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Hydrodynamical approach to quantum physics*
8. N. Baecnr
Depariment of Physics, Loyola of Monireal, Montreal, Canada

For convenience and in order to foous your attention to this novel approach
{0 quantum physios, which not only bridges olassical and quantum physics in
a more satisfactory way, at least from pedagogical standpoint, but has also thoe
potentiality to overcome the limitations of present day quantum theory, I shall
al the outset summarise the conclusions arrived at.

Our fundamental hypothosis rests on the fact that the basic empirical
ohservation of quantum phenomena is that a particle possesscs simullaneously
hoth corpuscular and wave properties. Both, are physical realitios, compli-
mentary physical properties, (in the usual sense and not in tho sonse of
Jopenhagen interpretation), of a particle. Consequently, there must be an
intimato relation between the Newton-Einstein corpusoular properties and
Huygens-Maxwell wave properties of the particle. But this would need an
vxtension of the concept of the dynamical mass of the particle. The dynamical
mags of this theory depends also on tho space-timo curvature of tho amplitude
of tho wavefield. Evorything clse can be looked upon as a formal development
from this basic experience.

I will try to prove here the following results :

1) The wave function e(x,!), (not Schroedingoer’s w-functions), is a physical
reality. This comes as an inevitable conclusion from Ronninger’s Gedanken
oxperimont®. At the present state of our knowledge we can only guess about
the nature of the physical reality. I will talk on that in my last lecturc. In
anticipating the conclusions, which still are of provisional nature, I would like
to put forward the idea that the ultimate physioal realily (in so far as it can be
inferred from our present day knowledge) is the energy density continuum (in
the mathematical sense)—almost akin to the vacuum of modern physics—whose
space-time topological distortions and fluctuations give rise to observablo phono-
mena. The relations between mathematical functions and the corresponding

physically observable functions are given by the Function Algebra of Hosemann
& Ba.gohlﬂ-‘)"'*

* Ripon Professorship Lootures of the Indian Association for the Cultwa.tlon of Beience,
Caleutta-82, India, delivered in January, 1974.
** For a convenient exposition of the concept of Function Complex and its algebra as
well us ite relation to Schwartz-Temple genoralised functions see Chapter V and the Appendix
of the reference 4.
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22 S. N. Bagchi

2) Based on almost self-evident 'poutulatcs, onc can dorive a nonlincar
oquation for this wavo fiold which under restricted conditions givos rise to all
the basic relevant equations of quantum mechanics and. of classical and relativistic
physics. y

T must emphasize here that in its methodology and genoral outlook, this
theory has nothing to do with, the hidden variable theory and is also quite differont
from that of Bohm, Vigier, Takabyasi and tileir co-workers. Nevertholess,
reoent rescarches of de Broglic School clearly point out that their subguantua
Jluid ir the physical reality T am talking of. Following G. Mie, I would like to call
it World Aether. Ti appears that this must play a great role in attempts to
dovelop a univoersal ficld theory. At the present moment, to understand physi-
cally tho properties of clementary particles it would be highly desirable to find
the connections belween various unorthodox causal approaches to tra " squanlum
physics, and in particular, the most general property of this world agther and
its relation to tho corpuscle and its wave field. \

Without going into philosophical disewssions,! T would like to remurk that
all existing discussions on hidden variables and transquantum causal physics
rest on tho fundamental assumptions of the formalism of linear operators in
Hilbert, space. As soon as one recognizes the fact that our equation is non-
linoar in which the singularity as well as nonanalyticity of the wave fiold is likely
to play an important role, all these criticisms and remarks lose their force as
anything binding. .

