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Abstract

The non-null electromagnetic ficlds have been studied through the compacted spin coefficient formalism due to Geroch, Held

and Penrose (GHP) The propagation equations for the shear, twist and cxpansion of the congruences have been obtained and the conditions are
given under which the coupling of twist and expansion 1s possible The behaviour of the modified Lic derivative operator on the clectromagnetic

bivector, Ricci tensor and the metric tensor has also been studied
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1. Introduction

It is known that the spin-coefficient formalism due to
Newman and Penrose [1] can successfully be used in treating
many problems of general relativity. An extension to this
formalism is given by Geroch, Held and Penrose [2]. This
formalism is morc concisc and efficient than the widely
known NP formalism. However, Geroch-Held-Penrose
formalism (abbreviated as GHP-formalism) has failed to
develope to its full potential to the extent to which the NP
formalism has. About twentyfive years ago, soon after the
appearence of GHP-formalism, Held [3,4] proposed a simple
procedure for integration within this formalism and applied
it to Petrov type D vacuum metrics. The geometrical meanings
of the spin coefficients appearing in this formalism have been
given by Ahsan and Malik [5]. Recently, GHP-formalism has
again attracted the attention of several workers and in this
connection, Ludwig [6] has given an extension to this
formalism by considering only quantities that transform
properly under all diagonal transformations of the underlying
spin-frame, i e., not only under boost-rotation but also under
conformal rescaling. The role of commutator relations in this
extended formalism has been explored by Edgar [7]. On the
other hand, Kolassis and Ludwig [8] have studicd the
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space-times which admit a two dimensional group of conformal
motion (and in particular homothetic motion). The so called
post Bianchi identities, which play a crucial role in search
of Petrov type 1 solutions of Einstein field equations,
have been studied by Ludwig [9] through GHP-formalism.
More recently, a procedure for integration within this
formalism has been given by Edgar and coworkers
[10-15].

Motivated by these applications of GHP-formalism, the
non-null electromagnetic fields have been studied in this
paper using this formalism. In Section 2, the Maxwell
equations for an electromagnetic field of arbitrary type and
also for non-null electromagnetic field are given. A study of
various properties of the congruences has been made and it
is seen that the expansion and twist of the congruences can
be coupled together for a non-null electromagnetic field. The
behaviour of the modified Lie derivative operator on the
electromagnetic field bivector, Ricci tensor and the metric
tensor is the subject of study of Section 3, while a discussion
of the results has been made in Section 4. Some of the
important results concerning GHP-formalism are given in the
appendix. A detailed account of such and other related results
can be found in [16].
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2. The Maxwell's equations and the non-null electro-
magnetic fields

Let M be a four dimensional Lorentzian manifold that
- a
+). l.et ZM s
4w me mty, (qe- 1,2, 3, 4), be the complex null tetrad,
where /M, n¥ are real null vectors and m*, m*“ are the complex
null vectors. All the inner products between the tetrad vectors
vanish except /,n“ =1=-m m" With thesc orthogonality
propertics and the nullity of the tetrad, g, can be written as

admits a Lorentzian metric of signature (- -

-9 “m
&y = 2gn,, - 2mm,,. €))

In terms of the complex null tetrad Zj;, the electromagnetic

bivector £, has the following form [1.17]
> -0 i m
[,/ = _‘.n¢][|,n” + ..lj¢|"l[,"1/| +¢jll,l"’l
+ @l m, = gonym, |~ dony,m ), )

where g =2FI'm’, ¢, =F, (I'n/ +im'm’),

$2 = 2F,m'n! 3)

are the complex scalars, Mg, and 3¢, , respectively, denote
the real and imaginary parts of ¢,. The quantity @, describes
the Coulomb component of the ficld, while the component
@> arises from the electric dipole radiation of an accelerated
charge. If acceleration is absent then ¢, = 0.

Depending upon the vanishing of the Maxwell's scalars
(3), the electromagnetic field can be classified as [1,17]

Type A : non null (non-singular) : ¢y = @, =0, ¢, # 0,

Type B : null (singular) : ¢o = ¢, — 0, ¢2 = 0, 4)

Type C : null (singular) : ¢, — @5 - 0, g9 # 0.
It may be noted that in fact, there are just two types (types
A and B). Types B and C can be transformed into each other
by switching /4 and n7 in the null basis {/* n“ m“,m°}. 'For
the sake of completeness, we have mentioned here all the
three types. The propagation vector for type B is /* while for
type C it is n“.

