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Maxwell’s wave oquation in a medium whose permitiivity undergoes
a ono dimengional space time variation by the sction of & pump
wave of angular froquency Q is solved by a perturbation technique
based upon the methods of Bugoliubov and Mitropolsky for non
linear oscillations The solution is confined to the special case whero
unstable solutions are possible for certain frequency bands or wave
numbor bands It is found that for C > V (C the veloeity of the
wave in the unmodulated medium, V the velocity of the pump wave)
there is a frequency band centered at N %— ( IC/' +1 ) N an integer

for which the propagation constant is complex and for C < V there
is @ wavo number band for which the frequencies aro complox. The
dispersion rolation and exprossion for the amplitude of the assooiated
harmonics are derived

1. INTRODUOTION

In tho first part of the paper (Mathow 1974) the genera] solution of Maxwell's
wavo equation in & medium whose permittivity is modulated by & pump wave of
ungular frequoncy € progressing with a velocity V along the x direction wes
discussed. The assumed variation was

e@yl) = el[l+hcosQ (t-n % )] 0

where ¢, is the permittivity in the absence of the modulation and k the modula-
tion index which is much less than one. Tt was found that the wave equation

was separable in tho variables 7 = f— i:’_ , X =z by the introduction of &
1 N Q Og
separation constant #. Stable solutions occur for fe= N AN

N is an integer, C the velocity of an electromagnetic signal in the immodulated

- 1) , where

medium given by 2 = ”l—e, o the permeability and this case was discussed in
0”1
" the first part qf the paper

In poveral situations of physical interest for certain frequency or wave
number bands unstable solutions occur where a signal in the medium will expo-
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nentially increase or decrease with distance, time or'both, When the solution
is oxpressed in terms of 4 these unstable solutions correspond to £ in the neigh-

2 .
bourhood of N % ( —C;—E—l) and this part of the peper desls with this case.

Simon (1960) has discussed the aspect of waves growing or decaying with
distance for a particular frequency, but has not givén a method of solution which
can be applied to all frequencies at which such instabilities ocour. Further, the
frequency range over which this occur is not given. Cassedy & Oliner (1963)
have discussed the case of waves unstable in space, time or both, but analytical
expressions are not developed for the frequency and wave number bands. Holbery
& Kunz (1966) have treated the unatable solutions for a purely time varying
permittivity. In this paper a general perturbation method is developed based
on the methods of Bugoliubov & Mitropolsky (1961) for nonlinear oscillations
This method can be applied to find all the frequency and wave number bands
where the unstable solutions oocur.

In this conneotion, it is of interest to discuss some of the physical possibilities
of aohieving tho permittivity variation given by eq. (1). One| method is by
acoustio pumping. An acoustic wave propagating in the mediugp will produce
periodic variation in the donsity of the medium, Since the electrical permittivity
is a function of the density (Jackson 1962) the sound wave of froquency O can
parturb the dielectric constant and effect the assumed permittivity variation.
Such processes have been discussed by Slater (1968), Yariv (1965). —

Another method is by electromagnetio pumping. The macroscopic permitti-
vity of a medium is a consequence of polarizability of the molecules  For ferro-
olectrics the polarizability depend on the electric field.” For ferro-electrics like
barium-strontium titanate mixtures the permittivity (about 103) can be reduced
by thirty to fifty percont by electric ficlds of the order of 108 volts/meter. For
such nonlinear dielootrics the electrio displacement D can be written approxi-
mately as a function of the cloctric field E as D = ¢, F4-¢,E2+... (Zernike &
Midwinter 1973) whete ¢, is a constant which is smal]l Taking the permittivity
€= % and assuming the field £ = Eo0s Q(t— _a:V_), we get the permi-
ttivity given by eq (1). A mechanism for producing vhe dielectric modulation
by passing an intense laser beam through the medium has been discussed by
Kroll (1962).