3) We show that Schroedinger oquation (for a single particle) comes as a
linear nonrolativistic approximation and the operator formalism of quantum theory
from the condition that the wave function must satisfy the condition

p.(e*getege*) = 0 ... (Schrocdinger condition)**

4) Point mechanics (both relativistic and classioal) rosults from the restric-
tion that the space-time ourvature of the amplitude of the wave function is zero.
Wo need not assume that A — 0 to get point mechanics, although we could axrive
at it by making this noupermissible approximation. Howover, the fact remains
that cven in the classical domain & is not zero. We prove that point mechanics
romains strictly valid, oven if h romains finite, us long-as the wave field associated
with the particle dovs not suffer diffraction. The rolation between classical and
wave mochanics is oxactly analogous to that botween geometrical and physical
optics.

* For such philosophical discussions, see my loctures on the Problems of Philosophy of
Seience, to be published shortly.
** For the meaning of tho Symbuls, see later (soction IIT).
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5) Photon corpuscle’s velocity in tho Fraunhofer zone s ¢, but in the
Tresnel zono it is loss than ¢.  Thore is an intimate relation hetweon tho singu-
larity of the field representing the corpusele and the extended field outside it.

() Hoisenberg’s Uncertainity Principle noeds a minor correction. Tt is valid
for the average exporimental value. Tt noed not he accepted as & [indamental
principle of nature for the description of the physics of a single particlo***,

Tf we agreo that any physical phenomonon must in prineiple be describablo
as a Junction of z, y, 2. t, we can safely conclude that Heigenberg’s Uncertainty
principle is the price of onr representation. Instead of talking of momentum
directly in space-time coordinates. in quantum theory one is characteriging the
momentum of the particle in terms of the Fourier components of the wave field.
Consequently, Heisenborg's Uncertainty TPrinciple is nothing hut the statemoent
of the generally valid mathematical relation hetwoen the coordinates of the
Physical space-timo and those of its reciprocal space.

If we accept this point of view, then it is doubtful whethor the causality
condition, of Quantum IFjeld Theory, (namely |p, g] == 0, for space-like veetors,
assumedd on the basis of finite signal velocity), should be of universal applicability,

7) Owr work on Kepler problem? shows that Schroedinger’s yr-function is
the resultant of two partial pilot waves belonging to the pilol wave of o single
particle : €46, = .

Consequontly, il one uses i as the basis of physical interpretation. one has
to fall back upon statistical interprotation and one cannot find a deterministic
relation between yr-function and the actual trajoctory of the particle.

Tt is gencrally belioved, (albeit erroncously, that i, is not posible to formulate
quantum phenomena on a causal bagis. But the work of Hosemann & Bagehi¢-*
on the scalar theory and that of Bagehil® on the vector formulation of the theory
eonvincingly disprove this mistaken notion. At loast so far as a single particle
Schroedinger and Dirac equations are concerned, our work has mathematically
and physically proved that it is possible to dexive these celebrated equations
causally, Only futuro can show whether this causal theory and the axioms on
‘which this rests can be oxtended to cover more complicated physical situations.

At the present state of owr knowledge, one can safely assume that Einstein’s
point of view, namely, quantum mechanical formalism must be an ensemble
deseription and it should be possible to dircovor somo causal fundamontal equa-
tions which, would lead to the ensomble deseription for a collection of particles,
i¥ the correct one also physically.

*** Tt is worthwhile to note that from entirely different consicderations Dirac® also camo
Lo the samoe conelusion,
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T would particuarly like to emphasize here that although our theory is a
causal theory and our formalism is closoly related to Hamilton-Jacobi formalism
of classical mechanics and to Hamilton-de Broglie pilot principle of quantum
mochanios, it is, nevertleless, not a march, back to classical physics. As will be
evident later on, the initial value problem of classical mechanics had been changed
to boundary value problems of the mechanics of a partiole, just as in wave
meoh.anics.

