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Maxwell’s wave equation in a modium whoso perniitiivitj^ undergoes 
a ono dimenflional space time variation by the action of a pump 
wave of angular frequency Q is solved by a perturbation t(^clmiqiic 
based upon the methods of Bugoliubov and Mitropolsky for non 
linear oscillations The solution is confined to the special case where 
unstable solutions are possible for certain frequency bands or wave 
number bands I t  is found that fox C >  V {C the velocity of the 
wave in the unmodulated medium, F the velocity of t)j.e pump wave)

there is a frequenoj^ band centered at JV - y   ̂ ^  + 1  j , N an integer

for which tli.e propagation constant is complex and for C <  F there 
is a wave number band for which the frequencies arc complex. The 
dispersion relation and expression for the amplitude of the aSySooiated 
harmonics are derived

1. I ntroduotion

In the first part of the paper (Mathew 1974) the general solution of Maxwell’s 
wave equation in a medium whose perm ittivity is modulated by a pump wave of 
angular frequency Q, progressing with a velocity F along the x direction was 
discussed. The assumed variation was
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e{Xii) =  e ij^ l+ ftco s£ i -----^  , (1)

where is the perm ittivity in the absence of the modulation and h tho modula­
tion index which is much loss than one. It was found that the wave equation

was separable in the variables t =  t-----^  , X  ~  x by the introduction of a

Cl I \
separation constant fi. Stable solutions occur for ex N — 1 1, where

N is an integer, C  the velocity of an electromagnetic signal in the immodulated 

medium given by /Iq the permeability and this cose was discussed in

the first part of the paper

In several situations of physical interest for certain frequency or wave 
number bands unstable solutions occur where a signal in the medium will expo-

667
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nentially iacrease or deorea^o with distanoe^ time or both. W hen the solution 
is expressed in terms of fi these unstable solutions oorrespond to ^ in the neigh- 

£ 1 / 0 ^  \
bourhood of JV̂ | i ja n d  this part of the peper deals with this case.

Simon (1960) has discussed the aspect of waves growing or decaying with 
distance for a particular frequency, but has not given a method of solution which 
can be applied to all frequencies at which such instabilities occur. Further, the 
frequency range over which this occur is not given. Cassedy & Oliner (1963) 
have discussed the case of waves unstable in space, time or both, but analytical 
expressions are not developed for the frequency and wave number bands. Holbery 
<& Eunz (1966) have treated the unstable solutions for a purely time varying 
perm ittivity. In this paper a general perturbation method is developed based 
on the methods of Bugoliubov & Mitrop'olsky (1961) for nonlinear oscillations 
This method can be applied to find all the frequency and wavp number bands 
where the unstable solutions occur. I

In this connection, it is of interest to discuss some of the physical possibilities 
of achieving the perm ittivity variation given by eq. (1). One\ method is by  
acoustic pumping. An acoustic wave propagating in the medium will produce 
periodic variation in the density of the medium. Since the electrical perm ittivity  
is a function of the density (Jackson 1962) the sound wave of frequency n  can 
perturb the dielectric constant and effect the assumed perm ittivity variation. 
Such processes have been discussed by Slater (1958), Yariv (1965).

Another method is by electromagnetic pumping. The macroscopic permitti- 
v-ity of a medium is a consequence of polarizability of the moleculej3 For ferro- 
olectrics the polarizability depend on the electiic field.* For ferro-electries like 
barium-strontium titanate mixtures the perm ittivity (about 10®) can be reduced 
by thirty to fifty percent by electric fields of the order of 10® volts/meter. For 
such nonlinear dielectrics the electric displacement D  can bo written approxi­
m ately as a function of the electric field .E as D =  +  (Zemike &
Midwinter 1973) where a conetaat which is small Taking the perm ittivity

e =  ^  and assuming the field E =  E q oo$ £2^f— ^  j ,  we get the permi­

ttiv ity  given by eq  (1). A meohanism for producing the dielectric modulation 
by passing an intense laser beam through the medium has been discussed by 
Kroh (1962).

