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Abstract

: We have presented a detailed analysis of the motion of the test particle around Reissner Nordstrom-AdS black holes in five

dimensional space time. The study of the trajectorics of the particles have been done using Hamilton Jacobi (H-J) formalism We have considered
test particles with various masses and electric charges and examine its behaviour both in static and non-static cases
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1. Introduction

Recently, a new family of exact black hole solutions has
been discovered both in four and higher dimensional
space times [1]. It is interesting to study black holes in
anti-de Sitter (AdS) space because the AdS conformal
field theory (CFT) duality relates the properties of these
black holes to thermal properties of a dual conformal
field theory residing on the boundary of AdS space [2].
A five dimensional AdS analogue of Reissner-Nordstrém
AdS (RNAJS) solution of type IIB super gravity was
derived by Chamblin et al [2]. The action for this model
is [2]

.L.eﬂalfﬂs ApFapFrJ:l. (1)
Here, R is the curvature scalar in 5-dimensional space, 4,
is the gauge field, Fys (F2 = FyF°") stands for Maxwell
field strength. The parameter / measures the size of the S°.
The AdSsx S® gauged super gravity in five dimension has
an S0(6) gauge symmetry, associated with the group of
isometries of S°.
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Solutions of type IIB super gravity describing Reissner
Nordstrdm AdS black holes with an internal S is [2]

ds? = -g(r)+ﬁdr2 +r2d (2} )

Q2

. M
with g(r)=]—;7+7-;-+r2, 3)

where M and Q measure the black hole’s mass and charge
respectively. The electro-magnetic potential in a gauge regular
on the outer horizon is )

A4 = [¢(’+ )- ¢(r)]d’.

where o(r)= % 4)

Here r, is the largest real positive root of g(r) = 0.

The aim of the present work is to investigate the motion
of the test particles in the gravitational field of a five
dimensional RNAdS black hole using Hamilton-Jacobi
(H-J) formalism and examine both static and non-static cases
and also for charged and uncharged test particles.

2. The Hamilton Jacobi formalism

Let us consider a test particle having mass m and charge e
moving in the gravitational field of a five dimensional
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RNAGS black hole. So the H-J equation for the test particle
is [3]

o8 )
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g (‘h, +eA')(r7x" +eA,,)+m 0, )
where g,,, and 4,, are the classical background fields (2) and
(4) respectively and S is the standard Hamilton's characteristic
function. For metric (2), the explicit form of the H-J eq. (5)
is [4]
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Here, x;, x2, x3 are the coordinates on the surface of the
3-sphere. As there is no explicit dependence of ¢ and

coordinates on the 3-sphere, a natural form for the H-J
function S(1, r, x;, x2, x3) will be

S==E-1+8§(r)+px) + p1x; + p3x3. ™)

Here, the constant E is identified as the energy of the particle
and p), p, p3 are the momentum of the particle along

I
different axes on the 3-sphere withp p=(pi + p3 +pi)?, as
the resulting momentum of the particle.

If we substitute the ansatz (7) for S in the H-J equation,
then we get the following expression for §; as [4]

1 I 1 ‘ -

Here, €= 1, the sign changes whenever r passes through
a zero of the integrand in (8).

Now, for the trajectory of the particle following the
H-J method, we consider,

é_z = constant, _ﬁ% = constant,

a8 s

—— = constant, —— = constant. .
op ops 4]

So the path in parametric form gives (choosing constants to
be zero without any loss of generality) [4]
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For the turning points of the path of the particle, we have

dr _ 0 and consequently the potential curves are [4]

t
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(12)

Since this large expression contains so many arbitrary
parameters namely, e, Q, m, p, M, we can not define physical
characters of the potential curve. But one can find analytically
the extreme points of the potential curve.

In a stationary system, ¥(r) must have an extremal value
given by

dv
=0 (13)

Hence, we get the following equation

1 1
2 \3 2 2
_2_eg.(]+__p__) (]_.f_l.‘.g_‘.‘.rZ)

mr? m2r?

(14)

We see that r = r, is a solution of (14) provided
ré + Mr -20% =0 [since r, is a root of g(r) = 0]
The above equation implies

rl=S+T

[where S = ’\/QZ +J—2M—73-+ Q4 and T=5{’Q2 -\/?—73+Q‘ ]

Hence, trajectory of the test particle is bounded.
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3. Test particle in static equilibrium

In static equilibrium, the momentum p must be zero. So
from (14), the value of r for which potential will be an
extremal, is given by

MQ
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From this, we get

ri2 +2 M8 —(4Q2 + e;gz )rb +(Mz ___l)
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If % =2, we see that it is possible to have bound orbit for

the test particle provided M < /Z Q since this cquation has
at least two real roots with one positive.

-MQ’( (16)

We also see that this is an algebraic equation of even
degree with negative last term provided H > 2.
m

This equation has at least two rcal roots with one is
positive, so particle must be trapped by RNAdS black hole.
4. Test particle in non-equilibrium state
Case I . Uncharged test particle (e = 0)
Now the expression (14) simplifies to

o)

2p* (.M Q
mirs T

2M  40?
(7——3 +2r) 17
Thus, we get the following algebraic cquation
2m?r® +(m2M—2p2)r" -40’m?r’ —-6p*Q* =0. (18)

.

This even-degree algebraic equation has at least two real
roots since its last term is negative (with one root positive).

So it is possible to have a bound orbit for the test
particle.

Case Il : Test particle with charge (ie. e # 0)
From eq. (14), we have the algebraic equation

-2p?)ri2
+{am2(2p2 M - 4m2Q2) - 4e2m?Q? }r10
— (4m?p2Q? + 420 p?

+{2(2Mm? +2Mp? -2p?)(2p* M - 4m?Q?)

4m*r'® +4m2(2Mm? + 2 Mp?

-2Mm? -2Mp? +2p?)rt

+ 4e2Q?m> M +4eQ?p* }ro
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-{12p2Q* (2Mm? +20p* ~2p?) - 4e20? p2 M}

+ {I2112Q1(4mZQ2 =2piM) -4 p? }r3

+36p202 =0 (19)

Whatever restrictions we imposc on the physical parameters,
onc can see that the above algebraic equation (of degree 16)
contains even numbers of variation of signs. So by Descartes
rule of sign, this equation has either some real roots or no
real roots. So unless we get exact numerical valucs of the
physical parameters, we can not say whether the charged test
particle can be trapped by black hole or not.

5. Concluding remarks

In this paper, we have examined the behaviour of a test
particle in the gravitational field of a RNAdS black hole in
five dimension, using the formalism due to Hamilton and
Jacobi. The test particle 1s considered to be both static and
non-static as well as charged or uncharged.

In static case, we have seen that the test particle can be
trapped due to some restriction on physical parameters say
=2and M < J2.Q).

For non cqmlibrium test particle, we have cxamined the
possibility for bound orbit.

M > 2 (or I I
m

We see that uncharged test particle always be trapped by
RNAds black hole.

We can not say exactly whether a charged test particle is
trapped or not by RNAdS black hole.

For future work, it will be interesting to investigate
details how the physical parameters affect on the trajectory
of the test particle in the gravitational field of different
black holes.
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