encontramos una mayor disparidad, llegándose en algún caso a invertirse la dirección de la causalidad. En este punto es destacable el caso del sector de la construcción donde nuestros resultados apuntan a que los precios están causando los CLU.

Una posible extensión de este trabajo sería analizar la robustez de los resultados obtenidos a partir de distintas medidas trimestrales del coste laboral unitario y extender (con la necesaria colaboración de los Institutos Regionales de Estadística) el análisis a otras economías regionales españolas. Asimismo, sería conveniente indagar empíricamente sobre las espirales precios-salarios-productividad y vincular esa investigación al diseño óptimo del modelo de negociación colectiva en España.

Referencias bibliográficas

BROUWER, G. y ERICSSON, N.R. (1998): "Modeling Inflation in Australia", *Journal of Business & Economic Statistics*, 16(4), pp. 433-449.

CHENG, B.S. (1999): "Unit Labor Costs, Prices, and Productivity: An Application of Cointegration and Error-Correction Modelling", *Pennsylvania Economic Review*, 8(1), pp. 62-70.

DICKEY, D.A. y FULLER, W.A. (1981): "Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root", *Econometrica*, 49, pp. 1057-1072.

ENGLE, R.F. y GRANGER, C.W.J. (1987): "Co-integration and Error Correction: Representation, Estimation and Testing", *Econometrica*, 55, pp. 251-276.

FRANZ, W. y GORDON, R.J. (1993): "German and American Wage and Price Dynamics: Differences and Common Themes", *European Economic Review*, 37, pp. 719-762.

JOHANSEN, S. (1988): "Statistical Analysis of Cointegrated Vectors", *Journal of Economic Dynamic and Control*, 12, pp. 231-244.

JOHANSEN, S. (1992): "Estimation and Hypothesis Testing of Cointegration Vectors in a Gaussian Vector Autoregressive Models", *Econometrica*, 59, pp. 1551-1581.

KENNY, G. y MCGETTIHGAN, D. (1999): "Modelling Traded, Non-Traded and Aggregate Inflation in a Small Open Economy: The Case of Ireland", *The Manchester School*, 67(1), pp. 60-88.

KIMBALL, M.S. (1995): "The Quantitative Analytics of the Basic Neomonetarist Model", *Journal of Money, Credit and Banking*, 27, pp. 1241-1277.

KRYVTSOV, O. y MIDRIGAN, V. (2011): "Inventories, Markups and Real Rigidities in Sticky Price Models of the Canadian Economy", Working Paper 2011-9, Bank of Canada.

KURITA, T. (2010): "Empirical Modeling of Japan's Markup and Inflation, 1976-2000", *Journal of Asian Economics*, 21(6), pp. 552-563.

KWIATKOWSKI, D., PHILLIPS, P.C.B., SCHMIDT, P. y SHIN, Y. (1992): "Testing the Null Hypothesis of Stationary against the Alternative of a Unit Root", *Journal of Econometrics*, 54, pp. 159-178.

LÓPEZ-SALIDO, J.D. y VELILLA, P. (2002): "La Dinámica de los Márgenes en España: Una Primera Aproximación con Datos Agregados", *Investigaciones Económicas*, 26(1), pp. 59-85.

MACALLAN, C. y PARKER, M. (2008): "How Do Mark-ups Vary with Demand?", *Bank of England, Quarterly Bulletin*, 48(2), pp. 167-173.

MARTIN, C. (1997): "Price Formation in an Open Economy: Theory and Evidence for the United Kingdom, 1951-1991", *The Economic Journal*, 107, pp. 1391-1404.

MEHRA, Y.P. (1993): "Unit Labor Costs and the Price Level", *Federal Reserve Bank of Richmond Economic Quarterly*, 79(4), pp. 35-51.

MORALES, A. (2004): "La Inflación en la Zona Euro: Un Análisis desde el Lado de la Oferta", *Información Comercial Española*, 817, pp. 131-141.

PANTULA, S.G. (1989): "Testing for Unit Roots in Time Series Data", Econometric Theory, 5, pp. 256-271.

PHELPS, E.S. y WINTER, S. (1970): "Optimal Price Policy under Atomistic Competition", en Phelps, E.S. (ed.): *Microeconomic Foundations of Employment and Inflation Theory*, New York, Norton, pp. 309-337.

PHILLIPS, P.C.B. y PERRON, P. (1988): "Testing for a Unit Root in Time Series Regression", *Biometrika*, 75, pp. 335-346.

ROTEMBERG, J.J. y WOODFORD, M. (1992): "Oligopolistic Pricing and the Effects of Aggregate Demand on Economic Activity", *Journal of Political Economy*, 100(6), pp. 1153-1207.

STRAUSS, J. y WOHAR, M.E. (2004): "The Linkage between Prices, Wages and Labor Productivity: A Panel Study of Manufacturing Industries", *Southern Economic Journal*, 70(4), pp. 920-941.

VIZEK, M. y BROZ, T. (2009): "Modelling Inflation in Croatia", *Emerging Markets Finance & Trade*, 45(6), pp. 87-98.

WELFE, A. (2000): "Modelling Inflation in Poland", Economic Modelling, 17, pp. 375-385.

ANEXO 1: CONTRASTE DE RAICES UNITARIAS

En este anexo se incluye el análisis de los resultados de los contrastes de raíces unitarias para las variables incluidas en el modelo por CCAA para tres sectores.

Se han realizado tres contrastes de raíces unitarias: ADF, PP y KPSS. Se ha realizado cada uno de ellos tomando: constante y tendencia, constante, y sin constante ni tendencia. Por otro lado, se han considerado las variables en nivel y en primera diferencia. Para la selección de los retardos, se ha utilizado el criterio de información de Schwarz.

Cuando encontramos contradicciones en los resultados obtenidos de los tres test realizados, escogemos aquella que hay sido avalada por un mayor número de test. Cuando, en un mismo test, encontramos contradicciones entre las conclusiones alcanzadas al considerar "constante y tendencia", "solo constante" o "sin constante ni tendencia", nos centramos en los resultados de: "constante y tendencia" de la variable en nivel, y en los resultados de "solo constante" o "sin constante ni tendencia" de la variable en primera diferencia (si entre estos dos últimos hay contradicción, para la variable en primera diferencia consideramos únicamente los resultados de "solo constante").

Centro de Estudios Andaluces

1. ESPAÑA:

CONTRASTE DE RAÍCES UNITARIAS (CRU): COSTE LABORAL UNITARIO. ESPAÑA. CNAE 09

	ADF		PP		KPSS	
	(H0: raíz unitaria)		(H0: raíz unitaria)		(H0:estacionariedad)	
	Nivel	1º diferencia	Nivel	1º diferencia	Nivel	1º diferencia
TOTAL						
CONSTANTE + TENDENCIA	3,643	NO	3,812	NO	0,196 (*)	NO
CONSTANTE	-1,847	-0,549	-3,184 (*)	-4,531 (**)	0,802 (**)	0,622 (*)
SIN CONSTANTE NI TENDENCIA	-0,156	-1,113	3,462	-3,094 (**)	NO	NO
INDUSTRIA						
CONSTANTE + TENDENCIA	-2,011	NO	-2,011	NO	0,181 (*)	NO
CONSTANTE	-2,693 (+)	-6,363 (**)	-2,921 (+)	-6,379 (**)	0,806 (**)	0,410 (+)
SIN CONSTANTE NI TENDENCIA	2,680	-5,701 (**)	2,559	-5,687 (**)	NO	NO
CONSTRUCCIÓN						
CONSTANTE + TENDENCIA	2,665	NO	0,240	NO	0,186 (*)	NO
CONSTANTE	-1,295	-2,732 (+)	-1,866	-5,354 (**)	0,504 (*)	0,526 (*)
SIN CONSTANTE NI TENDENCIA	-0,022	-2,844 (**)	0,597	-5,292 (**)	NO	NO
SERVICIOS						
CONSTANTE + TENDENCIA	0,655	NO	1,135	NO	0,180 (*)	NO
CONSTANTE	-2,317	-6,359 (**)	-2,350	-6,417 (**)	0,820 (**)	0,522 (*)
SIN CONSTANTE NI TENDENCIA	5,418	-2,030 (*)	4,876	-4,639 (**)	NO	NO

NOTA: **,*,+: se rechaza la hipótesis nula al 1%,5% y 10% respectivamente.

FUENTE: Elaboración propia.

Del análisis realizado, se puede afirmar que los CLU para España son, en su mayoría, I(1). Podemos considerar que los CLU totales son I(2) dado que dos de los test realizados (ADF y KPSS) así lo revelan, no obstante el test de PP concluye que son I(1). En la desagregación por sectores, tanto la industria, la construcción como los servicios según los test ADF y PP son I(1), sin embargo según el test de KPSS son I(2). En cualquier caso, se rechaza que los CLU para España sean I(0).

RESULTADOS CRU: COSTE LABORAL UNITARIO. ESPAÑA. CNAE 09

	ADF	PP	KPSS
	(H0: raíz unitaria)	(H0: raíz unitaria)	(H0:estacionariedad)
TOTAL	l(2)	l(1)*	I(2)
INDUSTRIA	l(1)*	l(1)*	I(2)
CONSTRUCCIÓN	I(1)	I(1)	I(2)
SERVICIOS	I(1)	I(1)	I(2)

NOTAS: (*) Considerando para los valores en nivel: constante y tendencia, y para los valores en primera diferencia: solo constante.

CONTRASTE DE RAÍCES UNITARIAS: DEFLACTOR DEL VAB. ESPAÑA.

	JOHN MOTE BE	ADE		DD.		KPSS	
		ADF		-	PP		
		,	íz unitaria)	,	íz unitaria)	,	onariedad)
ſ	TOTAL	Nivel	1º diferencia	Nivel	1º diferencia	Nivel	1º diferencia
	TOTAL	0.405	NO	0.440	110	0.405 (#)	NIC
10	CONSTANTE + TENDENCIA	0,165	NO O 740 (1)	-0,149	NO	0,185 (*)	NO 0.100 (1)
0,	CONSTANTE	-1,713	-2,748 (+)	-2,297	-4,300 (**)	0,829 (**)	0,402 (+)
	SIN CONSTANTE NI TENDENCIA	2,331	-0,841	6,630	-1,496	NO	NO
	INDUSTRIA	0.010	NO	0.070	110	0.405	NO
	CONSTANTE + TENDENCIA	-2,813	NO	-2,378	NO	0,105	NO
	CONSTANTE	-0,005	-3,975 (**)	0,037	-3,215 (*)	0,829 (**)	0,072
	SIN CONSTANTE NI TENDENCIA	4,750	-2,229 (*)	5,040	-2,229 (*)	NO	NO
	CONSTRUCCIÓN		NO			2 422 (1)	
	CONSTANTE + TENDENCIA	-1,137	NO	0,791	NO	0,196 (*)	NO
-	CONSTANTE	-1,516	-1,199	-2,589	-3,468 (*)	0,794 (**)	0,533 (*)
	SIN CONSTANTE NI TENDENCIA	0,460	-1,298	3,592	-1,983 (*)	NO	NO
	SERVICIOS						
	CONSTANTE + TENDENCIA	-1,714	NO	-2,659	NO	0,163 (*)	NO
	CONSTANTE	-1,580	-1,811	-2,582	-4,117 (**)	0,830 (**)	0,398 (+)
	SIN CONSTANTE NI TENDENCIA	1,343	-1,262	6,027	-1,379	NO	NO
	NOTA: **,*,+: se rechaza la hipótesis	s nula al 1%	,5% y 10% res	pectivament	te.		
	FUENTE: Elaboración propia.						
(A)							
-	El deflactor del VAB p	ara el coni	iunto de la ec	conomía es	I(1) según la	s tres ADF v	PP (I(2)
	·	•				•	, , ,
O	según KPSS). En la desagre	gación po	r sectores, el	deflactor of	del VAB de la	a energía-ind	ustria es
	I(1) según los resultados de le	os test AD	F y PP (segúi	n el test de	KPSS es I(0)); tanto en el	caso de
7	la construcción como de los	servicios s	según los tes	t ADF y KF	SS podemos	s afirmar que	son I(2)
(A)	(según el test de PP son I(1))						
I + I	(0.03 0.000 0.0						
	RESULT	ADOS CR	U: DEFLACT	OR DEL V	AB ESPAÑA	1	
1			ADF	PP		KPSS	
		(HU	: raíz unitaria)	(H0: raíz un	itaria) (⊔o-	estacionariedad	
	TOTAL	(110	I(1)*	I(1)*		I(2)	,
	INDUSTRIA		I(1)	I(1)		I(2)	
	CONSTRUCCIÓN	-	l(2)	I(1)		I(2)	
			I(2)	I(1)*		I(2)	
	NOTAS: (*) Considerando	nara los v			v tendencia v		res
	en primera diferencia: solo			oonotanto	y torraoriola, y	para los talo	.00
4)		•				
4							
Centro							

RESULTADOS CRU: DEFLACTOR DEL VAB. ESPAÑA.