2. Tae Wave EQUATION AND ITS SOLUTIONS

It was shown (Mathew 1974) that in the one dimensional case the wave equa-
tion with the permittivity variation given by eq. (1) is
0% (z,t)

o —Ho F [e(z,)E(z,t)] = O, @
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x

with the change of variables X = 2,7 = t— 7 the electric field B(X,r) was

Il

expressed as

E(Xy7) = (exp ifX)(exp [ 9(r)dr)G(7). O ¢

In eq. (3), A is a separation constant,

exp [7(r)dr =(1_—¢z"3—&;g—,,) exp ial[—(-l—_-gmﬁ tan— {( }t”:: ) tan I;'r}]

@
and the funotion GQ(r) satisfies the differential equation
g-:g—l--y'G = —y?[h(og 008 QT+ 10tq 8in QT)4-h¥(0t, 0082Q7+iy0t 5in 2Q71) ... ]G
(6)
In egs. (4) and (), T, is an arbitrary oonstant,
1 C*fa, Q
“=‘(j‘a_1, oy = Vﬁg, “=—yg R ()]

v

Og = 1+2a, Og = 2¢+3“2' 'Yn = __:ﬂLEB
(1)

It was found that for y # p/qQ, (p and g are mutually prime numbors) the solu-
tion of eq. (5) was stable with an amplitude which does not vary oxponentially
with 7. )

Now the solutions of eq. (5) whon y is in the neighbourhood of p/gfd and
equal to p/gQ) are to be developed. It will be found that for certain values of
p[q the solution is unstablo with @ growing exponentially with 7 The oases
whore unstable solutions are possible are referred to as resonances. These re-
sonances ocour for values of p/g = N2, where N =1,2... and in these cases
the amplitude of an electromagnetio signal excited in the medium will grow or
decay with distance, or time or both,.

When we oonsider 7y in the vicinity of y, = p/gQ we can write
Y =y i+RA, v (D

where A represents a defuining due to the perturbation k. From eq. (6) using
eq. (7), we get to the first order in A

Qg = d'-—'hp, e (s)
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where
QC
%= ———gr——y andp = —3:—“,, @)
7 (1) )
with these we oan write eq. (5) in the form
daxQ g 2 L
7 4762 @ = —[h{ye*(otg cos QT +1; 8in Q7)+A}
+h2yo¥(ory 0082 Q7 +-ta500 8in 2Q7—ip 8in Qr+-...1G ... (10

Eq. (10) represents the oscillation of a system with natural frequency y
subjected to a perturbing influence given by the terms on the right hand side.
To solve this, a method similar to the one used in the first part of the paper can
be developed with oertain vital modifications. The solutions cam be assumed
in tho form (Bugoliubov & Motropolsky 1961)

& = f cos Yr+hary(f, ¥, Q) +Bray(f, ¥, Q), v Q1)

wherc uy, u, ote. are periodic functions of the two angular variables\yr and Qr,
f and ¢ are some functions of r which can be detormincd from certain differential
equations [t can be naturally assumed that

¥ = v+ . (12)

whore ¢ is & phase difference which in the resonance case may exert vital in-
fluence on the amplitude and frequency of the oscillationy The smiplitudo of
the oscillation can be assumed to vary with 7 a8

o — RS, 9IRS, 9) . (3)
. dyr
Similaxly the _frequenoyTT- can bo expressed as
d d
L ot Sy RS RSY S $)+ . - (4)

In the nonresonance case dffdr end diyr/dr were funotions of f alone. Using
eqs. (11) through (14) we can express d?G/dr? in terms of the new variables and
the coefficients of like powers of h can be equated in the resulting equation
Giving Fourier expansion to the associated functions we can get Uy, U, Ry,
8,, Ry, Sy ete. It is found that when p/q = } only R, and 8, are nonzero and
when p/g = 1 only R, and S, are nonzero. Since R, and 8, are the terms first
order in h, for small values of k the dependence of amplitude and frequency no
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the phase ocours only for y = Q/2, i.e., resonance oocurs only in this case. But
for higher values of A the resonances will occur for y =~ Q, 3/2Q ete Thus the
method developed is applicable for all resonances if lugher order terms are con-
gidered. Considering the first order terms we get

1 oxp i(ndr++myf) 2 ew .
U= 42 n-§D m‘::‘—ﬂ Q2 [(g)s—(n-{—mz)’]b“ 6[% exp—z(n0+m¢)d0d;[r,
q q (16)
whore ng+(m-41)p#0, 8 = Qr,
— an . Ll . .
b= e § s e oxp_aqa(w—fqio Jsinydyds ... (16

A

Sy =g iy £ X0 109 | [apoxp—igo (y—2 o)oosy dyds ... n

In the above oquations,

ag = —Yf(ay cos Q7100 5in Q7) cos .. (18)
and

_P—=7 _ 2y —70)
A= = 5 o, . (19)