8) So long we have been talking of a scalar ficld. Now if we extend these
ideas to & vector field in Minkowski space, we again get a nonlinear field equation.
This veotor field automatically splits up into two parts :

(i) an irrotational part which can be oorrelated with the linear momentum
of the centroid of the particle associated with translational motion; and

(ii) a vortical part which can represent a particle with intrinsiz angula
momentum. This vortex has the dimension of Compton wavelength
in physical space. \‘

We get the Proca equation for any particle with any spin*, il the \‘particle
is nncharged and/or in the absence of an external ficld. We obtain Dirac equa-
tion in the form of a second order linear partial difforential equation, the so called
iterated Dirac equation of Sommerfeld"!, provided we integrate the wave field
ovor its vortical domain. Only the hypercomplex quontities introduced by
Sommorfeld have been replaced by tho more physically meaningful concept of
the components of the four-rotation of the fiold. ‘ '

With this vector ficld and the universal existence of vortica] field, one can
infer** many properties of particles which appear as mysterious both from classi-
cal and [rom quantum mechanical point of view, e.g., the trembling motion
(Zittorbewegung) of the clectron proposed by Schroedinger, velocity ¢ of the
Dirac electron, (see ref. 12), the encrgy spectrum of the roton of 4He and possibly

* It is desirable to distinguish between the quantum mechanical quantity spin and
the intringic angular momentum (in the classical sense) of the particle. For details see
later (section XII(iv)). ’

** Unless and until one gets tho singular solution as well as all possible non-aunalytic
solutions of the nonlinear partial differential equation and Enows how the guantum vortices
intoract with ono another when they penotrate into the vortical domain of the particles and
also the nature of the turbulonce oreated in the resultant wavo field due to the interaction of
waves of individual perlicles and the return of this resuliant wave field to the equilibrium
situation, one cannot hope Lo predict anything definitoly. It is obvious that this project can
hardly be carried out at the present stage of our knowledge. Consequently, in order to
proceed further, we must try to guess iniuitively by positing physically plausible eonjec:
tures on the basis of our existing knowledge. I noed not thorefore apologize for the physicud
oxtrapolations to be found at the concluding part of my lecture.
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the nature of nuclear forces and the mechanism of the ¢reation of elementary
particles.

With these introductory remarks about the aim of these lectures, let me
first say a fow words on Renninger’s work before proceeding to develop the theory
on postulatory basis.

II. RENNINGER'S GEDANKEN EXPERIMENT

It is now generally believed that no experiment can simulaneously prove
tho corpuscular and wave aspects of a particle. Renninger wants to prove
with the help of a Gedanken cxperiment—(which he asserts can be vealized in
praotice also)—that each light quantum (or an electron) is a corpuscle of energy
which is guided causally by its wave ficld existing outside the domain of the
corpuscle. His arguments are based on two expcrimentally establishod facts,
namely,

1) All interference oxperiments run in the same way whether many photons
appear sii:nulta.neously or they appear slowly one by one. That means,
cach photon interferes with itself , (cf. also Dirac??).

2) Many partially coherent beams' of light remain coheront whon they travel
in different and separated paths. Michelson & Gale® had established
this experimentally for an optical path length of 2 km.

Iigure 1 represents a schematic arrangomeni of Renninger’s experiment.

() ®)

Fig. 1

A parallel beam of monochromatic light (1) is spatially separated at (2) into two
beams 4 and B and aftor a certain time these two separated beams meet at (3).
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Hera the two beams are allowed to interferec with each, other with the help of a
half-silvered plate S. The path difference betwoen A and B can be so arranged
(with the help of the mirrors 8,4, Bp and/or phase plates) that oither the field (4)
is bright and thoe ficld (5) is dark or vice-versa. Further, the light source acts
in such a way that not morc than ono photon enters the path between (2) and (3)
simultancously. Moreover at different places (6) (7) (8) and (9) one can insert
detectors and/or A/2 plates.

Now. supposo the oxperimental arrangement is so made that initially wo
have (4) bright and (5) dark. Wo can then infer the following oxperimental
obsorvations.

(a) When nothing is inserted in the path, all the photons come to (4) and
none in (5).

(b) Tf we insert a detector in (6). we find the two possibilities witk 507,
probabilily, namely.