	ADF	PP	KPSS
	(H0: raíz unitaria)	(H0: raíz unitaria)	(H0:estacionariedad)
TOTAL	I(1)*	I(1)*	I(2)
INDUSTRIA	l(1)	I(1)	I(0)*
CONSTRUCCIÓN	I(2)	I(1)	I(2)
SERVICIOS	I(2)	l(1)*	I(2)

CONTRASTE DE RAÍCES UNITARIAS: ÍNDICES DE PRECIOS. ESPAÑA.

		Δ	DF	P	P	KI	PSS
		(H0: raíz unitaria)		=	unitaria)		cionariedad)
		Nivel	1º diferencia	Nivel	1º diferencia	Nivel	1º diferencia
	IPC	74.707		111101	7 41107011014	74.707	- unoronoia
	CONSTANTE + TENDENCIA	-2,183	NO	-1,544	NO	0,156 (*)	NO
	CONSTANTE	-1,374	-4,369 (**)	-1,467	-4,392 (**)	0,838 (**)	0,193
	SIN CONSTANTE NI TENDENCIA	3,683	-2,051 (*)	6,932	-1,833 (+)	NO	NO NO
	IPSEBENE	0,000	_,00.()	0,002	1,000 (1)	110	110
()	CONSTANTE + TENDENCIA	-0,527	NO	-0,062	NO	0,179 (*)	NO
	CONSTANTE	-1,819	-5,565 (**)	-2,882 (+)	-5,963 (**)	0,834 (**)	0,471 (*)
	SIN CONSTANTE NI TENDENCIA	2,2690	-1,106 (**)	7,706	-1,572	NO NO	NO
	IPCS		, ()	.,	1,01		110
	CONSTANTE + TENDENCIA	0,375	NO	0,640	NO	0,182 (*)	NO
	CONSTANTE	-2,845 (+)	-3,185 (*)	-3,859 (**)	-3,144 (*)	0,838 (**)	0,567 (*)
	SIN CONSTANTE NI TENDENCIA	2,688	-1,493	9,489	-1,252	NO	NO NO
	NOTA: **,*,+: se rechaza la hipótesis						
	FUENTE: Elaboración propia.	3 Haia ai 170	,0 70 y 10 70 100	peotivarionie			
	TOLITIE: Elaboración propia.						
	Del análisis realizado	o a partir (de los result	ados de los	s contrastes	de raíces	unitarias
	podemos concluir que tanto e	J IDC come	A IDSEDEN	E v al IDCS	nara España	con I(1) (co	ogún tost
(0	podemos concidii que tanto e	i ir C come	O GI IF SEDEN	iL y ei ir Co	para Espana	3011 1(1) (36	guii iesi
	de KPSS el IPSEBENE y IPC	S son I(2))	-				
	RESULT	ADOS CR	U: ÍNDICES I	DE PRECIO	S. ESPAÑA.		
Stud			ADF	PP		KPSS	
		(H0: ı	raíz unitaria)	(H0: raíz unita		acionariedad)	
	IPC	1	l(1)	I(1)		I(1)	_
+-	IPSEBENE		I(1)	I(1)*		I(2)	
10				\ /			
	IPCS I(1)* I(1)* I(2)						
. 0 7	NOTAS: (*) Considerar	ndo nara los	s valores en i	nivel constai	nte v tendenc	ia v nara lo)S
	NOTAS: (*) Considerar			nivei: constar	nte y tendenc	ia, y para lo	OS
Ц	NOTAS: (*) Considerar valores en primera difere			nivei: constar	nte y tendenc	ia, y para lo	os
				nivei: constai	nte y tendenc	ia, y para lo	os
				nivei: constai	nte y tendenc	ia, y para lo	DS
				nivel: constar	nte y tendenc	ia, y para lo	os
de Es				nivel: constar	nte y tendenc	ia, y para lo	os S
O E				nivei: constar	nte y tendenc	ia, y para lo	DS
00	valores en primera difere			nivei: constar	nte y tendenc	ia, y para lo	DS
de E	valores en primera difere			nivei: constai	nte y tendenc	ia, y para lo	OS
de E	valores en primera difere			nivei: constai	nte y tendenc	ia, y para lo	DS
de E	valores en primera difere			nivei: constai	nte y tendenc	ia, y para lo	DS
de E	valores en primera difere			nivei: constar	nte y tendenc	ia, y para lo	OS
de E	valores en primera difere			nivei: constar	nte y tendenc	ia, y para lo	OS .
de E	valores en primera difere			nivei: constar	nte y tendenc	ia, y para lo	DS
de E	valores en primera difere			nivei: constar	nte y tendenc	ia, y para lo	DS
Centro de Es	valores en primera difere			nivei: constar	nte y tendenc	ia, y para lo	DS
de E	valores en primera difere			nivei: constar	nte y tendenc	ia, y para lo	DS
de E	valores en primera difere			nivei: constar	nte y tendenc	ia, y para lo	DS
de E	valores en primera difere			nivel: constar	nte y tendenc	ia, y para lo	DS .

RESULTADOS CRU: ÍNDICES DE PRECIOS. ESPAÑA.

	ADF	PP	KPSS
	(H0: raíz unitaria)	(H0: raíz unitaria)	(H0:estacionariedad)
IPC	l(1)	I(1)	I(1)
IPSEBENE	l(1)	I(1)*	I(2)
IPCS	I(1)*	l(1)*	I(2)

CONTRASTE DE RAÍCES UNITARIAS: IVU. ESPAÑA.

	ADF		PP		KPSS	
	(H0: raíz unitaria)		(H0: raíz unitaria)		(H0:estacionariedad)	
	Nivel 1º diferencia		Nivel	1º diferencia	Nivel	1º diferencia
TOTAL						
CONSTANTE + TENDENCIA	-2,587	NO	-2,213	NO	0,093	NO
CONSTANTE	-1,934	-4,515 (**)	-1,870	-4,476 (**)	0,410 (+)	0,057
SIN CONSTANTE NI TENDENCIA	0,358	-4,547 (**)	0,558	-4,505 (**)	NO	NO

NOTA: (**), (*), (+): se rechaza la hipótesis nula al 1%,5% y 10% respectivamente.

FUENTE: Elaboración propia.

Según los resultados de los test de ADF y PP, el IVU es I(1). El test de KPSS concluye que es I(0).

RESULTADOS CRU: IVU. ESPAÑA.

	ADF	PP	KPSS
	(H0: raíz unitaria)	(H0: raíz unitaria)	(H0:estacionariedad)
TOTAL	I(1)	I(1)	I(0)*

NOTAS: (*) Considerando para los valores en nivel: constante y tendencia, y para los valores en primera diferencia: solo constante.

CONTRASTE DE RAÍCES UNITARIAS: PRECIOS DEL PETRÓLEO. ESPAÑA.

	ADF		PP		KPSS	
	(H0: raíz unitaria)		(H0: raíz unitaria)		(H0:estacionariedad)	
	Nivel	Nivel 1º diferencia		1º diferencia	Nivel	1º diferencia
TOTAL						
CONSTANTE + TENDENCIA	-3,107	NO	-2,705	NO	0,111	NO
CONSTANTE	-0,934	-4,668 (**)	-0,797	-5,667 (**)	0,739 (**)	0,100
SIN CONSTANTE NI TENDENCIA	0,994	-5,570 (**)	1,411	-5,482 (**)	NO	NO

NOTA: (**), (*), (+): se rechaza la hipótesis nula al 1%,5% y 10% respectivamente.

FUENTE: Elaboración propia.

Según los resultados de los test de ADF y PP, el IVU es I(1). El test de KPSS concluye que es I(0).

RESULTADOS CRU: PRECIOS PETRÓLEO. ESPAÑA.

	ADF (H0: raíz unitaria)	PP (H0: raíz unitaria)	KPSS (H0:estacionariedad)
TOTAL	I(1)	I(1)	I(0)*

NOTAS: (*) Considerando para los valores en nivel: constante y tendencia, y para los valores en primera diferencia: solo constante.

2. ANDALUCÍA:

CONTRASTE DE RAÍCES UNITARIAS: COSTE LABORAL UNITARIO. ANDALUCÍA. CNAE 09

	ADF		PP		KPSS	
	(H0: raíz unitaria)		(H0: raíz unitaria)		(H0:estaci	onariedad)
	Nivel 1º diferencia		Nivel	1º diferencia	Nivel	1º diferencia
TOTAL						
CONSTANTE + TENDENCIA	2,038	NO	1,937	NO	0,182 (*)	NO
CONSTANTE	-2,446	0,124	-2,406	-6,667 (**)	0,792 (**)	0,574 (*)
SIN CONSTANTE NI TENDENCIA	3,736	-0,688	3,033	-5,405 (**)	NO	NO
INDUSTRIA						
CONSTANTE + TENDENCIA	-4,058 (*)	NO	-4,096 (*)	NO	0,089	NO
CONSTANTE	0,291	-5,631 (**)	-0,642	-9,880 (**)	0,818 (**)	0,136
SIN CONSTANTE NI TENDENCIA	3,586	-9,199 (**)	3,537	-9,094 (**)	NO	NO
CONSTRUCCIÓN						
CONSTANTE + TENDENCIA	-0,362	NO	-0,358	NO	0,197 (*)	NO
CONSTANTE	-1,658	-2,670 (+)	-1,515	-6,456 (**)	0,301	0,478 (*)
SIN CONSTANTE NI TENDENCIA	0,017	-2,707 (**)	0,204	-6,505 (**)	NO	NO
SERVICIOS						
CONSTANTE + TENDENCIA	0,303	NO	0,416	NO	0,171 (*)	NO
CONSTANTE	-2,183	-5,623 (**)	-2,183	-5,669 (**)	0,813 (**)	0,457 (+)
SIN CONSTANTE NI TENDENCIA	3,649	-4,534 (**)	3,377	-4,665 (**)	NO	NO

RESULTADOS CRU: COSTE LABORAL UNITARIO. ANDALUCÍA. CNAE 09

	NO IT WITE - TENDEROUT	0,000	_	0, 0		0, ()	
CO	NSTANTE	-2,183	-5,623 (**)	-2,183	-5,669 (**)	0,813 (**)	0,4
SIN	CONSTANTE NI TENDENCIA	3,649	-4,534 (**)	3,377	-4,665 (**)	NO	1
	TA: **,*,+: se rechaza la hipótesis ENTE: Elaboración propia.	nula al 1%,5	% у 10% resp	ectivamente			
9	Los CLU para Andaluc	` '			•	•	
	KPSS), I(0) los CLU de la er	nergía e in	dustria e I(1)	los CLU	de la constru	cción y los s	ervicio
stu	(según los test de ADF y PP).						
Ш	RESULTADOS CRI	J: COSTE	LABORAL U	NITARIO.	ANDALUCÍA	. CNAE 09	
			ADF	PF)	KPSS	
			701			KESS	
\Box		(H	0: raíz unitaria)	(H0: raíz		0:estacionarieda	ad)
	TOTAL	(H	0: raíz unitaria) I(2)	(H0: raíz I	unitaria) (H)		ad)
0	INDUSTRIA	(H	0: raíz unitaria)	(H0: raíz	unitaria) (H)	0:estacionarieda I(2) I(0)*	ad)
0	INDUSTRIA CONSTRUCCIÓN	(H	0: raíz unitaria) I(2) I(0)* I(1)	(H0: raíz (I(1 I(0) I(1	unitaria) (H))*)	0:estacionarieda I(2) I(0)* I(2)*	ad)
0 0	INDUSTRIA CONSTRUCCIÓN SERVICIOS		0: raíz unitaria) I(2) I(0)* I(1) I(1)	(H0: raíz ti I(1 I(0) I(1 I(1	unitaria) (H))*))	0:estacionarieda I(2) I(0)* I(2)* I(2)	
0 0	INDUSTRIA CONSTRUCCIÓN SERVICIOS NOTAS: (*) Considerando p	ara los valo	0: raíz unitaria) I(2) I(0)* I(1) I(1)	(H0: raíz ti I(1 I(0) I(1 I(1	unitaria) (H))*))	0:estacionarieda I(2) I(0)* I(2)* I(2)	
tro de	INDUSTRIA CONSTRUCCIÓN SERVICIOS	ara los valo	0: raíz unitaria) I(2) I(0)* I(1) I(1)	(H0: raíz ti I(1 I(0) I(1 I(1	unitaria) (H))*))	0:estacionarieda I(2) I(0)* I(2)* I(2)	
itro de	INDUSTRIA CONSTRUCCIÓN SERVICIOS NOTAS: (*) Considerando p	ara los valo	0: raíz unitaria) I(2) I(0)* I(1) I(1)	(H0: raíz ti I(1 I(0) I(1 I(1	unitaria) (H))*))	0:estacionarieda I(2) I(0)* I(2)* I(2)	
ntro de	INDUSTRIA CONSTRUCCIÓN SERVICIOS NOTAS: (*) Considerando p	ara los valo	0: raíz unitaria) I(2) I(0)* I(1) I(1)	(H0: raíz ti I(1 I(0) I(1 I(1	unitaria) (H))*))	0:estacionarieda I(2) I(0)* I(2)* I(2)	
entro de	INDUSTRIA CONSTRUCCIÓN SERVICIOS NOTAS: (*) Considerando p	ara los valo	0: raíz unitaria) I(2) I(0)* I(1) I(1)	(H0: raíz ti I(1 I(0) I(1 I(1	unitaria) (H))*))	0:estacionarieda I(2) I(0)* I(2)* I(2)	
Centro de	INDUSTRIA CONSTRUCCIÓN SERVICIOS NOTAS: (*) Considerando p	ara los valo	0: raíz unitaria) I(2) I(0)* I(1) I(1)	(H0: raíz ti I(1 I(0) I(1 I(1	unitaria) (H))*))	0:estacionarieda I(2) I(0)* I(2)* I(2)	
Centro de	INDUSTRIA CONSTRUCCIÓN SERVICIOS NOTAS: (*) Considerando p	ara los valo	0: raíz unitaria) I(2) I(0)* I(1) I(1)	(H0: raíz ti I(1 I(0) I(1 I(1	unitaria) (H))*))	0:estacionarieda I(2) I(0)* I(2)* I(2)	
Centro de	INDUSTRIA CONSTRUCCIÓN SERVICIOS NOTAS: (*) Considerando p	ara los valo	0: raíz unitaria) I(2) I(0)* I(1) I(1)	(H0: raíz ti I(1 I(0) I(1 I(1	unitaria) (H))*))	0:estacionarieda I(2) I(0)* I(2)* I(2)	

CONTRASTE DE RAÍCES UNITARIAS: DEFLACTOR DEL VAB. ANDALUCÍA.