The source-free Maxwell’s equations

V,F'1=0,VF* =0, (5)

!The electromagnetic tensor field £, (in spinor language) is determined

by a symmetric spinor @4y and one can write
Cay=asfy+apba,

where a and A arc spinors If @ and g arc lincarly independent, the
clectromagnetic ficld 1s sad to be algebraically general, othcrwise 1t 1s
algebraically special  According to this termmology, in fact we are
studying the algebraically general electromagnetic fields in this paper
However, in the literature the terms “non-null’ and ‘null’ are commonly
used for algcbraically general and algebraically special electromagnetic
fields, respectively

*For typgraphical reasons these derivatives are denoted by P, P', D and
D', P and D are pronounced as throu and edth
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where F" is a rcal bivector and F*” is its dual, can be
expressed as [1,17]

V,Nv =0, (6)
where N = %(F” +iF™) = gyllim’)
-4 {Il'nll _m[lg,—ll}_¢onllm/l_ 0)

It is known [2] that GHP-formalism deals with scalars
associated with a tetrad {/ 49 m“ m“) where the scalars
undergo transformation

n— APAln, (8)
whenever the tetrad is changed according to

195 A9, n® > 27274, m® > A3 "'me. )
Such a scalar is called a spin and boost weighted scalar of

type {p,q}. The spin weight is %(p— q) and the boost weight
is %( P+q).

Out of the twelve spin cocfficients appearing in GHP-
formalism, only eight are found to be of good spin and boost;
the remaining four appear in the definition of the derivatives
so that the derivatives may not behave badly under spin and
boost transformations. For a scalar 4 of type {p,q}, these
derivatives are dcfined as ([2],[16])°

Pn=(D-pe ~-qén,

Pn=(D +pe +q€E), (10a)
o = (8- pB-qf)m,
on = (8'+pf - aP)m. (10b)

From egs. (2), (3), (6), (7) and (10), the GHP version of the
source-free Maxwell cquations for an electromagnetic field
of arbitrary type are equivalent to

P - Do = 2p¢) — T'¢o - K¢, (11a)

Dp, - Pdo = 214y — p'do — op2, (11b)

Ph, - Do = pdy — 27'¢) + 0'¢o, (11¢)

Dp, - P ¢ = 193 — 2p'¢) + k'¢y, (11d)
where ¢y = -¢5 : {2,0},

¢ =-¢1 : {0, 0}, (12)

¢2 = —¢6 : {_21 0}
are the Maxwell scalars defined by eq. (3); and {p, g}
denotes the spin and boost weight of these scalars.

From equs. (4) and (11), the source-free Maxwell equations
for a non-null electromagnetic field are equivalent to

Pp=2pg, Dp =21, D'¢p =21'¢, P'9=2p'¢, (13)
where ¢ = ¢,, while for a null electromagnetic field of type
B, the source-free Maxwell equations are equivalent to

P=pg Dp= 14, x=0=0, (14)
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where ¢ = @, and /“ is the principal null direction; for a null
clectromagnetic field of type C, the sourcc-free Maxwell
cquations are equivalent to

Pop=pg Vé=1¢ k=0 =0,
where ¢ = ¢p and n“ is the principal null direction.

(15)

For the existence of a solution ¢ of a non-null
clectromagnetic field, the necessary and sufficient condition
is that the commutators [P, D], [P, D', P, D], [P, D], (2, 7]
and [D, D] as computed from GHP-commutators (All—
A13) agree with the commutators obtained from GHP-field
equations (A5--A10). The agreement between the commutators
exists if and only if the following equations are satisfied.