(i) Tf the photon is registered in (6), it vanishes and both (4) and (5) rémain
dark. No experiment can detect the presence of the photon after it
has been absorbed by the detoctor.

(ii) Tfthe photon corpuscle does not pass through (6), obviously it is passing
through, the path (7). This can be established by the result different
from the situation referred to in (i). Tn this case the photon comes
either to (4) or to (5) cach with the probability of 509%,. That means,
by blocking the path A we have changed the experimental outcome.

(¢) Now, let us make another experiment in which instead of the absorber
we lave inserted a porfoctly transparent A/2-plate in (6). This time all the
photons will be registered at (5) and none in (4). That means it is possible
through an oxperiment to guide a photon corpuscle whether they are located
in the path A or in the path B always to (5). Note that without the A/2-plate
or the ahsorber in (6) all the photons went to (4).

Thus, we can unequivocally conclude from this series of experiments that
the corpuscle of emergy belonging to the photon lying somewhere between (2)
and (3) can be guided by tampering with the extended wave ficld associated with
this photon and far outside the domain of this corpuscle of energy. Evidently,
this extended wavefiold must have some physical reality since ono can, by inserting
the phase plate suitably, determine the fato of all the—photons irrespective of
the fact whethor the photon’s corpusocular energy lies in the path 256 -8 —» 3
or in the path 257 —» 9 —> 3. Moreover, one can direct all of them cither to
(4) ot to (5) according to one’s convenience,

Now, a serious question arises. One might pertinently ask : What happens
to the wave ficld when the photon vanighes in (6) through an absorber ¢ We
can in no way dotoct the presence of this wavo field after the photon had vanished.
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There are two easy solutions (and DLoth are physically untenable) to this
dilemma. Either, one can say that the field vanishes instantancously. Tho
field then must contract with ultraphoton velocity which contradiots the spocial
theory of relativity. Or, the wave field must bhe energyless whioh contradicts
almost self-evidont conclusions arrived at from Renminger’s experiment, sinco
cuusal connection must be due to some interaction of energy.

But both these two unsatisfactory cxplanations can be avoided if we assumo
that the physical reality i the continuum of energy density and the corpuscle
and it8 associated wave fiold are space-time topological distortions and fluctuations
of this continuum.

Furthor, praciically the ontire energy of the photon is concentrated in the
singular domain of the topological distortion of the continuum. After the photon
is ubsorbed, the wave ficld, which must carry slight energy, returns back to the
unperturbed state of the continuum, whose propertics cannot be moasured.

It might be noted that this plausible physical conjecturo about the physical
reality is perfectly consistent with de Broglio’s idea of the double solution of
the pilot wave. Renninger himsoll, however, did not speculate about the natwre
of the physical reality wid its connoction with, the wave field, although ho asserted
to have proved that the wave ficld associated with a particle is a physical reality.

TIT. DERIVATION OF THE GENERALIZED EQUATION FOR THE SCALAR
FI1ELD or A SINGLE PARTICLE
(i) Notations :

Underlined guantities are four-voctors in Minkowski space. The coordinates
of this space are xy, Ty, Ty, ¥y = ict.

Signature : 4+ + + —
Examples : Four distance, x = x--ict.gy = Zxssy

§;' (§ =0, 1,2, 3) aro unit vectors along the four mutually orthogonal axes
and s, along the time axig indicate the three vectors in physical space.
Four volocity v = dz/dr = K(p-+ic.s,),

where the proper time d7 is related to the local time dt by
2\~
di = kd7 and x = (1-—”7) .
c

The sealar product of v with itself is given by v* = —c?
An arbitrary four-voctor A(z) is reprosented in terms of four components by
é = An 81, +A282+A383+A080-

It will also be convenient to write the veotor product of two and throe four-vectors
in the following way : (cf. Sommorfeld 114)
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Voctor product of two four-voctors, the socalled six-vector F, is writton as
F =[4B)
whose components aro
Ax 4
By B

Vector multiplication of a six-vestor with a four-vector gives again a
four-veotor.