			········	EAGIGIC DEL TAB. A		TOALOGIA.	
		ADF		PP		KPSS	
		(H0: raíz unitaria)		(H0: raíz unitaria)		(H0:estaci	onariedad)
		Nivel	1º diferencia	Nivel	1º diferencia	Nivel	1º diferencia
	TOTAL						
	CONSTANTE + TENDENCIA	0,162	NO	0,145	NO	0,180 (*)	NO
	CONSTANTE	-2,856 (+)	-4,062 (**)	-2,767 (+)	-4,062 (**)	0,828 (**)	0,506 (*)
	SIN CONSTANTE NI TENDENCIA	8,580	-1,752 (+)	6,640	-1,357	NO NO	NO
\Box	INDUSTRIA	0,000	1,702 (1)	0,040	1,001	110	110
	CONSTANTE + TENDENCIA	-2,685	NO	-2,108	NO	0,099	NO
	CONSTANTE	-0,079	-4,744 (**)	-0,105	-4,500 (**)	0,833 (**)	0,075
	SIN CONSTANTE NI TENDENCIA	5,242	-0,654	l	-4,500 () -3,055 (**)	0,833 () NO	0,075 NO
		5,242	-0,054	4,993	-3,055 ()	NO	NO
	CONSTRUCCIÓN	4 447	NO	0.744	NO	0.000 (*)	NO
abla	CONSTANTE + TENDENCIA	1,117	NO	0,744	NO	0,203 (*)	NO NO
-	CONSTANTE	-4,201 (**)	-3,220 (*)	-2,911 (+)	-3,247 (*)	0,785 (**)	0,562 (*)
	SIN CONSTANTE NI TENDENCIA	2,256	-1,342	3,452	-1,731 (+)	NO	NO
	SERVICIOS						
	CONSTANTE + TENDENCIA	-1,595	NO	-0,713	NO	0,141 (+)	NO
	CONSTANTE	-1,942	-4,126 (**)	-2,357	-4,126 (**)	0,831 (**)	0,369 (+)
	SIN CONSTANTE NI TENDENCIA	8,623	-0,985	6,644	-1,476	NO	NO
7	NOTA: **,*,+: se rechaza la hipótesis	nula al 1%.5	5% v 10% resp	ectivamente			
	FUENTE: Elaboración propia.		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
11	To Entre Elaboración propia:						
	Los deflactores del V	AB para And	lalucia tanto	el valor glob	oal como las	desagregacio	nes por
T	sectores son I(1) según los	test de ADF	v PP (el tes	t de KPSS	ofrece result	ados contrad	ictorios:
			•				
	I(0) para la energía e industr	ia e I(2) en e	el resto de ca	sos).			
+							
	7						
	RESULTA	DOS CRU:	DEFLACTO	R DEL VAB	. ANDALUC	A.	
			ADF	PP		KPSS	
l		(H0: ra	aíz unitaria)	(H0: raíz unita	ria) (H0:es	tacionariedad)	
	TOTAL		I(1)*	I(1)*		l(2)	
J	INDUSTRIA	+	I(1)*	I(1)		I(0)*	
	CONSTRUCCIÓN		I(1)*	I(1)*		I(2)	
	SERVICIOS	+	_ ` /	. ,			_
			I(1)*	I(1)*		I(2)	
				NVAI. CONSTA	nte v tenden	cia, v para io:	2
	NOTAS: (*) Considera	•		iivoi. oonota	into y terraem	, , p	3
	. ` `	•		iivoi. ooriota	into y terraem	, , p	3
	. ` `	•		iivei. Goriota	inte y terruent	, , p	,
	. ` `	•		iivei. oonota	into y terraent	, , , , , , , , , , , , , , , , , , ,	
†rn	. ` `	•		nven consta	into y terident	, , , , , ,	
otro	. ` `	•		iivoi. Gonisia	ine y enden	, , , , ,	•
ntro	. ` `	•			ine y chacik	, , , ,	•
antro	. ` `	•		iivoi. consta	ine y enden	, , , ,	•
Phtro	. ` `	•		iivoi. consta	ine y chach	, , , ,	
Photon	. ` `	•			ine y chach	, , , ,	
Centro	. ` `	•			ine y chach	, , , ,	
Centro	. ` `	•			ine y chach	, , , ,	
Centro	. ` `	•			ine y chach	, , , , , , , , , , , , , , , , , , , ,	

RESULTADOS CRU: DEFLACTOR DEL VAB. ANDALUCÍA.

	ADF	PP	KPSS
	(H0: raíz unitaria)	(H0: raíz unitaria)	(H0:estacionariedad)
TOTAL	l(1)*	l(1)*	I(2)
INDUSTRIA	l(1)*	l(1)	I(0)*
CONSTRUCCIÓN	l(1)*	l(1)*	I(2)
SERVICIOS	I(1)*	l(1)*	I(2)

CONTRASTE DE RAÍCES UNITARIAS: ÍNDICES DE PRECIOS. ANDALUCÍA.

	00111101012 22 19	AIOLO OII					
		- 4	\DF	F	P	K	PSS
			íz unitaria)		z unitaria)		cionariedad)
		Nivel	1º diferencia	Nivel	1º diferencia	Nivel	1º diferencia
	IPC	TVIVEI	1 diletericia	TVIVEI	i dilerencia	TVIVEI	i unerencia
	CONSTANTE + TENDENCIA	-2,163	NO	-1,590	NO	0,153 (*)	NO
10	CONSTANTE	-1,406	-4,589 (**)	-1,349	-4,644 (**)	0,133 (**)	0,172
	SIN CONSTANTE NI TENDENCIA	3,789	-2,186 (*)		. ,		
		3,769	-2,100 ()	6,664	-1,988 (*)	NO	NO
	IPSEBENE	4.000	NO	0.550	NO	0.470 (*)	NO
	CONSTANTE + TENDENCIA	-1,699		-0,553	NO 0.450	0,170 (*)	NO NO
	CONSTANTE	-1,427	-2,421	-2,282	-2,453	0,700 (*)	0,364 (+)
	SIN CONSTANTE NI TENDENCIA	2,023	-1,217	5,996	-1,217	NO	NO
	IPCS	0.400	NO	4.474	NO	0.475 (*)	NO
	CONSTANTE + TENDENCIA	-0,108	NO 4.054	1,174	NO 1.070	0,175 (*)	NO NO
,	CONSTANTE	-1,732	-1,951	-2,518	-1,872	0,704 (*)	0,463 (**)
	SIN CONSTANTE NI TENDENCIA	1,607	-1,049	8,727	-1,035	NO	NO
	NOTA: **,*,+: se rechaza la hipótesis	s nula al 1%	,5% y 10% res	pectivamente			
	FUENTE: Elaboración propia.						
	Loo trop toot roolizade	oo oonaluu	on aug al ID	C noro And	laluaía aa 1/1	\ v al IDCE	DENE V
	Los tres test realizado	os conciuy	en que el in	C para And	iaiucia es i(i) y ei iPSE	DENE Y
ω	IPCS son I(2).						
	()						
			·		_		
	RESIII TA	DOS CRII	· INDICES DE	F PRECIOS	ANDAL LICIA	4	
	RESULTA	DOS CRU			ANDALUCÍA		
	RESULTA		ADF	PP		KPSS	
			ADF raíz unitaria)	PP (H0: raíz unita		KPSS acionariedad)	
	IPC		ADF raíz unitaria)	PP (H0: raíz unita I(1)		KPSS acionariedad) I(1)	
	IPC IPSEBENE		ADF raíz unitaria) I(1) I(2)	PP (H0: raíz unita I(1) I(2)		KPSS acionariedad) I(1) I(2)	
Studi	IPC IPSEBENE IPCS	(H0:	ADF raíz unitaria) I(1) I(2) I(2)	PP (H0: raíz unita I(1) I(2) I(2)	ria) (H0:est	KPSS acionariedad) I(1) I(2) I(2)	
Studi	IPC IPSEBENE IPCS NOTAS: (*) Consideran	(H0:	ADF raíz unitaria) I(1) I(2) I(2) s valores en	PP (H0: raíz unita I(1) I(2) I(2)	ria) (H0:est	KPSS acionariedad) I(1) I(2) I(2)	DS .
Estudi	IPC IPSEBENE IPCS	(H0:	ADF raíz unitaria) I(1) I(2) I(2) s valores en	PP (H0: raíz unita I(1) I(2) I(2)	ria) (H0:est	KPSS acionariedad) I(1) I(2) I(2)	os
Estudi	IPC IPSEBENE IPCS NOTAS: (*) Consideran	(H0:	ADF raíz unitaria) I(1) I(2) I(2) s valores en	PP (H0: raíz unita I(1) I(2) I(2)	ria) (H0:est	KPSS acionariedad) I(1) I(2) I(2)	DS .
e Estudi	IPC IPSEBENE IPCS NOTAS: (*) Consideran	(H0:	ADF raíz unitaria) I(1) I(2) I(2) s valores en	PP (H0: raíz unita I(1) I(2) I(2)	ria) (H0:est	KPSS acionariedad) I(1) I(2) I(2)	DS .
e Estudi	IPC IPSEBENE IPCS NOTAS: (*) Consideran	(H0:	ADF raíz unitaria) I(1) I(2) I(2) s valores en	PP (H0: raíz unita I(1) I(2) I(2)	ria) (H0:est	KPSS acionariedad) I(1) I(2) I(2)	DS .
de Estudi	IPC IPSEBENE IPCS NOTAS: (*) Consideran	(H0:	ADF raíz unitaria) I(1) I(2) I(2) s valores en	PP (H0: raíz unita I(1) I(2) I(2)	ria) (H0:est	KPSS acionariedad) I(1) I(2) I(2)	DS .
de Estudi	IPC IPSEBENE IPCS NOTAS: (*) Consideran	(H0:	ADF raíz unitaria) I(1) I(2) I(2) s valores en	PP (H0: raíz unita I(1) I(2) I(2)	ria) (H0:est	KPSS acionariedad) I(1) I(2) I(2)	DS .
	IPC IPSEBENE IPCS NOTAS: (*) Considerant valores en primera diferent	(H0:	ADF raíz unitaria) I(1) I(2) I(2) s valores en	PP (H0: raíz unita I(1) I(2) I(2)	ria) (H0:est	KPSS acionariedad) I(1) I(2) I(2)	DS .
	IPC IPSEBENE IPCS NOTAS: (*) Considerant valores en primera diferent	(H0:	ADF raíz unitaria) I(1) I(2) I(2) s valores en	PP (H0: raíz unita I(1) I(2) I(2)	ria) (H0:est	KPSS acionariedad) I(1) I(2) I(2)	DS .
	IPC IPSEBENE IPCS NOTAS: (*) Considerant valores en primera diferent	(H0:	ADF raíz unitaria) I(1) I(2) I(2) s valores en	PP (H0: raíz unita I(1) I(2) I(2)	ria) (H0:est	KPSS acionariedad) I(1) I(2) I(2)	DS .
	IPC IPSEBENE IPCS NOTAS: (*) Considerant valores en primera diferent	(H0:	ADF raíz unitaria) I(1) I(2) I(2) s valores en	PP (H0: raíz unita I(1) I(2) I(2)	ria) (H0:est	KPSS acionariedad) I(1) I(2) I(2)	os
	IPC IPSEBENE IPCS NOTAS: (*) Considerant valores en primera diferent	(H0:	ADF raíz unitaria) I(1) I(2) I(2) s valores en	PP (H0: raíz unita I(1) I(2) I(2)	ria) (H0:est	KPSS acionariedad) I(1) I(2) I(2)	DS .
	IPC IPSEBENE IPCS NOTAS: (*) Considerant valores en primera diferent	(H0:	ADF raíz unitaria) I(1) I(2) I(2) s valores en	PP (H0: raíz unita I(1) I(2) I(2)	ria) (H0:est	KPSS acionariedad) I(1) I(2) I(2)	DS .
	IPC IPSEBENE IPCS NOTAS: (*) Considerant valores en primera diferent	(H0:	ADF raíz unitaria) I(1) I(2) I(2) s valores en	PP (H0: raíz unita I(1) I(2) I(2)	ria) (H0:est	KPSS acionariedad) I(1) I(2) I(2)	DS .
	IPC IPSEBENE IPCS NOTAS: (*) Considerant valores en primera diferent	(H0:	ADF raíz unitaria) I(1) I(2) I(2) s valores en	PP (H0: raíz unita I(1) I(2) I(2)	ria) (H0:est	KPSS acionariedad) I(1) I(2) I(2)	DS .
entro de Estudi	IPC IPSEBENE IPCS NOTAS: (*) Considerant valores en primera diferent	(H0:	ADF raíz unitaria) I(1) I(2) I(2) s valores en	PP (H0: raíz unita I(1) I(2) I(2)	ria) (H0:est	KPSS acionariedad) I(1) I(2) I(2)	DS .
	IPC IPSEBENE IPCS NOTAS: (*) Considerant valores en primera diferent	(H0:	ADF raíz unitaria) I(1) I(2) I(2) s valores en	PP (H0: raíz unita I(1) I(2) I(2)	ria) (H0:est	KPSS acionariedad) I(1) I(2) I(2)	DS
	IPC IPSEBENE IPCS NOTAS: (*) Considerant valores en primera diferent	(H0:	ADF raíz unitaria) I(1) I(2) I(2) s valores en	PP (H0: raíz unita I(1) I(2) I(2)	ria) (H0:est	KPSS acionariedad) I(1) I(2) I(2)	DS
	IPC IPSEBENE IPCS NOTAS: (*) Considerant valores en primera diferent	(H0:	ADF raíz unitaria) I(1) I(2) I(2) s valores en	PP (H0: raíz unita I(1) I(2) I(2)	ria) (H0:est	KPSS acionariedad) I(1) I(2) I(2)	DS .
	IPC IPSEBENE IPCS NOTAS: (*) Considerant valores en primera diferent	(H0:	ADF raíz unitaria) I(1) I(2) I(2) s valores en	PP (H0: raíz unita I(1) I(2) I(2)	ria) (H0:est	KPSS acionariedad) I(1) I(2) I(2)	DS .

