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Schwarzschild [1] has solved exactly Einstein’s |2] vacuum
field equations :
G,‘,'ER,:'—%g;R=O, )
using the spherically symmetric metric
ds? = —exp(A(r))dr? —r?d0? - r’ sin® d¢?
+exp(v(r))dt®. Q)
The solution given by Tolman [3] is

exp(~A(r) = exp(v(r) =1 - 22, @
where G = gravitational constant = 1 and ¢ = velocity of
light = 1. The constant m in eq. (3) can be determined by
an appeal to corresponding to Newton's theory of gravitation
It is seen that a geometric theory will reduce in the classical
limit of weak fields and slowly moving bodies to Newton’s
theory if and only if

oo = (1+202), 4
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Static metrics different from Schwarzschild could not exist. It confirms the uniqueness of Schwarzschild solution. The geodesics

where £21is the classical polential for the gravitational field.
The quantity m has units of distance and is referred to as the
geometric mass of the central body.

There arc many applications of the Schwarzschild solution
given in the literature [4-6]. In the present work, the authors
have shown that the metrics different from Schwarzschild [1]
are not spherically symmetric and could not exist. Ulumately,
it confirms the uniqueness of Schwarzschild | 1) static extcrior
solution. The gcodesics for photons arc discussed. The
significance of the solution is given in the conclusion.

We consider metrics different from Schwarzschild [1]
as

ds? = —exp(A(r))dr? - exp(u(r))rid6*

- r¥sin® Gdg? +exp(v(r))dt? %)
and  ds? = —explA(r))dr? —r?d6* - exp(u(r))
x r?sin? dg? +exp(v(r))dr?. (6)

We note that these metrics are not spherically symmetric. The
field eq. (1) for thesc metrics can be obtaincd by using
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standard formulae given by Tolman [3]. We sce that any
exterior solution of static fluid under gravity can be determined
on the basis of two boundary conditions . (i) at the boundary
of fluid surface and (ii) at infinity

Then 1t can be casily shown that both metrics (5) and (6)
could not exist due to the boundary conditions (1) and (n).
Ultimately, these metrics must reduce to the Schwarzschild

metric. This gives the verification of uniqueness of

Schwarzschild static exterior solution.

According to the special relativity, the distance between
two events along a world line is proportional to the proper
time elapsed for any observer moving on the world line.
Hence, we have

ds? =-c2dr? = ~c2(l _2m de?, @)

where ¢ is the velocity of the light in vacuum and 7 is the
proper time measured by the world line traveller. The minus
sign in (7) is due to time-like ds?.

We consider motion of freely falling material particle or
photon in static isotropic gravitational field. The equations
of free fall given by Weinberg [7] are

d*x# dx® di”
-+af  uy————=0,
where p is a parameter describing a trajectory of the particle.
For a material particle, we could normalize p so thatp = 7.
However, for a photon, (dr/dp) vanishes.

The metric concerned to the motion of photon is
2 2 y_2m|, 2 2m]™ o 2,0
ds“ =—c I_T dr + I_T dr® +rodg®  (9)

Here, the calculations deal exclusively with the motion in
0 = n/2 plane without any loss of generality. The egs. (8)
for the metric (9) are obtained in the form :

R IER G
dp* r’ r dp dp

5‘3”‘[ 2"’][ ] -0, (10a)
d*¢ 2 I
d—¢+7[,—¢J[§,; =0, (10b)
dt 2m 2m di

2mly . 2m - 0.
wﬂ+ﬁ[' r][WMW] (109)

These egs. (10a--10c) admit circular time-like geodesic orbits
around the black hole. Hence, they can be expressed as time-
like curves for p = r with r g constant, as :

I ) _
M == ][dr] r3 [I— . ][er =0, (11a)

d?
?jr?:O' (11b)
d*t
“d";j =0 (1lc)

These eqs. (11b) and (11c) evolve simple solutions
¢ = bl T+ bz

where (b, bz, by, by) are arbitrary constants. The eq. (11a)
gives for a > R, (Schwarzschild radius)

1
dg m |2
L [ J .

When ¢ = 1, the gravitational field is weak and (13) is

equivalent to Ncwtonian result. Therefore, the circular time-
like geodesics exist in Schwarzschild geometry given by

¢=b|1'+b2 and I=b3T+b4, (14)
except (b /by) = (m/a*)".

One can obtain for circular geodesic travellers, proper time
elapsed versus coordinatc time elapsed as

and

<~

t=h+by, (12)

(13)

r=a,

)
2,402
(5r=-I—J.[cz(l—2—'!’-)dt2 —a'd¢‘] . (15)
¢ a
Using (13) and the chain rule for df, we obtain
se=[1-3m1 5, (16)
2 .

We should note that 51 =0 for a=3 m, which is a null circular
geodesic. Hence, photons have a circular orbit around the
black hole at a = 3 m, called ‘Photon Sphere’.

On integration, (10b) becomes

d¢
289 _
r dp L (constant)

am

so that along null geodesics, L corresponds to the angular
momentum of photon. Another conserved quantity obtained
from (10c) is the total energy of photon given by

dt
(I—-r—)[ dp] E (constant). (18)
Hence, the eq. (9) reduces for null geodesics, to the form
2 2
1p2 Q‘_ L _2m
g _[dP] +r2 [] r ] (19)

It may have a unit mass particle of total energy (c2£?%/2)
moving in one dimensional ‘effective potential’.

V=L (1-22) @0
One has to solve the equation

v _-1*(, 2m\ [ml*]|_

ol T

to get the maximum potential V(r).
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It is seen that the solution rpy =3 m is independent of
L. This gives the unstable circular orbit for photons as given
above. It means that a slight orbital deviation sends the

photon into the black hole or to infinity. (For details, see
Stuckey [6]).

We start with metrics different from Schwarzschild [1].
These metrics are not spherically symmetric. Any exterior
solution of static fluid under its own gravity, can be obtained
by applying the boundary conditions : at the boundary of fluid
surface and at infinity. On this basis, we have shown that such
metrics could not exist at all. Ultimately, they become
Schwarzschild form to keep the spherical symmetry and
confirm the uniqueness of the solution. It describes the
cxterior field of any static body. Our sun is a good
approximation because the gencral relativity tests are provided
quantitatively by the gravitational fields which occur in the
solar system. This solution was first found exactly by
Schwarzschild [1]. It is of great significances since (i) it is
an exact unique vacuum solution of Einstein’s [2] equations,
(if) it is static and spherically symmetric, (iii) it predicts tiny
departures from Newton's theory for planctary motions,
(iv) it also predicts the bending of light, the redshifts and time
delay effects efc. and these predictions are accurately
confirmed by precise measurements, (v) it describes space
time geometry after complete gravitational collapse of massive
stars and (vi) it clcarly gives non-Euclidecan geometry with
strong gravitational fields. It is most valuable in the
approximately truncated region, as it represents the geomctry
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of collapsing stars, black holes and also worm holes. The
uniqueness of the Schwarzschild [ 1] solution is the Birchoff’s
theorem [7--9]. It is analogous to the result proved by Newton
in the theory of lunar motion. Hence, it applies in general
relativity theory as well as Newton's theory. It is also
analogous to the well known result of atomic theory. It can
be applied to the fields both outside and inside the empty
central spherical cavity of a body, but not necessarily a static
body. Finally, we say that Schwarzschild [1] exterior solution
is very significant because it is most simplc and applicable
in weak as well as strong gravitational ficlds and also in the
study ot entire universe.
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