Px - Do=Q2r' -7)o- p'x -2, (16a)
Pr' - D'p=pr' + or - T'p - kp', (16b)
P'T- Dp' = pr+ ot - TP - kp, (16c)
P+ Do’ = p(r' - K)+ p'(F -T)
ta@r-71) 1 p(x’ - k) - p't’- 2%, (l16d)
Dt D't=pp - PP, (16¢)
o' - Pp=17 - T'7T". (16f)

The set of egs. (16) has been obtained by using GHP-
commutators (Al1-A13) and GHP-field equations (A5-
A10), e g., ¢q (16a) can be obtained by using the definition
of [, D)@, eq. (A12) and GHP-ficld cgs. (A7) and (A8).
Although the set of egs. (16) appears to be a complicated one
but important conclusions can be made under some special
choices of the spin coefficients and we have

Theorem | - Let a non-null electromagnetic field satisfies the
source-free Maxwell equations. Suppose it is possible to
propagate the complex null tetrad parallelly along the null
geodesic congruepces C(1¢) and C(n?) then the set of eq. (16)
reduces to

D'o =2Y¥,, Do'=-2Y¥,, 17)
D'p=0=Dp, (18)
pp' = pP, (19)
Pp' = Pp. (20)

Remark : Eq. (17) describe the propagation of the shear of
the congruences C(/%) and C(n®). The propagation of expansion
and twist is given by eq. (18), while eqs. (19) and (20)
describe the coupling of the expansion and twist.

This theorem can easily be proved by using eq. (16) under
the hypothesis of the theorem.

The above coupling of expansion and twist do exist even
under weaker conditions as described by the following
theorem.
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Theorem 2 - Let a non-null electromagnetic field satisfies the
source-free Maxwell equation and suppose that the tetrad Z;
can be chosen such that r and 7’ are constant then the set
of eq. (16) reduces to

Do=-t'a+(T' -1)p+p'K+¥ - Dy, 2n
Dp=~pr'—or+T'p+kp’, 22)
Dp'=-pr-or' -T'p' +xp, (23)
Do’ =p(r' -k')+1'(p' - p')+ p(x’ —x)
-p'T'+or-¥i+ Dy, (24)
PP -pp=0, (25)
Pp'-Pp=1T-17T". (26)

Here, eqs. (21) and (24) represent the propagation of
shear of the congruence ('(/?) and C(n?), egs. (22) and (23)
describe the propagation of expansion and twist while the
coupling of the expansion and twist, as illustrated in
Theorem 1, is described by ey. (25). Eq. (26) is identically
satisfied in view of the GIIP-field equations (A10) and
(A10". The proof of this theorem follows when the hypothesis
of Theorem 2 and GHP-ficld equations (A5-A10) are applied
to eq. (16).

3. Modified Lie derivative operator

In GHP-formalism |2], the operator

1 1 —
0,=V, —'2—(,’+q)”hva[b +5(P‘ q)mhvamb (27)

plays a crucial role and takes the place of covariant derivative
V,. Here {p,q} are the GHP-weights of a quantity acted upon
by @,. The GHP-differential operators (10) are related to €,

by the equation
e,=1,P"+n,P-m, D" -m,D. (28)

From the properties of the tetrad vectors and the use of eq.
(28), it is not hard to find

O,l" = (-7, —Kkn, + om, + pm,)m*
+(~l, — K, + pm, + o, )F®,
Oun® = (~K'ly = T'ng +&'my + p'm, )m°
+ (=K1, =Tng +p'm, +5'm, )m®, (29)
Oum® = (-K'l, =Tng +p'm, + ', )1
+ (=, ~Kkm, + pm, + om,)n’,
so that
8,1 =~(p+p),
Opn” ==(p'+P) 30

O,m° =—(7+7).
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The use of @, is place of V, enable us to eliminate the spin
coefficients a, f, £ and , which behave badly under boost-
rotations. For the same reason the modificd Lie differentiation
operator L is defined in which V, is replaced by @, and thus
the modified Lie derivative of a vector u“ is given by

Leu = E'@Opu’ - u"@,¢". (€1))
Since @, may be written as

0,=V,-pl.-95a (32
where ¢, = yl, +en, —am, - B, (33)

the modified Lie derivative Lé and the Lie derivative Lg are
related by

Le= Ly - &°(PSu+4Ca). (34)
The action of this operator L; on the tetrad vectors may be
found in [18].