RESULTADOS CRU: ÍNDICES DE PRECIOS. ANDALUCÍA.

	ADF	PP	KPSS
	(H0: raíz unitaria)	(H0: raíz unitaria)	(H0:estacionariedad)
IPC	I(1)	I(1)	I(1)
IPSEBENE	I(2)	I(2)	I(2)
IPCS	I(2)	I(2)	I(2)

3. CANTABRIA:

CONTRASTE DE RAÍCES UNITARIAS: COSTE LABORAL UNITARIO. CANTABRIA. CNAE 09

	ADF			PP	KP	SS
	(H0: raíz unitaria)		(H0: raíz unitaria)		(H0:estacionariedad)	
	Nivel	1º diferencia	Nivel	1º diferencia	Nivel	1º diferencia
TOTAL						
CONSTANTE + TENDENCIA	0,563	NO	-0,254	NO	0,169 (*)	NO
CONSTANTE	-2,106	-8,539 (**)	-1,590	-8,283 (**)	0,722 (*)	0,392 (+)
SIN CONSTANTE NI TENDENCIA	2,941	-1,322	2,579	-7,190 (**)	NO	NO
INDUSTRIA						
CONSTANTE + TENDENCIA	-1,865	NO	-2,026	NO	0,066	NO
CONSTANTE	-1,778	-7,637 (**)	-1,766	-7,495 (**)	0,555 (*)	0,137
SIN CONSTANTE NI TENDENCIA	0,412	-7,662 (**)	0,445	-7,511 (**)	NO	NO
CONSTRUCCIÓN						
CONSTANTE + TENDENCIA	-0,500	NO	-0,073	NO	0,163 (*)	NO
CONSTANTE	-1,399	-7,572 (**)	-1,339	-7,447 (**)	0,497 (*)	0,369 (+)
SIN CONSTANTE NI TENDENCIA	0,145	-7,648 (**)	0,165	-7,510 (**)	NO	NO
SERVICIOS						
CONSTANTE + TENDENCIA	-0,938	NO	-2,247	NO	0,194 (*)	NO
CONSTANTE	-1,601	-10,322 (**)	-1,699	-10,53 (**)	0,755 (**)	0,253
SIN CONSTANTE NI TENDENCIA	4,074	-3,354 (**)	4,443	-7,662 (**)	NO	NO

RESULTADOS CRU: COSTE LABORAL UNITARIO. CANTABRIA. CNAE 09

	NOTANTE ! TENDENCIA	-0,936	110	-2,241	INO	0,134()			
CO	NSTANTE	-1,601	-10,322 (**)	-1,699	-10,53 (**)	0,755 (**)	0,2		
SIN	SIN CONSTANTE NI TENDENCIA 4,074 -3,354 (**) 4,443 -7,662 (**) NO N								
	TA: **,*,+: se rechaza la hipótesis ENTE: Elaboración propia.	nula al 1%,5	% y 10% resp	ectivamente					
O	Los resultados obtenio				-	•			
	Cantabria son I(1) tanto en	los valores	agregados	como en l	a desagrega	ición en los d	distinto		
	sectores. El test de KPSS nos	ofrece res	ultados contra	adictorios c	on los anteri	ores.			
$\dot{\Omega}$									
1 . 1									
	RESULTADOS CRI	J: COSTE	LABORAL U	NITARIO.	CANTABRIA	. CNAE 09			
4			ADF	P	Р	KPSS			
		/L	10: raíz unitaria)	(H0: raíz	unitaria) (H	H0:estacionarieda	ad)		
		(1	101 Tan= anntanta)						
	TOTAL	(1	l(1)*	I(1		I(2)			
0	INDUSTRIA		I(1)* I(1)	I(1	1)	I(2)*			
0	INDUSTRIA CONSTRUCCIÓN		I(1)* I(1) I(1)	I(1 I(1	1)	l(2)* l(2)			
900	INDUSTRIA CONSTRUCCIÓN SERVICIOS		I(1)* I(1) I(1) I(1)	I(1 I(1 I(1	1) 1) 1)	I(2)* I(2) I(1)			
² 0 de	INDUSTRIA CONSTRUCCIÓN SERVICIOS NOTAS: (*) Considerando p	ara los valo	I(1)* I(1) I(1) I(1)	I(1 I(1 I(1	1) 1) 1)	I(2)* I(2) I(1)	s en		
	INDUSTRIA CONSTRUCCIÓN SERVICIOS	ara los valo	I(1)* I(1) I(1) I(1)	I(1 I(1 I(1	1) 1) 1)	I(2)* I(2) I(1)	s en		
itro de	INDUSTRIA CONSTRUCCIÓN SERVICIOS NOTAS: (*) Considerando p	ara los valo	I(1)* I(1) I(1) I(1)	I(1 I(1 I(1	1) 1) 1)	I(2)* I(2) I(1)	s en		
ntro de	INDUSTRIA CONSTRUCCIÓN SERVICIOS NOTAS: (*) Considerando p	ara los valo	I(1)* I(1) I(1) I(1)	I(1 I(1 I(1	1) 1) 1)	I(2)* I(2) I(1)	s en		
entro de	INDUSTRIA CONSTRUCCIÓN SERVICIOS NOTAS: (*) Considerando p	ara los valo	I(1)* I(1) I(1) I(1)	I(1 I(1 I(1	1) 1) 1)	I(2)* I(2) I(1)	s en		
entro de	INDUSTRIA CONSTRUCCIÓN SERVICIOS NOTAS: (*) Considerando p	ara los valo	I(1)* I(1) I(1) I(1)	I(1 I(1 I(1	1) 1) 1)	I(2)* I(2) I(1)	s en		
Centro de	INDUSTRIA CONSTRUCCIÓN SERVICIOS NOTAS: (*) Considerando p	ara los valo	I(1)* I(1) I(1) I(1)	I(1 I(1 I(1	1) 1) 1)	I(2)* I(2) I(1)	s en		
Centro de	INDUSTRIA CONSTRUCCIÓN SERVICIOS NOTAS: (*) Considerando p	ara los valo	I(1)* I(1) I(1) I(1)	I(1 I(1 I(1	1) 1) 1)	I(2)* I(2) I(1)	s en		
Centro de	INDUSTRIA CONSTRUCCIÓN SERVICIOS NOTAS: (*) Considerando p	ara los valo	I(1)* I(1) I(1) I(1)	I(1 I(1 I(1	1) 1) 1)	I(2)* I(2) I(1)	s en		

CONTRASTE DE RAÍCES UNITARIAS: DEFLACTOR DEL VAB. CANTABRIA.