2, The Wave Equation and its Solutions

I t  was shown (Mathew 1974) that in the one dimensional cose the wave equa­
tion with the perm ittivity variation given by eq. (1) is

5®E(a?,0
dx̂ dt̂ [e(a;,f)E(a;,f)] — 0, <2)
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with the change of variables X  =  x,r =  t— ^  the electric field E(X,t) was 

expressed as

E{X it) — (exp i^Z)(exp J i;(r)dr)0(T). ... (8)

la  eq. (3), /? is a separation constant,

” PJ^(T)^^ = ( 1 - J L q t ) { ( ~ S M

... (4)

and the function G(t) satisfies the differential equation

d^G_4-y0Q  — —y8[ft(aa cos ^ T + i o b z  sin £2t)+A®(a4 cos2£2T+ia2a sin 2Qt)+ .. . ]0 .

In eqs. (4) and (5), is an arbitrary constant,

a — 02 a, =
- 1

02/?a,
F a  ’ aa =

a
F2

as =  l+ 2 a , =  2a+3a®, y® =

vp

(PCY

(5 )

(6 )

It was found that for y  ^  2>/ĝ a, (p and q are mutually prime numbers) the solu­
tion of eq. (6) was stable with an amplitude which does not vary exponentially 
with T,

Now the solutions of eq. (5) when y is in the neighbourhood of p /gfi and 
equal to  p/gQ are to bo developed. It will be found that for certain values of 
piq the solution is unstable with 0  growing exponentially with t The oases 
whore unstable solutions are possible are referred to as resonances. These re­
sonances occur for values of pjq =  N/2, where N  =  1 ,2  ... and in these oases 
the amplitude of an electromagnetic signal excited in the medium will grow or 
decay with distance, or tim e or both.

When we consider y  in the vicinity of y  ̂=  pIqCl we can write

— yo®+^A, (7)

where A represents a detuining due to the perturbation h. From eq. (fi) using 
eq. (7), get to  the first order in h

aa =



where
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r . r ( ^ - i )
.and p =

2r«* (9 )

with thesft we can write eq. (5) in the form

d»0
^  +ro“^ =  -rMro®(a8CoflfiT+iaBemQT)+A}

+^®7o“(̂ 4 Qj+ioL^oL sin 20,7—ip sin , .]G . . .  ( 10)

Eq. (10) represents the oscillation of a system with natural frequency y  
subjected to a perturbing influence given by the terms on the right hand side. 
To solve this, a method similar to the one used in the first part of the paper can 
be developed with certain vital modifications. The solutions c a i bo assumed 
in the form (Bugoliubov & Motropolsky 1961)

0  =  /c o a  ^ + A u i( /, £2r)+Aa(*2(/i ijr. Or), (U )

whert Uĵ , etc. are periodic functions of the two angular variables\^ and £1t , 

/  and ^  arc some functions of t which can be determined from certain differential 
equations It can be naturally assumed that

f  = (12)

whore 0  is a phase difference which in the resonance case may exert vital in­
fluence on the amplitude and frequency of the oscillations The amlplitudo of 
the oscillation can be assumed to vary with r as

Similarly tho freqmncy-^^ can bo expieaaed as

=  'yo+“g ^  = y  o+*®i(/»^)+^*^a(/> 0) +  -

(13)

(14)

In  tho nonresonanoe case dfjdr and di/rjdT were functions of /  alone. Using 
eqs. (11) tlirough (14) we can express d^Oldr  ̂ in terms of the new variables and 
the coefficients of like powers of h can bo equated in the resulting equation 
Giving Fourier expansion to tho associated functions we can get Uq, 
iS\, Eg, S 2 etc. I t  is found that when pjq — i  only E  ̂ and S i ajro nonzero and 
when pjq — 1 only E  ̂ and S^ are nonzero. Since E  ̂ and S i are the terms first 
order in A, for small values of h the dependence of amplitude and frequency no
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the phese ooours only for y  =  Q/2, i.e., resonance occurs only in this case. But 
for higher values of h the resonances wull occur for y ss  £1,3/2£l etc Thus the 
method developed is applicable for all resonances if higher order terms are con­
sidered. Considering the first order terms we get

1 00 oo
•. f 7 , =  ™  S  S

47T fto-cD m— I f / ® \ 2 'n i2i /  /  &̂ 'p—i(nO'\-mi/r)d0d\/r,
Qs £  -(n + m ^  r  "

' <T' J ... (15)

whore ngr+(m±l)239^0, 0 — Qt,

— a an- ztt { V \
H i =  ^^ expige^ J J OoÔ P— ... (16)

flfA 0  ̂ 37t an- I 7) \
{  a„exp-tg(r(,«r-J 0)cos^#dd ... (17)