In this section, we shall find the action of this modified
Lie derivative operator of the electromagnetic field tensor F,
the Ricci tensor R, and the metric tensor g,, for the non-null
electromagnetic fields.

From eqs. (32) and (34), the modified Lie derivative of
F,, with respect to the principal null direction /? is

LiF, = O,F,1° + F,0,1° + F,0,I", (35)

where F, is the electromagnetic bivector given by eq. (2)
provided that ¢o = ¢, = 0, ¢, = 0.

Now using eqs. (28), (A1-A4), (29) and (13), after a
lengthy calculation, eq. (35) takes the form

LiF, =2{R(p+p)-2R(p),n,) +2i3(p)m;, 7, }¢
-2m¢{m[,ﬁ” +r—m[,mj]}+2i3¢{—?l[, mJ]
+ 2y, 7,y - 2( p+ P)my, i) + 5my,m, + oy iy |

+2(Rp+i3)r'l,m, +2(RP+i3P)T,7,), (36)

which is non-zero for non-null electromagnetic fields.
However, a considerable amount of simplification results in
eq. (36) under the hypothesis of theorem 1, if we take the
congruence C(/°) to be expansion-free, and we have

Theorem 3 : Let the null geodesic congruence C(/“) and C(n?)
satisfy the Maxwell equations for a non-null electromagnetic
field and the tetrad is parallelly propagated along them. If
C(1%) is expansion-free, then

LiF, = -2i3¢{om;m,,+om,m,}. (37

In the spin coefficient formalism [1], the field equations

1 1
Ru = - 4—7;("-‘*6* —ngF"F")
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for a purely clectromagnetic distribution takes the following
form [19] for different types

Type A : R, = x4 {I(:",) +m(,ﬁ,)}. (38a)
Type B : R, =5 24,01, (38b)
Type C : Ry =% zdodonin,. (38¢)

It may be noted that eqs. (38b) and (38c) are the well
known Lichnerowicz conditions [20] for total gravitational
radiation having /, and »n, respectively, as propagation
vectors.

Now using egs. (28), (A1-A4), (29), (38a) and (13), we
have for the non-null electromagnetic fields
LR, = 2[2(p+ )iy +(T-27"),m)
+(z=27")l( M)y ~ Knym,) — Kk 77,y ~Gmm,)
—Gﬁ(,ﬁ’)+(p+ﬁ)M(,ﬁl)]¢$. 39)
Under some special circumstances, eq. (39) do admit a

simpler form and we have

Theorem 4 : Let the null geodesic congruence C(/?) and C(n°)
satisfy the Maxwell equations for non-null electromagnetic
fields. If the tetrad is parallelly propagated along C(/°) and
C(n?), and C(I?) is expansion-free, then

L[R'j = ‘x[-a_"”(,mj) +m—(,ﬁj)]¢a
which is non-zero as o= 0.

(40)

Finally, from the definition of the modified Lie derivative,
we have

ngu = @,IJ +@]1,
which on using eq. (28) and (A1-A4) reduces to
ngu = 2{—?1(1 mj) - Tl(,ﬁj) —Fn(,ml) -xn(,ﬁj)
+Om(,m,y + O, )y + pm(, i,y + P my ) (41)
so that we have
Theorem 5 : Let the null geodesic congruence C(#) and
C(n%) satisfy the Maxwell equations for non-null

electromagnetic fields and the tetrad is parallelly propagated
along them, then

L[g,j =2{EM(,MJ) +0ﬁ('ﬁl) +p"(,ﬁl) +;—9ﬁ(,m,)}. (42)

Remark : 1t is interesting to note that for the Reissner
Ndrdstrom black hole [21], egs. (36), (39) and (41) take the
following forms

LiE, =2{R(p+p)-2R(p)lyn,) + 23 p)my 7))}

LR, = z(p+P)(2luny) +m 7)) 64, (43b)
Lig, =2(p+p)m,m . (43¢)
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These equations suggest that for Reissner Ndrdstrom black
hole the modified Lie derivative of the electromagnetic field
tensor, the Ricci tensor and the metric depend on the radial
coordinate (as p = — 1/r) and thus for large r, LiF, =0, LR,
=0, and Lig, = 0.