		Α	DF		P	KP	SS
		(H0: raíz	z unitaria)	(H0: raí	z unitaria)	(H0:estaci	onariedad)
		Nivel	1º diferencia	Nivel	1º diferencia	Nivel	1º diferencia
	TOTAL						
	CONSTANTE + TENDENCIA	0,198	NO	-0,123	NO	0,156 (*)	NO
	CONSTANTE	-2,028	-3,439 (*)	-1,761	-4,595 (**)	0,758 (**)	0,306
	SIN CONSTANTE NI TENDENCIA	3,127	-1,049	5,325	-2,005 (*)	NO NO	NO
	INDUSTRIA	0,121	1,010	0,020	2,000 ()	110	110
	CONSTANTE + TENDENCIA	-2,465	NO	-1,925	NO	0,103	NO
	CONSTANTE	-0,750	-3,904 (**)	-0,536	-3,945 (**)	0,752 (**)	0,109
	SIN CONSTANTE NI TENDENCIA	2,322	-2,948 (**)	3,575	-2,891 (**)	NO	NO
	CONSTRUCCIÓN	2,322	-2,540 ()	3,373	-2,091()	NO	NO
	CONSTRUCCION CONSTANTE + TENDENCIA	4.050	NO	0.504	NO	0.400 (*)	NO
/ / /		-1,352		0,564	NO (*)	0,189 (*)	NO
	CONSTANTE	-1,820	-1,134	-2,649 (+)	-3,313 (*)	0,721 (*)	0,499 (*)
	SIN CONSTANTE NI TENDENCIA	0,470	-1,151	3,223	-2,055 (*)	NO	NO
	SERVICIOS		110			2 .2	
	CONSTANTE + TENDENCIA	-1,449	NO	-0,611	NO	0,137 (+)	NO
100	CONSTANTE	-1,290	-3,461 (*)	-1,799	-5,002 (**)	0,764 (**)	0,301
	SIN CONSTANTE NI TENDENCIA	3,052	-0,926	6,634	-1,833 (+)	NO	NO
	NOTA: **,*,+: se rechaza la hipótesis	s nula al 1%,5	5% y 10% resp	ectivamente	•		
0	Los deflactores del	•		` ,	vo el deflact	or del VAE	3 de la
	Construcción que, según los	lest de ADF	y KPSS es i	(2).			
		DOS <u>CRU:</u>	DEFLACTOR	R DEL VAB	. CANTABR		_
		DOS CRU:	DEFLACTOR	R DEL VAB		KPSS	1
	RESULTA	DOS CRU:	DEFLACTOR ADF aíz unitaria)	R DEL VAB PP (H0: raíz unita		KPSS tacionariedad)	
stud	RESULTA	DOS CRU:	DEFLACTOR ADF aíz unitaria)	R DEL VAB PP (H0: raíz unita		KPSS stacionariedad)	
	RESULTA TOTAL INDUSTRIA	DOS CRU:	DEFLACTOR ADF aíz unitaria) I(1)* I(1)	R DEL VAB PP (H0: raíz unita		KPSS tacionariedad) I(1) I(0)*	
	TOTAL INDUSTRIA CONSTRUCCIÓN	DOS CRU:	DEFLACTOR ADF aíz unitaria) I(1)* I(1) I(2)	PP (H0: raíz unita		KPSS stacionariedad) I(1) I(0)* I(2)	
	TOTAL INDUSTRIA CONSTRUCCIÓN SERVICIOS	(H0: ra	DEFLACTOR ADF aíz unitaria) I(1)* I(1) I(2) I(1)	R DEL VAB PP (H0: raíz unita	ıria) (H0:es	KPSS tacionariedad) I(1) I(0)* I(2) I(1)	
	TOTAL INDUSTRIA CONSTRUCCIÓN SERVICIOS NOTAS: (*) Consideral	(H0: ra	DEFLACTOR ADF aíz unitaria) I(1)* I(1) I(2) I(1) valores en r	R DEL VAB PP (H0: raíz unita	ıria) (H0:es	KPSS tacionariedad) I(1) I(0)* I(2) I(1)	S S
	TOTAL INDUSTRIA CONSTRUCCIÓN SERVICIOS	(H0: ra	DEFLACTOR ADF aíz unitaria) I(1)* I(1) I(2) I(1) valores en r	R DEL VAB PP (H0: raíz unita	ıria) (H0:es	KPSS tacionariedad) I(1) I(0)* I(2) I(1)	S S
	TOTAL INDUSTRIA CONSTRUCCIÓN SERVICIOS NOTAS: (*) Consideral	(H0: ra	DEFLACTOR ADF aíz unitaria) I(1)* I(1) I(2) I(1) valores en r	R DEL VAB PP (H0: raíz unita	ıria) (H0:es	KPSS tacionariedad) I(1) I(0)* I(2) I(1)	S
	TOTAL INDUSTRIA CONSTRUCCIÓN SERVICIOS NOTAS: (*) Consideral	(H0: ra	DEFLACTOR ADF aíz unitaria) I(1)* I(1) I(2) I(1) valores en r	R DEL VAB PP (H0: raíz unita	ıria) (H0:es	KPSS tacionariedad) I(1) I(0)* I(2) I(1)	S S
de Estud	TOTAL INDUSTRIA CONSTRUCCIÓN SERVICIOS NOTAS: (*) Considerar valores en primera difere	(H0: ra	DEFLACTOR ADF aíz unitaria) I(1)* I(1) I(2) I(1) valores en r	R DEL VAB PP (H0: raíz unita	ıria) (H0:es	KPSS tacionariedad) I(1) I(0)* I(2) I(1)	S
de Estud	TOTAL INDUSTRIA CONSTRUCCIÓN SERVICIOS NOTAS: (*) Considerar valores en primera difere	(H0: ra	DEFLACTOR ADF aíz unitaria) I(1)* I(1) I(2) I(1) valores en r	R DEL VAB PP (H0: raíz unita	ıria) (H0:es	KPSS tacionariedad) I(1) I(0)* I(2) I(1)	S
de Estud	TOTAL INDUSTRIA CONSTRUCCIÓN SERVICIOS NOTAS: (*) Considerar valores en primera difere	(H0: ra	DEFLACTOR ADF aíz unitaria) I(1)* I(1) I(2) I(1) valores en r	R DEL VAB PP (H0: raíz unita	ıria) (H0:es	KPSS tacionariedad) I(1) I(0)* I(2) I(1)	S
de Estud	TOTAL INDUSTRIA CONSTRUCCIÓN SERVICIOS NOTAS: (*) Considerar valores en primera difere	(H0: ra	DEFLACTOR ADF aíz unitaria) I(1)* I(1) I(2) I(1) valores en r	R DEL VAB PP (H0: raíz unita	ıria) (H0:es	KPSS tacionariedad) I(1) I(0)* I(2) I(1)	S
de Estud	TOTAL INDUSTRIA CONSTRUCCIÓN SERVICIOS NOTAS: (*) Considerar valores en primera difere	(H0: ra	DEFLACTOR ADF aíz unitaria) I(1)* I(1) I(2) I(1) valores en r	R DEL VAB PP (H0: raíz unita	ıria) (H0:es	KPSS tacionariedad) I(1) I(0)* I(2) I(1)	S S
de Estud	TOTAL INDUSTRIA CONSTRUCCIÓN SERVICIOS NOTAS: (*) Considerar valores en primera difere	(H0: ra	DEFLACTOR ADF aíz unitaria) I(1)* I(1) I(2) I(1) valores en r	R DEL VAB PP (H0: raíz unita	ıria) (H0:es	KPSS tacionariedad) I(1) I(0)* I(2) I(1)	S
de Estud	TOTAL INDUSTRIA CONSTRUCCIÓN SERVICIOS NOTAS: (*) Considerar valores en primera difere	(H0: ra	DEFLACTOR ADF aíz unitaria) I(1)* I(1) I(2) I(1) valores en r	R DEL VAB PP (H0: raíz unita	ıria) (H0:es	KPSS tacionariedad) I(1) I(0)* I(2) I(1)	S
de Estud	TOTAL INDUSTRIA CONSTRUCCIÓN SERVICIOS NOTAS: (*) Considerar valores en primera difere	(H0: ra	DEFLACTOR ADF aíz unitaria) I(1)* I(1) I(2) I(1) valores en r	R DEL VAB PP (H0: raíz unita	ıria) (H0:es	KPSS tacionariedad) I(1) I(0)* I(2) I(1)	S
	TOTAL INDUSTRIA CONSTRUCCIÓN SERVICIOS NOTAS: (*) Considerar valores en primera difere	(H0: ra	DEFLACTOR ADF aíz unitaria) I(1)* I(1) I(2) I(1) valores en r	R DEL VAB PP (H0: raíz unita	ıria) (H0:es	KPSS tacionariedad) I(1) I(0)* I(2) I(1)	S
de Estud	TOTAL INDUSTRIA CONSTRUCCIÓN SERVICIOS NOTAS: (*) Considerar valores en primera difere	(H0: ra	DEFLACTOR ADF aíz unitaria) I(1)* I(1) I(2) I(1) valores en r	R DEL VAB PP (H0: raíz unita	ıria) (H0:es	KPSS tacionariedad) I(1) I(0)* I(2) I(1)	S
de Estud	TOTAL INDUSTRIA CONSTRUCCIÓN SERVICIOS NOTAS: (*) Considerar valores en primera difere	(H0: ra	DEFLACTOR ADF aíz unitaria) I(1)* I(1) I(2) I(1) valores en r	R DEL VAB PP (H0: raíz unita	ıria) (H0:es	KPSS tacionariedad) I(1) I(0)* I(2) I(1)	S
de Estud	TOTAL INDUSTRIA CONSTRUCCIÓN SERVICIOS NOTAS: (*) Considerar valores en primera difere	(H0: ra	DEFLACTOR ADF aíz unitaria) I(1)* I(1) I(2) I(1) valores en r	R DEL VAB PP (H0: raíz unita	ıria) (H0:es	KPSS tacionariedad) I(1) I(0)* I(2) I(1)	S
de Estud	TOTAL INDUSTRIA CONSTRUCCIÓN SERVICIOS NOTAS: (*) Considerar valores en primera difere	(H0: ra	DEFLACTOR ADF aíz unitaria) I(1)* I(1) I(2) I(1) valores en r	R DEL VAB PP (H0: raíz unita	ıria) (H0:es	KPSS tacionariedad) I(1) I(0)* I(2) I(1)	S

RESULTADOS CRU: DEFLACTOR DEL VAB. CANTABRIA.

	ADF	PP	KPSS
	(H0: raíz unitaria)	(H0: raíz unitaria)	(H0:estacionariedad)
TOTAL	l(1)*	l(1)	I(1)
INDUSTRIA	l(1)	l(1)	I(0)*
CONSTRUCCIÓN	l(2)	l(1)*	l(2)
SERVICIOS	l(1)	l(1)	I(1)

CONTRASTE DE RAÍCES UNITARIAS: ÍNDICES DE PRECIOS. CANTABRIA

		A	DF	F	P	KI	PSS
		(H0: raí	z unitaria)	(H0: raíz	z unitaria)	(H0:estac	cionariedad)
		Nivel	1º diferencia	Nivel	1º diferencia	Nivel	1º diferencia
	IPC						
	CONSTANTE + TENDENCIA	-2,239	NO	-1,720	NO	0,138 (+)	NO
	CONSTANTE	-0,796	-3,832 (**)	-0,858	-3,832 (**)	0,704 (*)	0,119
	SIN CONSTANTE NI TENDENCIA	3,028	-2,085 (*)	5,812	-1,918 (+)	NO	NO
	IPSEBENE	3,020	-2,000 ()	5,612	-1,910 (+)	NO	NO
	CONSTANTE + TENDENCIA	0.000	NO	4.700	NO	0.420 (1)	NO
		-2,239		-1,720	NO (tt)	0,138 (+)	NO 0.440
	CONSTANTE	-0,796	-3,832 (**)	-0,858	-3,832 (**)	0,704 (*)	0,119
	SIN CONSTANTE NI TENDENCIA	3,028	-2,085 (*)	5,812	-1,918 (+)	NO	NO
	IPCS						
	CONSTANTE + TENDENCIA	-4,606 (**)	NO	-0,725	NO	0,110	NO
	CONSTANTE	-1,651	-3,173 (*)	-1,734	-3,224 (*)	0,709 (*)	0,266
	SIN CONSTANTE NI TENDENCIA	2,842	-0,675	1,043	-1,083	NO	NO
	NOTA: **,*,+: se rechaza la hipótesis	s nula al 1%.	,5% y 10% res	pectivamente			
	FUENTE: Elaboración propia.		•	•			
			44-	-L IDO	-LIDOEDEN	مام کومیاء	de mile de com
10	Los tres test realizado	os conciuye	en que tanto	el IPC como	el INSEREI	ie de Canta	abria son
0	I(1). El IPCS es I(0) según los	s resultados	s de los test d	le ADF v KP	SS		
	1(1): Et il 66 65 1(6) 66gail 166	resultado	3 40 100 1001 1	ac / (Di y i (i	OO.		
			í			_	
	RESULTA	DOS CRU:	INDICES DI	E PRECIOS.	CANTABRIA	4.	
			ADF	PP		KPSS	
		(H0: r	raíz unitaria)	(H0: raíz unita	ria) (H0:est	acionariedad)	
	IPC		I(1)	l(1)		l(1)	
+-	IPSEBENE		l(1)	I(1)		l(1)	
4 🔵			I(0)*	l(1)*		I(0)*	
	I IPCS						
Stud	IPCS NOTAS: (*) Considerar	ndo nara los	` '		nte v tendenc	\ /	
S)	NOTAS: (*) Considerar		s valores en		nte y tendenc	\ /	os
S LL			s valores en		nte y tendenc	\ /	DS .
S _H	NOTAS: (*) Considerar		s valores en		nte y tendenc	\ /	os
ES ES	NOTAS: (*) Considerar		s valores en		nte y tendenc	\ /	os
le Es	NOTAS: (*) Considerar		s valores en		nte y tendenc	\ /	os
de Es	NOTAS: (*) Considerar		s valores en		nte y tendenc	\ /	os
de Es	NOTAS: (*) Considerar		s valores en		nte y tendenc	\ /	os
de E	NOTAS: (*) Considerar valores en primera difere		s valores en		nte y tendenc	\ /	os
de E	NOTAS: (*) Considerar valores en primera difere		s valores en		nte y tendenc	\ /	os
de E	NOTAS: (*) Considerar valores en primera difere		s valores en		nte y tendenc	\ /	os
de E	NOTAS: (*) Considerar valores en primera difere		s valores en		nte y tendenc	\ /	os
de E	NOTAS: (*) Considerar valores en primera difere		s valores en		nte y tendenc	\ /	os
de E	NOTAS: (*) Considerar valores en primera difere		s valores en		nte y tendenc	\ /	os
de E	NOTAS: (*) Considerar valores en primera difere		s valores en		nte y tendenc	\ /	OS .
de E	NOTAS: (*) Considerar valores en primera difere		s valores en		nte y tendenc	\ /	OS .
de E	NOTAS: (*) Considerar valores en primera difere		s valores en		nte y tendenc	\ /	OS .
Centro de Es	NOTAS: (*) Considerar valores en primera difere		s valores en		nte y tendenc	\ /	OS .
de E	NOTAS: (*) Considerar valores en primera difere		s valores en		nte y tendenc	\ /	OS .
de E	NOTAS: (*) Considerar valores en primera difere		s valores en		nte y tendenc	\ /	OS .
de E	NOTAS: (*) Considerar valores en primera difere		s valores en		nte y tendenc	\ /	OS .
de E	NOTAS: (*) Considerar valores en primera difere		s valores en		nte y tendenc	\ /	OS .

RESULTADOS CRU: ÍNDICES DE PRECIOS. CANTABRIA.