In the above equations,

®o =  Qt+ i^b sin £2t) cos ^ ... (18)

A _  y^-Vo’̂ _  2 y o (y -y o )  
^  ~  h ~  h ' (19)

Thus evaluating and for particular pjq, CJg* ^2 can bo eva­
luated (Bugoliubov & Mitropolisky, 1901) and hence 8̂  etc. Thus the
method can be applied to higher orders of perturbation

3. E lbctm o  F imld at the  F irst R bsonanob 

 ̂ ft
The first resonance is characterized by y  and since R̂  and are

nonzero the amplitude and frequency have dependence on phase even for small 
values of h. The effect of this on the stability of the solutions and hence on the 
nature of tho electric field can be investigated

W ith jp =  1, (7 — 2, on evaluating the appropriate integrals in eqs. (15), 
(16) and (17) and by tho use of oqa. (12), (13) and (14), we get

Ui = ,^  [(oCa+a,) “b) exp—

^  (uĵ  gijj 2 ^ + ta , cos 20),

^  = ( y ~ f ^ ) +  '■ ^ .(« ,oos20 -i«gB in 20).
AO

. . .  (20) 

. . .  (21) 

. . .  (22)
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To solve differential equations (21) and (22) we oan introduce change of 
variables given b y'

L = / y ( « 8+ a 5) cos 

M  = / - ^ ( a a —ag) sin^ .

(23)

(24)

From those using eqs. (21) and (22) we get a differential equation in X and M  
the solution of which can be assumed to be i  — exp At and I f  =  JIfg ©xp Ar. 
Substituting these solutions we got two algebraic equations in and in terms 
of A. For i g  - 0̂  ̂ nontrivial solution the determinant of their co­
efficients in the equation should be zero. This determinental equation gives on 
substituting for and from eqs. (6) and (9)

^ = ± [ - 6T - ( ’' - r )  J ■

IVom eq. (11), to the first order in h
G  = / o o s  i/r+hUi

(25)

. . .  (20)

From eq. (19) the expression for Ui contains the terms /  exp i\jr and /  exp— 
Since ijr =  7gT+0, the expression for 0  involves terms in /  exp i(j> and /  exp— 
Hence it is not necessary to have explicit expression for /  and <j> and we can use 
eqs. (23) and (24) and the algebraic equation for L q, Afg to ffiid the values of 
/ c o s ^  and / s i n 0 .  Thus evaluating and / e x p — we get

0(t) =  Oq exp At
Q t \ ) I f ^

— T— ^r\ [ {i+r0(^3+^ 5)exp (^ n^ )

.at-^T. ’ {l+l^ («3-a») erp(-tflT) J (27)

where 'Oq is an arbitrary constant.

Since A has two values there are two solutions for 0  as given by eq. (27). 
Further, the amplitude varies exponentially with t if A is real and is oscillatory 
if  A is imaginary. B y  eq. (25), A is real or imaginary according as (y—£2/2)“ 
is less or greater than A‘£2^/04. The amplitude thus varies exponentially with 
T for those values of y  for which

___k
82 • <  7 < - lA  ^

■ + * “ r
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and thus in this case the solutionfi are unstable. Using eqa. (3), (4), and (27), 
we get the electric field as

£(a;,() = -4eipA ^<---- [ |o x p i |p r« -^ -^  - if lj» |x |l+ A O ie x p * Q ^ « -^ J

+ A C g e x p - i£ i ( « -  j + D e x p  |(W^_£2) t - x | i

+ h O \  exp iC l ----- ^ j +AO'g a x p -i£ 2  j |  j ,

where

Jh^
“ T

W =  ( a i+ i)£ l ,

(“a-as)-*^— ( y - - ^  )

8 (ocj+ajj+ iA — ^7---- g—j

Gx =

C\ =

\  F
+3) 1 -

rj _ 2 F
-  -7

■‘ ) ■

u a —
16|

and A  is an arbitrary Constant.