4. Conclusion

The non-null electromagnetic fields have been studied using
the compacted spin coefficient formalism due to Geroch,
Held and Penrose. The Maxwell equations have been translated
in the language of GHP-formalism (cf” eqgs. (11)(15)). The
equations describing the propagation of shear (egs. (17), (21)
and (24)), expansion and twist (egs. (18), (22) and (23)) of
the null congruences C(/) and C(n?) associated with the non-
null electromagnetic field have been obtained and the
conditions (egs. (19), (20) and (25)) under which the
expansion and twist of the congruence can be coupled
together have also been given. Moreover, the propagation of
the shear (eq. (17)) is seen to be related with the longitudinal
wave component of the gravitational field in #? and /2
directions. The role of the modified Lie derivative operator
on the electromagnetic field tensor, Ricci tensor and metric
tensor has been explored. For Reissner Nordstrom black
hole, these derivatives are seen to depend only on one spin
coefficient p (cf eq. (43)).
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Appendix

A familiarity with GHP-formnalism is assumed. Here, we
shall mention only those results which are used in the present
paper. When GHP-derivatives (10) act on tetrad vectors, they
give rise to [5]

(@) P! =-xm?-km°,
) P =-Tm" -rm“,

() D’=-pm*-om*,

d) 21°=-om"-pm°, (A1)

@ ™ =-t'm’-7'm",

(b) Pn?=-x'm’-x'm",

() D’ =-p'm’-5'm",

d) o'n=-p'm*-o0'm°. (A2)

@ Pn?=-7'19-xn

(b) Pm*=-x'1"-1n%,

(©) Dm" =-0'lY-on",

@) D'me=-5'1- pn°. (A3)

(@) Pn?=-1'1"-xn",

() Pm*=-x'l“-7n",

() om“=-0'l"-0on",

d) DWW =-p'l° - pn. (A4)
GHP-field equations {2], [16]

Pp-Dx = p* +00 -K1 -1’k + Dy, (A5)

PP -D'x'=p'? +0T -K't' -1’ +Dyy. (AS")

Po-Dx =(p+p)o-k(r+7')+ ¥, (A6)

Po'-D'x'=(p' +p' )0’ -x'(t' +T)+ ¥,. (A6")

Pr~Px =(r-T')p+o(T-1')+ ¥ + Dy, (A7)

Pr-Px' =(1'=-T)p'+0' (T 1)+ ¥3+ Py. (A7)

Dp-D'a=(p-p)r+(p’ -p')x - V1 + Py, (A8)

D' -Da' =(p' =P )’ +(p-P)k' -3+ Dy. (AB)

Dr-Po=-po-Gp+1i+xk' +Dpy, (A9)

D't - P’ =-po’ -Gp' +7'? +x'K' + Dy (A9)

Pp-D't=pp' +o0’' -1T-kk'-¥,-2A, (A10)

Pp'-Dr' = p'p+o'o-1'T -k'k-¥,-24. (Al0Q)
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The above list does not completely exhaust all NP field
equations. The remaining equations refer to derivatives of
spin coefTicients which are spin and boost weighted quantities
and cannot therefore, be written like above equations, in
GHP-formalism. Instead, they play their role as part of
the commutator equations for the diflerential operators
defined by eq. (10). The commutators when applied to a spin
and boost weighted quantity 7 of type {p,q}. are given as
follows :

GHP-commutator relation [2,16]
[4’,4”]77 = {(? YD +(r-T)D" - plan’ — 17"+ ¥,

+ @y - M) g(FE -TF+ Py + @y - A)}n, (A1)
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[P.On={pD+ oD -T'P-kP -p(p'x-1t'o+¥)

—q(F'K - Pt + o)}, (A12)

[D.0'|n={('-p)P+(p-P)P' + ppp' - 00" +¥,
~ @y - A)-4(PP - TG + ¥, -y - A)} 7, (A13)

together with the remaining commutator relations obtained
by applying prime, complex conjugation and both to relation
(A12). Care must be taken when applying primes and bars
to these equations, as 7', 77 and 7' have types different to
that of 7. Under the prime, p becomes —p and g becomes
—g; under bar p becomes g and g becomes p; under both bar
and prime p becomes —g and g becomes —p.