	ADF	PP	KPSS
	(H0: raíz unitaria)	(H0: raíz unitaria)	(H0:estacionariedad)
IPC	I(1)	l(1)	I(1)
IPSEBENE	I(1)	I(1)	l(1)
IPCS	I(0)*	l(1)*	I(0)*

4. EXTREMADURA:

CONTRASTE DE RAÍCES UNITARIAS: COSTE LABORAL UNITARIO. **EXTREMADURA. CNAE 09**

	ADF		PP		KPSS	
	(H0: raíz unitaria)		(H0: raíz unitaria)		(H0:estacionariedad)	
	Nivel	1º diferencia	Nivel	1º diferencia	Nivel	1º diferencia
TOTAL						
CONSTANTE + TENDENCIA	-2,014	NO	-2,087	NO	0,095	NO
CONSTANTE	-0,966	-6,880 (**)	-0,985	-6,880 (**)	0,825 (**)	0,116
SIN CONSTANTE NI TENDENCIA	3,886	-5,332 (**)	4,210	-5,487 (**)	NO	NO
INDUSTRIA						
CONSTANTE + TENDENCIA	-3,346 (+)	NO	-3,436 (+)	NO	0,106	NO
CONSTANTE	-0,866	-9,353 (**)	-0,921	-9,531 (**)	0,780 (**)	0,067
SIN CONSTANTE NI TENDENCIA	1,355	-9,144 (**)	1,549	-9,330 (**)	NO	NO
CONSTRUCCIÓN						
CONSTANTE + TENDENCIA	-4,700 (**)	NO	-4,676 (**)	NO	0,068	NO
CONSTANTE	-0,755	-9,921 (**)	-1,081	-10,071 (**)	0,824 (**)	0,113
SIN CONSTANTE NI TENDENCIA	1,415	-9,581 (**)	2,066	-9,664 (**)	NO	NO
SERVICIOS						
CONSTANTE + TENDENCIA	-2,320	NO	-2,291	NO	0,113	NO
CONSTANTE	-0,998	-7,599 (**)	-0,999	-7,599 (**)	0,811 (**)	0,075
SIN CONSTANTE NI TENDENCIA	2,876	-2,905 (**)	2,941	-6,508 (**)	NO	NO

NOTA: **,*,+: se rechaza la hipótesis nula al 1%,5% y 10% respectivamente.

Los CLU para Extremadura son (según los test de ADF y PP): I(1) en el caso de los valores totales y de los servicios, I(2) los CLU de la energía e industria e I(0) los CLU de la construcción. El test de KPSS concluye que en todos los casos los CLU de Extremadura son I(0).

RESULTADOS CRU: COSTE LABORAL UNITARIO. EXTREMADURA. CNAE 09

	ADF	PP	KPSS
	(H0: raíz unitaria)	(H0: raíz unitaria)	(H0:estacionariedad)
TOTAL	l(1)	l(1)	I(0)*
INDUSTRIA	l(2)	I(2)	I(0)*
CONSTRUCCIÓN	I(0)*	I(0)*	I(0)*
SERVICIOS	l(1)	I(1)	I(0)*

NOTAS: (*) Considerando para los valores en nivel: constante y tendencia, y para los valores en primera diferencia: solo constante.

CONTRASTE DE RAÍCES UNITARIAS: DEFLACTOR DEL VAB. EXTREMADURA.

		OLO OITIII	THING: DEI	-//0101/10	LL VAD. LAI	INCLINIAD OIL	
		A	DF		PP	KP	SS
		(H0: raí	z unitaria)	(H0: ra	íz unitaria)	(H0:estaci	onariedad)
		Nivel	1º diferencia	Nivel	1º diferencia	Nivel	1º diferencia
Т	OTAL	74.707	, andronoia	11101	- anoronoia	7.1761	, andronda
	CONSTANTE + TENDENCIA	-2,268	NO	-0,809	NO	0,100	NO
4 4	CONSTANTE	-1,390	-1,993	-1,826	-8,044 (**)	0,835 (**)	0,313
	SIN CONSTANTE NI TENDENCIA	1,569	-1,017	7,825	. ,	0,033 () NO	NO
		1,509	-1,017	7,025	-4,175 (**)	INO	NO
_	NDUSTRIA		NO			2 1 - 2 (1)	
	CONSTANTE + TENDENCIA	-2,466	NO	-2,292	NO	0,153 (*)	NO
	CONSTANTE	-0,214	-8,672 (**)	-0,284	-8,672 (**)	0,816 (**)	0,070
	SIN CONSTANȚE NI TENDENCIA	3,794	-2,241*	3,215	-6,876 (**)	NO	NO
C	CONSTRUCCIÓN						
C	CONSTANTE + TENDENCIA	-1,602	NO	-1,697	NO	0,102	NO
VC	CONSTANTE	-1,231	-7,573 (**)	-1,263	-7,549 (**)	0,811 (**)	0,171
S	SIN CONSTANTE NI TENDENCIA	2,814	-6,397 (**)	3,103	-6,475 (**)	NO	NO
	SERVICIOS	•		,	, ,		
	CONSTANTE + TENDENCIA	-1,841	NO	-1,051	NO	0,139 (+)	NO
	CONSTANTE	-1,626	-1,500	-2,335	-7,689 (**)	0,837 (**)	0,373
	SIN CONSTANTE NI TENDENCIA	1,164	-1,097	8,538	-3,527 (**)	NO	NO
					. ,	NO	NO
	IOTA: **,*,+: se rechaza la hipótesis	nuia ai 1%,	5% y 10% resp	pectivamente) .		
F	UENTE: Elaboración propia.						
(A)							
	Dadamaa aasaidasa	laa ala £ l		/AD =		1/4\ -ll-	
-	Podemos considerar	que los defi	actores del v	AB para E	xtremadura s	son I(1) dado	que, en
	el caso de la industria todos	los test as	í lo avalan, e	en el caso	de la constru	cción y los se	ervicios,
stud	dos de los tres test (ADF y F	PP) nos per	miten conclu	ir que son	l(1). Del análi	isis de los res	sultados
	de los tres test para el defl	actor del V	AB del conju	unto de la	economía se	obtienen res	sultados
	contradictorios, por lo que no	es posible	llegar a un re	esultado cor	ncluyente.		
					•		
4	RESULTAD	OS CRU: D	EFLACTOR	DEL VAB.	EXTREMADU	JRA.	
			ADF	PP		KPSS	
		(H0: 1		(H0: raíz unit	aria) (H0:es	stacionariedad)	
	TOTAL	(1.101.	I(2)	I(1)	(110100	I(0)*	
	INDUSTRIA		I(1)	I(1)		I(1)	
						` '	
	CONSTRUCCIÓN		I(1)	I(1)		I(0)*	
(SERVICIOS		l(2)	I(1)		I(1)	
	NOTAS: (*) Considerat			nivel: consta	ante y tenden	cia, y para lo	S
	valores en primera difer	encia: solo co	onstante.				
(1)							
Centro							

RESULTADOS CRU: DEFLACTOR DEL VAB. EXTREMADURA.

	ADF	PP	KPSS
	(H0: raíz unitaria)	(H0: raíz unitaria)	(H0:estacionariedad)
TOTAL	I(2)	l(1)	I(0)*
INDUSTRIA	l(1)	I(1)	I(1)
CONSTRUCCIÓN	l(1)	I(1)	I(0)*
SERVICIOS	I(2)	l(1)	I(1)

CONTRASTE DE RAÍCES UNITARIAS: ÍNDICES DE PRECIOS. EXTREMADURA.

KPSS								
estacionariedad)								
I 1º diferencia								
(+) NO								
(**) 0,161								
NO								
110								
(+) NO								
2* 0,254								
110								
(+) NO								
(*) 0,355 (+)								
() 0,335 (+) NO								
NO								
SEBENE de								
e ADF y PP								
(según KPSS es I(2)).								
ndad)								
edad)								
dad)								
dad)								
edad) ara los								

RESULTADOS CRU: ÍNDICES DE PRECIOS. EXTREMADURA.

	ADF	PP	KPSS
	(H0: raíz unitaria)	(H0: raíz unitaria)	(H0:estacionariedad)
IPC	I(1)	I(1)	I(1)
IPSEBENE	I(1)	I(1)	I(1)
IPCS	l(1)*	l(1)*	I(2)

5. NAVARRA:

CONTRASTE DE RAÍCES UNITARIAS: COSTE LABORAL UNITARIO. NAVARRA. CNAE 09

	ADF			PP	KPSS		
	(H0: raí	z unitaria)	(H0: raíz unitaria)		(H0:estacionariedad)		
	Nivel	1º diferencia	Nivel	1º diferencia	Nivel	1º diferencia	
TOTAL							
CONSTANTE + TENDENCIA	0,350	NO	-0,000	NO	0,206 (*)	NO	
CONSTANTE	-2,663 (+)	-3,255 (*)	-2,721 (+)	-6,794 (**)	0,752 (**)	0,645 (*)	
SIN CONSTANTE NI TENDENCIA	3,231	-2,873 (**)	2,873	-5,876 (**)	NO	NO	
INDUSTRIA							
CONSTANTE + TENDENCIA	-4,136 (*)	NO	-2,745	NO	0,051	NO	
CONSTANTE	-1,647	-4,337 (**)	-1,695	-7,564 (**)	0,637 (*)	0,063	
SIN CONSTANTE NI TENDENCIA	0,516	-7,724 (**)	0,535	-7,610 (**)	NO	NO	
CONSTRUCCIÓN							
CONSTANTE + TENDENCIA	-1,442	NO	-1,444	NO	0,163 (*)	NO	
CONSTANTE	-1,729	-8,284 (**)	-1,713	-8,080 (**)	0,482 (*)	0,187	
SIN CONSTANTE NI TENDENCIA	0,328	-8,336 (**)	0,362	-8,125 (**)	NO	NO	
SERVICIOS							
CONSTANTE + TENDENCIA	-2,190	NO	-2,151	NO	0,179 (*)	NO	
CONSTANTE	-2,047	-7,824 (**)	-2,146	-7,773 (**)	0,770 (**)	0,247	
SIN CONSTANTE NI TENDENCIA	2,125	-7,059 (**)	2,358	-7,035 (**)	NO	NO	

RESULTADOS CRU: COSTE LABORAL UNITARIO. NAVARRA. CNAE 09.

CONSTANTE SIN CONSTANTE NI TENDENCIA		NO	-2,131	NO	0,179()				
CINI CONCTANTE NI TENDENCIA	-2,047	-7,824 (**)	-2,146	-7,773 (**)	0,770 (**)				
SIN CONSTANTE IN TENDENCIA	2,125	-7,059 (**)	2,358	-7,035 (**)	NO				
NOTA: **,*,+: se rechaza la hipótesis nula al 1%,5% y 10% respectivamente. FUENTE: Elaboración propia. Los CLU de Navarra son I(1) en todos los casos salvo la energía e industria que es según los test de ADF y KPSS (según el test de PP también puede considerarse I(1)).									
RESULTADOS CRU: CO	OSTE LAB	ORAL UNITA	ARIO. NAV	ARRA. CNA	E 09. KPSS				
	(H0:	raíz unitaria)	(H0: raíz uni	itaria) (H0:	estacionariedad))			
TOTAL	,	I(1)*	I(1)*	,	I(2)				
INDUSTRIA		I(0)*	l(1)		I(0)*				
CONSTRUCCIÓN		l(1)	l(1)		l(1)				
SERVICIOS		l(1)	l(1)		l(1)				
NOTAS: (*) Considerando primera diferencia: solo con		ores en nivel: c	constante y to	endencia, y pa	ara los valores	en			

CONTRASTE DE RAÍCES UNITARIAS: DEFLACTOR DEL VAB. NAVARRA.