Thus ovaluating U/,, R, and 8, for particuler p/q, U,, R, and S, oan bo eva-
luated (Bugoliubov & Mitropolisky, 1961) end hence U,, R,, 8; ete. Thus tho
method can be applied to higher orders of perturbation

13. EvecTRIO FIzLp AT THE FIRST RESONANCE
/

The first resonance is characterized by y =~ ‘523 and since B, and 8, are

nonzero the amplitude and frequency have dependence on phase even for small
values of h. The effect of this on the stability of the solutions and hence on the
nature of tho electric field can be investigated

With p =1, ¢ =2, on evaluating the appropriate integrals in eqs. (16),
(16) and (17) and by the use of eqs. (12), (13) and (14), we get

U, ='§f"2 [(otg+ag) oxp (3 +0)-+(0ta—2t5) exp—13(Y + )], . (20)
g‘z = —I— (13 sin 2¢+"“5 008 2¢), . (21)

g? =(7._29)+ lig(m,oos.zqs—ia, sin 2¢). e (22)
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To solve diffarential equations (21) and (22) we osn introduce change .of
variables given by’

_L=f£8’;(a,+a,)oos¢, . (28)

M =3 (@) sing. . (24)

From these using eqs. (21) and (22) we get a differential equation in L.and M
the solution of which can be assumed to be L = L,exp A7 and M = M, exp Ar.
Substituting these solutions we got two algebraic equations in Ly and M in terms
of A, For L, and M, to have a nontrivial solution the determinant of their co-
officients in the equation should be zero. This determinental equation gives on
substituting for oy and o; from egs. (6) and (9)

h2Q? Q\274
A=+|"5 '(”"2“)] ' (26)
From eq. (11), to the first order in &
G = foos Yy+hU, .. (26)

From eq. (19) the expression for U, contains the terms f exp i3 and fexp—iy-.
Since ¥ = y,r+¢@, the expression for @ involves terms in fexp i and fexp—ig.
Hengce it is not necessary to have explicit expression for f and ¢ and we can use
ogs. (23) and (24) and the algebraic equation for L,, M, to find the values of
feosg and fsing. Thus evaluating fexp ip and fexp—ig we get

{

Qr J’ (M+h92_“’) ]
G(1) = Gyexp Ar| exp i?

{1+ {y(on+apoxp (i0n)}

L 3o lr-%
Q (M+h%a5) h
+exp—a?'r 1—- 7 O {1+-1—6(az,——a,)exp(—-iﬂ'r)} y e (20)

Q
h 5 Og— (7’—‘2‘)
where G is an arbitrary constant.

Since A has two values there are two solutions for @ as given by eq. (27).
Further, the amplitude varies exponentially with 7 if A is real and is osoillatory
if A is imaginary. By eq. (25), A is real or imaginary according as (y—£/2)?
is less or greater than h2Q2/64. The emplitude thus varies exponentially with
7 for those values of v for which

Q Q Q Q
5 Th g <r<—gth 5%
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and thus-in this cage the solutions are unstable. Using eqs. (3), (4), and 217),
we get the eleotric field as ,

E(z,t) = A exp ’\(t—%) [°XP';{ Wt—(LI{;,' *ﬂ)x} X{H—hCl exp iQ(!—-;)

+h0; exp—iQ(t— ) }+Dexp (-0 ¢_(W;I,Q—,e)x} x{1

+hO"; exp iQ(t——;—)+h0',exp—iQ(t——:;7 )}] . (28)
where
W = (a,+3)Q, . (20)
g l—m—i—(y- 5 ) an
22 (k) +in—{y— -
0, = *%“”) 0, 1—_“2917
2 ) - 2
16('0_11'_'1) 2(% l) L (31)
1= ’ 2
o o)

and 4 is an arbitrary Constant.