(28)

(29)

(30)

(31)

4. Discussion of Special Cases

Eq. (28) represents a wave with a fundamental frequency W with a propoga- 
tion constant (WjV)—P and with the harmonics of frequencies lT--£2, W'+Q, 
W—2£2 with different propagation constants and amplitudes. B ut we note from 
eq. (30) that each term is of the order of h and hence D  which is the relative 
amplitude of the harmonic of frequency TT— is independent of fe. Thus the 
amplitude of this h^'i'i^onic is o f the same order as that of W, Thus there are 
two dominant fre^quencies W and TT—£J having propagation constants {WIY)—P 
and [(TT-^^JI)/7]—/? respeotivoly. Further, if X is real these amplitudes will 
exponentially increase or decrease with time and distance. The other harmonics 
are insignificant because they'are o f the order of h.

3
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We see from eqs. (6) and (29) that the frequency W is related to fi and hence
Q

to in the resonance case. From oq. (6) the value of fi corresponding to y  S i

is obviously near  ̂ i t  is of intei'est to discuss some important

special cases corresponding to the values of y  in the neighbourhood of £2/2.

Case (i) A — 0.

This case corresponds to y =  ™  db The corresponding value oi
 ̂ o

from eq. (6) is

Hence from eq. (28) wo get the olectric field as 

F (» ,t) =  A  exp ± iA  ) |^(l+AG',D)exp

+ D ^ l + f e - ^ j o x p i ( a i o —Q ) ^ / + — j

(32)

+  terms of the order of h |

whore from eq. (30),

( ^ - )

( 4 + > )
and

_  ^  I 0  , , \
2 ' ( V

(33)

(34)

(35)

Eq. (33) oan be interpreted as a wave with a fandamontal frequency

, fe£i C 
« > = » o ± - 8 -  ~ Y

with the harmonic of dominant frequency ci)—£). The fundamental of 
frequency ci> propagates in the direction of tho"i>ump wave while the dominant 
harmonic of frequency co—£1 propagates in the opposite direction and their 
propagation constants being

HC
*̂q“*£2

n~  ± ~ 57 i ^  ”/i '  ^  ^
&Q
8 0
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Tbus WB obtain tho dispersion relation and see tliat the waves propagate without 
any attenuation in space and time.

Case (ii) y  =  £i/2 which corresponds to A =  ±fc£l/8. In tins case

£1 /G*

and from eq. (28) the electric field is approximately

h aE(as,t) =  iilexp  ±  -g - ^expitCo +I>expi(u>„-Cl)

+ . .  .terms of the orders of fe]. (36)

where the harmonies of order h have been neglected. Eq. (36) represents a 
wave with dominant frequencies cuq and Wg— propagating in opposite directions 
with tho same phase velocity. B ut their amplitudes grow or decay both in 
■space and time and hence in this case tho waves are unstable. We can say that 
both the frequency and propagation constants or© complex.

Case (Hi) : Now we can consider the propagation constant corresponding 

to a real frequency most important case since we

can luiow tho features of propagations of a signal of frequency w in the medium.

Considering eq. (28), let us put iW~\~A =  iw, whore w is real so that

Wo have from eqs (29) and (6)

£2 . O f̂i Q  . Cyy,

so that

Hence from eqs. (37), (39) and (26) wo got

(37)

(38)

(39)

I f  ^  —

(>4 )
(40)
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Since we are considering a real frequency w, the quantity W (which will be shown 
to bo related to the propagation constant) is real if

r Cl fC  /C^
I F  J ^  ( f * V  64 '

0* A*£l»
... (41)

But according to eq, (28), th© propagation constant corresponding to the ire- 
quenoy w =  PT—iA is

From eq. (42) we soe that Jc is real if  <jj is real and this in turn hold when condition 
(41) is satisfied. I t  is seen that (41) is satisfied always when C >  V, For C >  V 
it  is not satisfied for particular values of w given by

2 ( f ‘̂ ^)  8 ( f * 2 ( F ■ “̂8 ( F * V )  ■

c i  V,Hence we come to the im portant conclusion that when C >  F, there is a 

frequency band centered round ^  + l )  for which the propagation constant is

complex. Such a frequency band is called a stop band. For the central frequency 

+  the propagation constant can be evaluated. From eqs. (40) and

(42) with w =  p  ( y + l )  • se t i

, £2 /C  , , \ iii£2 /C*
W  ( f ' ' ' V ^  20  ( f * V  ■

From eqs. (30), (37), (39) and (40) we get

(44)

T. , . \ F  V  £2 , 
i> =  ± * 7 7 i — f * . y  =  j - ± -

hci
(45)