	CONTINACTE DE	NAIGEO OI	IIIAINAO. DE		DLL VAD. I	IAVAINA.	
		A	DF		PP	KP	SS
			z unitaria)	(H0: rai	íz unitaria)		onariedad)
		Nivel	1º diferencia	Nivel	1º diferencia	Nivel	1º diferencia
T	OTAL	74.701	, anoronoia	111101	- unoronoia	741761	, andronda
	ONSTANTE + TENDENCIA	-0,451	NO	0,512	NO	0,166 (*)	NO
4 4	ONSTANTE	-2,123	-3,148 (*)	-2,208	-3,070 (*)	0,833 (**)	0,403 (+)
	IN CONSTANTE NI TENDENCIA	2,723	-1,247	7,754	-1,022	NO	NO
	IDUSTRIA	2,725	1,2-11	7,734	-1,022	INO	NO
	ONSTANTE + TENDENCIA	0.040	NO	1.040	NO	0.005	NO
		-2,818	-4,640 (**)	-1,846	NO	0,095	NO 0.450
	ONSTANTE NI TENDENGIA	-0,985	. ,	-0,290	-3,447 (*)	0,831 (**)	0,158
	N CONSTANTE NI TENDENCIA	4,085	-1,518	6,980	-1,479	NO	NO
	ONSTRUCCIÓN						
	ONSTANTE + TENDENCIA	-1,093	NO	1,431	NO	0,204 (*)	NO
	ONSTANTE	-1,752	-0,323	-3,196 (*)	-2,114	0,814 (**)	0,622 (*)
SI	N CONSTANTE NI TENDENCIA	-0,327	-1,390	4,973	-1,688 (+)	NO	NO
SI	ERVICIOS						
C	ONSTANTE + TENDENCIA	1,866	NO	-0,123	NO	0,186 (*)	NO
C	ONSTANTE	-2,193	-2,446	3,318 (*)	-2,446	0,835 (**)	0,534 (*)
	N CONSTANTE NI TENDENCIA	1,975	-1,331	7,939	-1,247	NO	NO
	OTA: **,*,+: se rechaza la hipótesis						
		india ai 170,	570 y 1070 1C3p	Convanionic	•		
FU	UENTE: Elaboración propia.						
(<i>(</i>)							
	deflectores del \/	AD de Neve					
	Los deflactores del V	AB de Nava	rra para er to	iai de la eci	onomia y par	a la mousina	pueden
	ser considerados I(1) según	los resulta	dos de los te	st de ADF	y PP (segúr	n el test de k	KPSS el
stud	deflactor del VAB total es I(2) y el deflac	tor del VAB d	le la industr	ria es I(0)). D	el análisis de	los tres
	test realizados podemos con	cluir que los	s deflactores	del VAB de	la construcc	ión v de los s	ervicios
	son I(2).	·				,	
. 0)	3311 ((2):						
	RESULT	ADOS CRU	: DEFLACTO	R DEL VA	B. NAVARR	۵.	
(1)			ADF	PP		KPSS	
		(H0: r		(H0: raíz unita	aria) (H0:es	stacionariedad)	
	TOTAL		I(1)*	I(1)*	, , ,	I(2)	
	INDUSTRIA		I(1)*	I(1)*		I(0)*	
	CONSTRUCCIÓN		_ ` '	. ,			
			I(2)	I(2)*		I(2)	
	SERVICIOS		l(2)	I(2)*		I(2)	
	NOTAS: (*) Considera			nivel: consta	inte y tenden	cia, y para lo	S
	valores en primera difer	encia: solo co	onstante.				
4							
entro							
()							
Ì							

RESULTADOS CRU: DEFLACTOR DEL VAB. NAVARRA.

	ADF	PP	KPSS
	(H0: raíz unitaria)	(H0: raíz unitaria)	(H0:estacionariedad)
TOTAL	l(1)*	l(1)*	I(2)
INDUSTRIA	l(1)*	l(1)*	I(0)*
CONSTRUCCIÓN	I(2)	l(2)*	I(2)
SERVICIOS	l(2)	l(2)*	I(2)

CONTRASTE DE RAÍCES UNITARIAS: ÍNDICES DE PRECIOS. NAVARRA.

		Δ	DF	F	P	KI	PSS		
			íz unitaria)	=	unitaria)		cionariedad)		
		Nivel	1º diferencia	Nivel	1º diferencia	Nivel	1º diferencia		
	IPC								
	CONSTANTE + TENDENCIA	-1,828	NO	-1,466	NO	0,173 (*)	NO		
	CONSTANTE	-1,909	-4,952 (**)	-1,783	-5,058 (**)	0,835 (**)	0,251		
	SIN CONSTANTE NI TENDENCIA	7,718	-2,570 (*)	6,260	-2,421 (*)	NO NO	NO NO		
	IPSEBENE	7,710	_,=,=,=(,)	0,200	2,121()	110	110		
()	CONSTANTE + TENDENCIA	-0,289	NO	-0,485	NO	0,186 (*)	NO		
	CONSTANTE	-3,272 (*)	-3,945 (**)	-2,784 (+)	-4,043 (**)	0,699 (*)	0,436 (+)		
	SIN CONSTANTE NI TENDENCIA	3,123	-1,284	5,757	-1,827 (+)	NO	NO		
	IPCS	5,:20	, -	5,1 51	.,==: ()				
	CONSTANTE + TENDENCIA	0,372	NO	0,372	NO	0,186 (*)	NO		
	CONSTANTE	-3,549 (*)	-4,110 (**)	-3,258 (*)	-4,225 (**)	0,704 (*)	0,502 (*)		
	SIN CONSTANTE NI TENDENCIA	11,189	-1,179	7,402	-1,410	NO NO	NO		
	NOTA: **,*,+: se rechaza la hipótesis			·			110		
	FUENTE: Elaboración propia.	s iluia ai 170	,5 /0 y 10 /0 1 0 5	pectivamente	•				
	FUENTE: Elaboración propia.								
	l oo troo toot rooli-o	المصادم المحادم	بأريام مماريات	aus al IDC	de Neverre		Tanta al		
10	Los tres test realiza	uos permii	ten concluir	que el IPC	de Navarra	es i(1).	ranto ei		
0,	IPSEBENE como el IPCS tar	mbién son	I(1) según lo	s resultados	de los test d	e ADF v PF	o (según		
			() 0			,	` 0		
	KPSS son I(2)).								
	(1 00 3011 1(2)).								
	100 3011 1(2)).								
	<i>、,,</i>		_						
	<i>、,,</i>	ADOS CRU	J: ÍNDICES D	E PRECIOS	s. NAVARRA				
	<i>、,,</i>	ADOS CRU	J: ÍNDICES D	E PRECIOS	-1	KPSS			
	<i>、,,</i>								
studi	<i>、,,</i>		ADF raíz unitaria)	PP (H0: raíz unita		KPSS acionariedad)			
studios	RESULTA		ADF raíz unitaria)	PP (H0: raíz unital		KPSS acionariedad) I(1)			
Estudi	RESULTA		ADF raíz unitaria)	PP (H0: raíz unita		KPSS acionariedad)			
Estudi	RESULTA IPC IPSEBENE IPCS	(H0: ı	ADF raíz unitaria) I(1) I(1)* I(1)*	PP (H0: raíz unital (1) (1) (1)	ria) (H0:est	KPSS acionariedad) I(1) I(2) I(2)	os.		
Estudio	IPC IPSEBENE IPCS NOTAS: (*) Considerar	(H0: I	ADF raíz unitaria) I(1) I(1)* I(1)* s valores en	PP (H0: raíz unital (1) (1) (1)*	ria) (H0:est	KPSS acionariedad) I(1) I(2) I(2)	os.		
e Estudio	RESULTA IPC IPSEBENE IPCS	(H0: I	ADF raíz unitaria) I(1) I(1)* I(1)* s valores en	PP (H0: raíz unital (1) (1) (1)*	ria) (H0:est	KPSS acionariedad) I(1) I(2) I(2)	DS		
le Estudio	IPC IPSEBENE IPCS NOTAS: (*) Considerar	(H0: I	ADF raíz unitaria) I(1) I(1)* I(1)* s valores en	PP (H0: raíz unital (1) (1) (1)*	ria) (H0:est	KPSS acionariedad) I(1) I(2) I(2)	os		
de Estudi	IPC IPSEBENE IPCS NOTAS: (*) Considerar	(H0: I	ADF raíz unitaria) I(1) I(1)* I(1)* s valores en	PP (H0: raíz unital (1) (1) (1)*	ria) (H0:est	KPSS acionariedad) I(1) I(2) I(2)	DS .		
de Estudi	IPC IPSEBENE IPCS NOTAS: (*) Considerar	(H0: I	ADF raíz unitaria) I(1) I(1)* I(1)* s valores en	PP (H0: raíz unital (1) (1) (1)*	ria) (H0:est	KPSS acionariedad) I(1) I(2) I(2)	DS .		
de E	IPC IPSEBENE IPCS NOTAS: (*) Considerar valores en primera difere	(H0: I	ADF raíz unitaria) I(1) I(1)* I(1)* s valores en	PP (H0: raíz unital (1) (1) (1)*	ria) (H0:est	KPSS acionariedad) I(1) I(2) I(2)	DS .		
de E	IPC IPSEBENE IPCS NOTAS: (*) Considerar valores en primera difere	(H0: I	ADF raíz unitaria) I(1) I(1)* I(1)* s valores en	PP (H0: raíz unital (1) (1) (1)*	ria) (H0:est	KPSS acionariedad) I(1) I(2) I(2)	DS .		
de E	IPC IPSEBENE IPCS NOTAS: (*) Considerar valores en primera difere	(H0: I	ADF raíz unitaria) I(1) I(1)* I(1)* s valores en	PP (H0: raíz unital (1) (1) (1)*	ria) (H0:est	KPSS acionariedad) I(1) I(2) I(2)	os		
de E	IPC IPSEBENE IPCS NOTAS: (*) Considerar valores en primera difere	(H0: I	ADF raíz unitaria) I(1) I(1)* I(1)* s valores en	PP (H0: raíz unital (1) (1) (1)*	ria) (H0:est	KPSS acionariedad) I(1) I(2) I(2)	DS .		
de E	IPC IPSEBENE IPCS NOTAS: (*) Considerar valores en primera difere	(H0: I	ADF raíz unitaria) I(1) I(1)* I(1)* s valores en	PP (H0: raíz unital (1) (1) (1)*	ria) (H0:est	KPSS acionariedad) I(1) I(2) I(2)	DS .		
de E	IPC IPSEBENE IPCS NOTAS: (*) Considerar valores en primera difere	(H0: I	ADF raíz unitaria) I(1) I(1)* I(1)* s valores en	PP (H0: raíz unital (1) (1) (1)*	ria) (H0:est	KPSS acionariedad) I(1) I(2) I(2)	DS .		
de E	IPC IPSEBENE IPCS NOTAS: (*) Considerar valores en primera difere	(H0: I	ADF raíz unitaria) I(1) I(1)* I(1)* s valores en	PP (H0: raíz unital (1) (1) (1)*	ria) (H0:est	KPSS acionariedad) I(1) I(2) I(2)	DS .		
de E	IPC IPSEBENE IPCS NOTAS: (*) Considerar valores en primera difere	(H0: I	ADF raíz unitaria) I(1) I(1)* I(1)* s valores en	PP (H0: raíz unital (1) (1) (1)*	ria) (H0:est	KPSS acionariedad) I(1) I(2) I(2)	DS .		
entro de Estudia	IPC IPSEBENE IPCS NOTAS: (*) Considerar valores en primera difere	(H0: I	ADF raíz unitaria) I(1) I(1)* I(1)* s valores en	PP (H0: raíz unital (1) (1) (1)*	ria) (H0:est	KPSS acionariedad) I(1) I(2) I(2)	DS .		
de E	IPC IPSEBENE IPCS NOTAS: (*) Considerar valores en primera difere	(H0: I	ADF raíz unitaria) I(1) I(1)* I(1)* s valores en	PP (H0: raíz unital (1) (1) (1)*	ria) (H0:est	KPSS acionariedad) I(1) I(2) I(2)	DS .		
de E	IPC IPSEBENE IPCS NOTAS: (*) Considerar valores en primera difere	(H0: I	ADF raíz unitaria) I(1) I(1)* I(1)* s valores en	PP (H0: raíz unital (1) (1) (1)*	ria) (H0:est	KPSS acionariedad) I(1) I(2) I(2)	DS .		
de E	IPC IPSEBENE IPCS NOTAS: (*) Considerar valores en primera difere	(H0: I	ADF raíz unitaria) I(1) I(1)* I(1)* s valores en	PP (H0: raíz unital (1) (1) (1)*	ria) (H0:est	KPSS acionariedad) I(1) I(2) I(2)	DS .		
de E	IPC IPSEBENE IPCS NOTAS: (*) Considerar valores en primera difere	(H0: I	ADF raíz unitaria) I(1) I(1)* I(1)* s valores en	PP (H0: raíz unital (1) (1) (1)*	ria) (H0:est	KPSS acionariedad) I(1) I(2) I(2)	DS .		

RESULTADOS CRU: ÍNDICES DE PRECIOS. NAVARRA.