4. DisoussioN oF SPRoraL Cases

Eq. (28) represents a wave with a fundamental frequency W with a propoga-
tion constant (W/V)—p and with the harmonics of frequencies W—Q, W4-Q,
W—2Q with different propagation constants and amplitudes. But we note from
eq. (30) that each term ig of the order of » and hence D which is the relative
amplitude of the harmonic of frequency W—AQ is independent of k. Thus the
amplitude of this harmonic is of the same order as that of W. Thus there are .
two dominant frequencies W and W—Q having propagation constants (W/V)—g
end [(W—4s2)/V]—p respectively. Turther, if A is real these amplitudes will
exponentially inorease or decreage with time and distance. The other harmonics
are insignificant beoause they are of the order of h.
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We see from eqgs. (6) and i29) that the frequency W is related to § and hence
to Q in the resonance cage. From eq. (6) the value of § corresponding to y = %

. , Q ( Cr . . .
is obviously near 50 -W—l). It is of interest to disocuss Kome important

special cases corresponding to the values of y in the neighbourhood of Q/2.
Case (i) A =0.

This case corresponds to y = -;3 + h%. The corresponding value of 8
from eq. (6) is

e (Gt

Hence from eqg. (28) wo get the clectric field as |

. Q ¢ 14 , .
F(zyt) = 4 oxp-tih —— —-V——(t———-o-;f- ) [(1+h0 D)exp mo(t— z

>
~—

+D(1+h%)expi(uo—9)(t+—g- )

+...terms of the order of h ] . (33)
where from eq. (30),
()
D=F ¢ (34)
(41
and
0 = % (%4_1). . (35)

Eq. (33) can be interpreted as a wave with a fundamental frequoncy

b c
o=utly

with the harmonic of dominant frequency w— . The fundamental of
frequoncy w propagates in the direction of the"pump wave while the dominant
harmonic of frequency «©—£ propagates in the opposite direction and their
propagation constants boing

w—Q __ hQ

o rQ
¢ 50 ™ g Fgo-
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Thus we obtain the dispersion relation and see that tho waves propagate without
any attenuation in space and time.

Case (it) y = /2 which corresponds to A = +-hQ/8. In this case
Q (C?
£=30 (v—1)
and from eq. (28) the electric field is approximately

E(w) = A oxp + "o (t=7) [exp o (1= ) +Doxpitwe—2) (t+3)

+...terms of the orders of &]. ... (36)

where the harmonics of order % have been noglected. Eq. (36) reprosents a
wave with dominant frequencies w, and w,—Q propagating in opposite directions
with the same phase velocity. But their amplitudes grow or decay both in
space and time and henco in this case the waves are unstable. We can say that
both the frequency and propagation constants are complex.

Case (i11) : Now we can consider the propagation constant corresponding
to a real frequency w = ?(?,-+1 ) This is the most important case since we

can know the features of propagations of a signal of frequency w in the medium,

Considering eq. (28), let us put ¢W-+A = tw, where w is real so that

w=W—id . (37)
Wo have from eqs (29) and. (6)
w9y 0 2.0, . (38)
V( e 1 )
80 that
Q
Y= = [w_. - +1) ] . (39)

Honce from eqs. (37), (39) and (26) wo got

I an AR ) A

(-)
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Since we are considering a resl frequenoy w, the quantity W (whioh will be shown
to bo related to the propagation constant) is real if

[w_%_ (%.H)] S (9_‘._1) wQ - (41)

But acoording to eq. (28), the propagation constant corresponding to the fre-
quency w = W—iA is

k=?!.;ﬂ._ﬁ=w7_(w_‘2l)b’;(%_1)_ . (42)

From eq. (42) we soe that k is real if w is real and this in turn hold when condition
(41) is satigfied. It is seen that (41) is satisfied always when C > V. For 0>V
it is not satisfied for partioular values of w given by

1

3522 (G <o <S(F0) RGN -

Hence we come to the important conclusion that when C % V, there is a
frequency band centered round Q (% -|-1) for which the propagation constant is
complex. Such afrequenocy b&nd. is called & stop band. For tho central frcquency
w —-;-2( 7 +1) the propagation constant can be evaluated. From eqs. (40) and
(42) wit.hw=2£-z,(%-+1),we get |

L]

L A1) . (48)

k= o5 (V+1):F

From eqs. (30), (37), (39) and (40) we get

(gf‘_l)i o 0.

thQ (

D=di s Y=gt —F— @y (45)
(7+1) 8(1-7)
Hence the electric field to the first order in % is
rQ
E(z,ty=AexpF -~ 80 ( 1) [(1+h0’1DYexpvw ( g)

+D(1+h5§) axpi(w-n)(z+%)+...]' : . (46)

v
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In this cage the dominant frequencies are w and w—Q. Further it oan be noted

that for ¢ > V, a wave of frequenoy 2—( +1) propagating in tho direotion of

the pump wave or one of frequency 29( g—l)propa.ga.ting in the opposite

direction will exponentially grow or docay with distance. This happens in
praotioal situations when the permittivity modulation of the medium is effected
by an acoustio wave whoso velocity V is always less than C. In this case the
partioular oleotromagnetic signal is attenuated in the medium.