Henoe the eleotrio field to the first order in h is 

F (® ,0  =  4 e i p T | ^  ( ^ l - l )  * [( l+ A C \1 7 7 e x p w

+ d ( i +A^) expi(«;-£2)^«+.^)+...j (40)



In this case the dom inant frequencies are co and cu—£i. Furtliei it can bo noted 

that for 0  >  Vf B, wave of frequency j propagating in the direction of

the pump wave or one of frequency propagating in the opposite

direction will exponentially grow or decay with distance. This happens in 
practical situations when the perm ittivity modulation of the medium is effected 
by an acoustic wave whoso velocity V is always less than G. In this case the 
particular oleotromagnetic signal is attenuated in the medium.

Case (iv) \ Another interesting cose is to find the frequency corresponding

to a real propagation constant h (28) let us put
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K -  /? -  ^ I r
^  ~  V ^ “  2 F * 

so th at we can write the propagation constant

(47)

... (48)

Again using eqs. (6), (25) and (47) in (48) we get

From eq. (28), the frequency corresponding to the propagation constant K  is

« = («i+J)Q-»-A = k v + v

Since wo are considering a real k, the frequency tj is real if K  is real. For this, 
we see from eq. (49) that

[<7*-'2 ( f + V J  ^  64 F * /’ ... (60)

Condition (60) is always satisfied when C >  V. Thus for any real fc, co is always 
real for C >  V, but not vice versa. This was discussed in case (iiij. Foi 
C < V ,  condition (50) is not satisfied for those values of k for which

Q/C h a / ,  cav* ^  £2/<? , , AQ / cavi
2c ( f '*'V 20 V  F*/ ”̂ * '^ 2C '(f ‘*'^/'^ ^  F®) ‘ ^

For C <  V, the frequency is complex for a band of propagation constants

centered a t— 1^+1 J of width
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wave propagation constant and frequency ia reversed from that for 0  >  y . 

The electric field for ft =  ^  shown to  bo

E(x, t ) = A e x p T ^  ( l - ^ , ) * « [ ( l + A O \ D )  exp iCk{t- ^ - )

+ D  ( l  exp i ( O t -  £1 ) ( t + - g ) + . . .  1 ,

where

D =  ±

(■62)

(5.<)

The corresponding value of

£2 ,
r =  -„ ±

hCl

8

When C* <  F, the waves corresponding to a signal o f propaganon constant 

^  propagating along the direction of the pump wave are exponentially

growing or decaying with time.

5. CONOLITSION

The solution of the wave equation was saught by the introduction of a separa­
tion constant /? which is related to the quantity y  through eq. (6).' W hen the 
solution to the first order in h was considered, unstable solutions {i.e., waves 
which grow or decay in space and time) occured for y  0/2 which is termed as 
first resonance. In  this case the wave consists of two dominant frequencies

£j and w —£2 where oi =  , the former propagating in the direction of

the pump wave and the latter in the opposite direction with the same velocity. 
The nature of the waves and the relative amplitudes of the harmonics depend 
on the value of y  sufficiently near Q /2 .

(a) For y  “  ^  frequency and propagation constant are real so

that the solutions are stable.

(b) For y =  0 /2  the frequency and the propagation constant are complex 
so that the waves are exponentially grawing or decaying with time and position.

(o) For y  = ^ ± if  C >  y , the propagation constant oorres-
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ponding to a real frequenoy <o so that the waves grow or

decay exponentially with distance. This happens for a frequency band oontened 

at of width— ij . It means that an incident signal on the

medium in this frequency range will exponentially grow or decay witli distance, 

(d) For y = y ±  .a , if 0 <  F the frequency compounding to a

real propagation constant is complex so that the waves grow or decay exponen­

tially with time. Tims happens for a wave number band oentorod at ^

and width ^  signal incident on the medium in this wave

number region will grow or decay in time.

The perturbation has to be extended to higher orders for higher resonances. 
For y s  Q, it has to be extended to second order in which case the dominant

frequencies are w and u—2Q, where a — +1 j . In general for the Nt\i

resonance where yestN— the perturbation has to bo extended to JlTth order

and the dominant frequencies are u> and o}— N C l whore u) — He

width of the frequenoy band (wave number band) for which the waves are 
unstable in space (time) is proportional to
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