	ADF	PP	KPSS
	(H0: raíz unitaria)	(H0: raíz unitaria)	(H0:estacionariedad)
IPC	I(1)	I(1)	I(1)
IPSEBENE	I(1)*	I(1)	I(2)
IPCS	l(1)*	l(1)*	I(2)

6. PAÍS VASCO:

CONTRASTE DE RAÍCES UNITARIAS: COSTE LABORAL UNITARIO. PAÍS VASCO. CNAE 09

		ADF		PP		KPSS	
		(H0: raí	z unitaria)	(H0: raíz unitaria)		(H0:estacionariedad)	
		Nivel	1º diferencia	Nivel	1º diferencia	Nivel	1º diferencia
	TOTAL						
	CONSTANTE + TENDENCIA	-3,537 (*)	NO	-3,470 (+)	NO	0,148 (*)	NO
7	CONSTANTE	-1,443	-8,502 (**)	-1,628	-8,852 (**)	0,833 (**)	0,159
	SIN CONSTANTE NI TENDENCIA	2,855	-7,064 (**)	3,859	-7,029 (**)	NO	NO
	INDUSTRIA						
	CONSTANTE + TENDENCIA	-2,084	NO	-2,074	NO	0,110	NO
	CONSTANTE	-1,821	-7,741 (**)	-1,764	-7,761 (**)	0,330	0,104
	SIN CONSTANTE NI TENDENCIA	1,007	-7,671 (**)	1,119	-7,737 (**)	NO	NO
"	CONSTRUCCIÓN						
	CONSTANTE + TENDENCIA	-2,053	NO	-2,192	NO	0,065	NO
	CONSTANTE	-2,151	-6,727 (**)	-2,277	-6,727 (**)	0,118	0,094
	SIN CONSTANTE NI TENDENCIA	-0,280	-6,805 (**)	-0,289	-6,805 (**)	NO	NO
	SERVICIOS						
	CONSTANTE + TENDENCIA	-3,594 (*)	NO	-3,579 (*)	NO	0,170 (*)	NO
	CONSTANTE	-1,036	-7,894 (**)	-1,509	-10,441 (**)	0,825 (**)	0,184
	SIN CONSTANTE NI TENDENCIA	3,208	-3,474 (**)	3,505	-8,029 (**)	NO	NO

CONSTANTE
SIN CONSTANTE NI TENDENCIA
SIN CONSTANTE NI TENDENCIA
3,208
-3,474 (**)
3,505

NOTA: **,*,+: se rechaza la hipótesis nula al 1%,5% y 10% respectivamente.

FUENTE: Elaboración propia.

Los CLU del País Vasco son (según los test de ADF y PP construcción e I(2) para el total de la economía y para los ser resultados contradictorios con los anteriores (I(0) para la industr para el total de la economía y para los servicios).

RESULTADOS CRU: COSTE LABORAL UNITARIO. P/
ADF PP (H0: raíz unitaria) (H0: raíz unitaria)

TOTAL I(2)* I(2)* I(2)* I(2)* INDUSTRIA I(1) I(1)
CONSTRUCCIÓN I(1) I(1)
SERVICIOS I(2)* I(2)* NOTAS: (*) Considerando para los valores en nivel: constan valores en primera diferencia: solo constante. Los CLU del País Vasco son (según los test de ADF y PP): I(1) para la industria y para la construcción e I(2) para el total de la economía y para los servicios. El test de KPSS ofrece resultados contradictorios con los anteriores (I(0) para la industria y para la construcción e I(1)

RESULTADOS CRU: COSTE LABORAL UNITARIO. PAÍS VASCO. CNAE 09.

	ADF	PP	KPSS
	(H0: raíz unitaria)	(H0: raíz unitaria)	(H0:estacionariedad)
TOTAL	I(2)*	l(2)*	I(1)
INDUSTRIA	I(1)	I(1)	I(0)
CONSTRUCCIÓN	I(1)	I(1)	I(0)
SERVICIOS	I(2)*	l(2)*	I(1)

CONTRASTE DE RAÍCES UNITARIAS: DEFLACTOR DEL VAB. PAÍS VASCO.

			.,,				
		Α	DF		PP	KP	SS
		(H0: raí:	z unitaria)	(H0: rai	íz unitaria)	(H0:estacio	onariedad)
		Nivel	1º diferencia	Nivel	1º diferencia	Nivel	1º diferencia
Ī	TOTAL	7.11.01		1			
	CONSTANTE + TENDENCIA	0,678	NO	1,144	NO	0,174 (*)	NO
	CONSTANTE	-2,482	-5,873 (**)	-2,448	-6,044 (**)	0,825 (**)	0,505 (*)
	SIN CONSTANTE NI TENDENCIA	7,231	-1,367	5,866	-3,381 (**)	NO NO	NO
\Box	INDUSTRIA	7,201	1,000	0,000	0,001()	140	110
-	CONSTANTE + TENDENCIA	-1,033	NO	-1,034	NO	0,165 (*)	NO
	CONSTANTE	-1,598	-5,888 (**)	-1,606	-5,864 (**)	0,739 (**)	0,260
	SIN CONSTANTE NI TENDENCIA	1,906	-5,563 (**)	1,925	-5,557 (**)	NO	NO
	CONSTRUCCIÓN	1,900	0,000 ()	1,925	-5,557 ()	NO	NO
	CONSTANTE + TENDENCIA	0,129	NO	-0,610	NO	0,207 (*)	NO
\mathcal{D}	CONSTANTE	,	-10,76 (**)		-10,125 (**)	0,207 ()	
	SIN CONSTANTE NI TENDENCIA	-2,924 (+)	-2,786 (**)	-3,231 (*)			0,561 (*)
	SERVICIOS	4,382	-2,700 ()	3,751	-7,920 (**)	NO	NO
		0.007	NO	4.704	NO	0.450 (*)	NO
	CONSTANTE + TENDENCIA	2,267		1,791	NO TOTA (##)	0,156 (*)	NO . T.10 (t)
	CONSTANTE	-1,811	-2,754 (+)	-2,403	-7,654 (**)	0,834 (**)	0,519 (*)
	SIN CONSTANTE NI TENDENCIA	2.333	-1.031	8.260	-3.017 (**)	NO	NO
	NOTA: **,*,+: se rechaza la hipótesis	s nula al 1%,5	5% y 10% resp	pectivamente			
	FUENTE: Elaboración propia.						
			-4 -1		- 	I-I \	I-I D-(-
-	Según el análisis rea	lizado de te	st de raices	unitarias de	ios deflactor	es del VAB d	iei Pais
Stud	Vasco, estos pueden ser co	nsiderados I	I(1) en todos	los casos.	Según los te	st de ADF y	PP son
	I(1), el test de KPSS concluy	e que son l((2) salvo en e	el caso de la	a industria qu	e también la	clasifica
	como I(1).						
		DOS CRU:	DEFLACTO	R DEL VAB	. PAÍS VASC	: O.	
			ADF	PP		KPSS	
			aíz unitaria)	(H0: raíz unita	aria) (H0:es	tacionariedad)	
	TOTAL	(,	I(1)*	I(1)	(1.0.00	I(2)	╡
	INDUSTRIA		I(1)	I(1)		I(1)	-
	CONSTRUCCIÓN		I(1)	I(1)*		I(2)	-
	SERVICIOS		I(1)	I(1)		l(2)	-
		ndo noro los	` '	()	nto v tondon	(/	_
	NOTAS: (*) Considera valores en primera difera			nivei. Consta	inte y tendent	da, y para ios	•
entro	valores en primera dilere	ericia. Solo co	mstante.				
-							
+							
(1)							
4	/						
()							
	7						

RESULTADOS CRU: DEFLACTOR DEL VAB. PAÍS VASCO.

	ADF	PP	KPSS
	(H0: raíz unitaria)	(H0: raíz unitaria)	(H0:estacionariedad)
TOTAL	I(1)*	l(1)	I(2)
INDUSTRIA	I(1)	I(1)	I(1)
CONSTRUCCIÓN	I(1)	l(1)*	I(2)
SERVICIOS	I(1)	l(1)	I(2)

CONTRASTE DE RAÍCES UNITARIAS: ÍNDICES DE PRECIOS. PAÍS VASCO.

		CES CIAI								
		ADF		PP		KPSS				
			íz unitaria)	(H0: rai	z unitaria)		cionariedad)			
		Nivel	1º diferencia	Nivel	1º diferencia	Nivel	1º diferencia			
	IPC	747707	1 directoriola	747707	- unoronoia	747707	T directories			
	CONSTANTE + TENDENCIA	-2,415	NO	-1,514	NO	0,153 (*)	NO			
	CONSTANTE	-2, 4 15 -1,376	-3,741 (**)	-1,772	-3,758 (**)	0,155 ()				
	SIN CONSTANTE NI TENDENCIA	3,263	-1,545	7,892		0,640 () NO	0,245 NO			
	IPSEBENE	3,203	-1,040	7,092	-1,281	NO	NO			
()		0.074	NO	0.000	NO	0.455 (*)	NO			
	CONSTANTE + TENDENCIA	-0,871		-0,683	NO NO	0,155 (*)	NO			
	CONSTANTE	-1,538	-3,767 (**)	-1,828	-3,790 (**)	0,704 (*)	0,289			
	SIN CONSTANTE NI TENDENCIA	3,250	-1,08	7,373	-1,315	NO	NO			
	IPCS		NO							
ω	CONSTANTE + TENDENCIA	0,640	NO	0,186	NO	0,165 (*)	NO			
	CONSTANTE	-2,709 (+)	-4,031 (**)	-2,162	-4,241 (**)	0,706 (*)	0,380 (+)			
	SIN CONSTANTE NI TENDENCIA NOTA: **,*,+: se rechaza la hipótesis	3,540	-0,918	9,835	-1,255	NO	NO			
0	Vasco son I(1). El IPCS también es I(1) según los resultados de los test de ADF y PP (según KPSS es I(2)).									
0	RESULTA	DOS CRU:	ÍNDICES DE	PRECIOS	. PAÍS VASC	O .				
	RESULTA		ADF	PP		KPSS				
tuo	<u> </u>		ADF : raíz unitaria)	PP (H0: raíz uni		KPSS tacionariedad)				
Stud	IPC		ADF raíz unitaria)	PP (H0: raíz unit		KPSS tacionariedad)				
Stud	IPC IPSEBENE		ADF : raíz unitaria) I(1)* I(1)*	PP (H0: raíz uni I(1)* I(1)*		KPSS tacionariedad) I(1) I(1)				
Estuo	IPC IPSEBENE IPCS	(H0:	ADF : raíz unitaria) I(1)* I(1)*	PP (H0: raíz uni I(1)* I(1)*	taria) (H0:es	KPSS tacionariedad) I(1) I(1) I(2)				
Centro de Estud	IPC IPSEBENE IPCS NOTAS: (*) Considera valores en primera difer	(H0:	ADF : raíz unitaria) I(1)* I(1)* I(1)* s valores en	PP (H0: raíz uni I(1)* I(1)*	taria) (H0:es	KPSS tacionariedad) I(1) I(1) I(2)				

RESULTADOS CRU: ÍNDICES DE PRECIOS. PAÍS VASCO.

	ADF	PP	KPSS
	(H0: raíz unitaria)	(H0: raíz unitaria)	(H0:estacionariedad)
IPC	l(1)*	l(1)*	I(1)
IPSEBENE	l(1)*	l(1)*	I(1)
IPCS	l(1)*	l(1)*	I(2)

TEST DE NORMALIDAD DE LOS RESIDUOS. MODELO DE CORRECCIÓN DEL ERROR

SECTOR	TOTAL				INDUSTRIA			
	Componente 1 χ²(2)	Componente 2 χ²(2)	Componente 3 χ²(2)	CONJUNTO $\chi^2(6)$	Componente 1 $\chi^2(2)$	Componente 2 χ²(2)	Componente 3 χ ² (2)	CONJUNTO χ ² (6)
ESPAÑA	10,213**	3,220	4,283	17,716**	1,993	3,369	5,629	10,992
ANDALUCÍA	21,140**	0,473	5,612	27,226**	0,807	4,298	4,088	9,194
CANTABRIA	0,071	0,231	4,287	4,590	3,856	4,113	3,130	11,100
EXTREMADURA	5,165	1,166	1,051	7,383	0,191	16,848**	70,531**	87,571**
NAVARRA	8,431*	0,533	0,245	9,210	0,344	0,647	7,075*	8,067
PAÍS VASCO	1,490	2,002	0,238	3,732	4,752	1,289	2,827	8,869

Nota: **,* se rechaza la hipótesis nula de normalidad de los errores al 1% y 5% respectivamente. Se muestran los resultados del estadístico Jarque-Bera. Se ha utilizado el método de ortogonalización de Cholesky

TEST DE NORMALIDAD DE LOS RESIDUOS. MODELO DE CORRECCIÓN DEL ERROR

SECTOR	CONSTRUCCIÓN				SERVICIOS			
	Componente 1 χ²(2)	Componente 2 χ²(2)	Componente 3 χ²(2)	CONJUNTO $\chi^2(6)$	Componente 1 $\chi^2(2)$	Componente 2 χ²(2)	Componente 3 χ ² (2)	CONJUNTO $\chi^2(6)$
ESPAÑA	2,425	2,555	4,902	9,883	3,960	2,764	5,318	12,043
ANDALUCÍA	2,318	3,418	3,871	9,607	0,327	1,045	0,270	1,642
CANTABRIA	3,281	1,622	1,508	6,413	0,890	2,850	5,117	8,858
EXTREMADURA	4,930	2,870	7,251*	15,053*	42,955**	2,811	2,678	48,445
NAVARRA					0,321	0,562	1,255	2,139
PAÍS VASCO	1,654	1,083	5,839	8,576	12,044**	1,843	3,008	16,896**

Nota: **,* se rechaza la hipótesis nula de normalidad de los errores al 1% y 5% respectivamente. Se muestran los resultados del estadístico Jarque-Bera. Se ha utilizado el método de ortogonalización de Cholesky