Case (iv) : Another interesting case is to find tho frequency corresponding
to a real propagation constant % —-2%( g -l—l). Considering eq. (28) let us put

——-V——ﬂ=W+— ; . (47
so that we can write the propagation constant
2
k=K -7 . (48)

Again using eqs. (6), (25) and (47) in (48) we get
K[ty (74) |2 [ 2 (G0} - g (1-3) |2 oo

From eq. (28), the froquency corrcsponding to the propagation constant K is
. Q
0 = (G +HQ—iA = EV+V ( ; )(K——EV)

Since wo are congidering a real k, the frequency w ir real if K is real. For this,
we see from eq. (49) that

[ozc—g-’ (%+1) ]’>%?—’(1—$,;). e (80)

Condition (50) is always satisfied when ¢ > V. Thus for any real k, w is always
real for 0 > V, but not vice versa. This was discussed in oase (iii). T'or
C < V, condition (50) is not satisfied for thoso values of k for which

ol +)~50 (1-7)' <r<m(F+1)+5 (-)"

For C < V, the frequency is complox for a band of propagation constants

Qe rQ 4
centered at% 7+1)ofw:dth 40( V’) . Thus in this ocase the role of

(61)



578 N. N. Mathew

wave propagation constant and frequemcy is reversed from that for 0> V.
. Q (0
The electric field for k = 30 (T’-H) can be shown to bo

E(z,t) = Aexp T ’ﬁ (1—9 ) [(1+w'11>) exp zC’k(t—a )
+D (l+h-—) expz(C’k—Q)(t+ )+.. ] . 92)
whero
. C\#
D= :j:i(—tzii- e (DY)
(1+%)
The corresponding value of
Q:i: rQ
" 81

Whon € < V, the waves correﬁpondlng to a smignal of propagation oconstant

2% (V+l) propagating along the direction of the pump wave are exponentially

growing or decaying with timo.
5. CoxNoLusioN

The solution of the wave equation was saught by the introduction of a separa-
tion constant # which is related to the quantity y thromgh eq. (6). When the
solution to the first order in » was considered, unstable solutions (i.e., waves
which grow or docay in spacc and time) occured for y = Q/2 which is termed as
first resonance. In this case the wave consists of two dominant frequencies
w and w—Q where w = ;_) (%+1) , the former propagating in tho direction of
the pump wave and the latter in the opposite direction with, the same velocity.
The nature of the waves and the relative amplitudes of the harmonics depend
on the value of y sufficienily near Q/2.

(a) Fory = 4(—21- i—’—"sg, the frequenoy and propagation constant are real so

that the solutions are stable.

(b) For y = Q/2 the frequenoy and the propagation constant are complex
so that the waves are exponentially grawing or decaying with time and position.

(o) For y =29—;|: ——h%,—)T, if C > V, the propagation. constant oorres-
o1

7
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Q0 .
ponding to & real frequency w =——2-(T,+1) is complex go that the waves grow or
decay exponentially with distance. This happens for a frequency band contened
hQ ¥
at _-( V+l) of width—— (?,2 1) . 1t means that an incident signal on the
medium in this frequenoy range will exponentially grow or decay with distence.
)} hQ .

(d) Fory = %:l: —r if ¢ <V the frequoncy compounding to a

ot

s
real propagation constant is complex so that tho waves grow or decay exponen
tially with time. Thus happens for a wave number band centered at - ( V+1)

hQ e\t . e A .

10 ( -I—,-i-) . A signal incident on the medium in this wave

number region will grow or decay in time.

and width -~

The perturbation has to be extonded to higher ordors for higher rosonances.
For y = Q, it has to be extended 1o second order in which oase the dominant

frequencies are w and w—2Q, where w == Q(TO,—+1). In general for the Nth
rosonance where y == N ;"_l the perturbation has to bo extonded to Nth order

and the dominant frequencies are w and w—NQ where w = N% (%+1). The

width of the frequency band (wave number band) for which the waves are
unstable in space (time) is proportional to A¥
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