Fy =

= —Fy, (k,1=0,1,2,38).

Thus,
D =[A[BC])
Tts jth component is given by .-

Dy = X3 Ay(B4Ck—ByCY) \
k=0

The four-gradient y = v+% . 8¢

According to Function algobra, the 1’Alembertian,
2
] = ¢2— 02%22 , results from the convolution product of gradient operators.

For any arbitrary four-vector,
dA4 oA

~ar = 97 TUv4 g

where
. 04 a,4_ .04 E) i
(AVA = Ay s Gy s gy Ty

Wo shall write all equations at first as Lorentz-invariant world cquations
in Minkowski space. Any nonrelativistic oquation will be derived from the
corresponding relativistic equation by making appropriatc approximations.
(ii) Definitions :

Lot the wavoe funotion associated with, a particle be represented by the scalar
funotion

¢(z) = a(z) exp ¢ W(z)/k), ~ @
where a and W are real and & is Planck’s constant  divided by 27. Later on,
it will bo shown that W(x, ¢) can be identifiod with Hamilton’s principal funotion.

The generalized four-momentum of the corpuscle (in the language of point
mechanics) is defined as

P=pPy+pe o @)
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whero
Po = B . (3)

ropresents the field momentum due to an external field (of clectromagnotic type)
whose four-potential is givon hy ® and can be oxpressed as

©= ¢+—’o Bo-80 ... (3a)

Tn clectromagnotic theory, the vector potential @ and the scalar potential &,
arc rolated to the field quantitics E and B by

B =curl®; E = ——vaa% —grad &, ... (3b)

¢ is the invariant charge of the corpuscle.

py represents the four-kinetic momentum of the corpuscle, (the subseript N

would remind us that thig is the momoentum of the corpuscle in the sense of
Newton and Einstoin). But in view of the complemontary propertics of tho
partivle mentioned in section I, we have to extend the usual definition of this
quantity. Wo define it by the relation

pN =Mo’U aen (4)
where - -
M, = pum, ... (B)*
and
o[ 1o0e (B (6)
r=| T(Tn;:)] o

/. for reasons discussed lator, is called the mass factor and m, is the conventional
rest mass of the particle.

Consequently, the dynamical mass of the particle
M= “myk on (7)

dopends on the space-time curvature of tho amplitude of its associated wave
function and, in general, changes if tho wave suffers diffraction or the particle
finds itself in non-stationary states. The usual expressions of point mechanics
45 well as of those of geometrical optics are obtained from the conditions

* This relation was obtained first by de Broglie in 1927*, In the language of de Broglio
school, 4 is referred to as Bohm's quantum potential.

10
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OJa=0; pu=1 e (B)F

Only under this special condition the dynamio mass M as well as its kinetic

momenium reducos to the usual expressions of relativistic mechanics. We shall

sec bolow that this mass factor 4 is very important for the causal description of
the trajectory of the particle passing through slits.

(iii) Postulates :

As noted previously, corpuscular and wave properties of a partiole must
be intimately and uniquely connocted with one another. We thercfore postulate
that this connection is given by Hamilton-de Broglie pilot principle. That is,

h(ve _ ve
p=yW =g [1 - = ] (Postulate I) L O
Hore, ) \
* () — — (W) \
€* (z) = a(z) exp (_T) .\. {10
and |
ve = (V_a+.% pa) oxp (iW [k) wo (11)

\

* This important special case was first pointed to me by my revered professor (late)
S. N. Bose in 1954 while, on a short visit, to Calcutta from Fritz Haber Institute, Berlin, 1
was discussing with him the scalar theory which was still in its nascent stage. In fact, un-
aware of de Broglie’s expression (5) and (6), we had to incorporate tho mgass factor 4 in the
space-time dependent mass M, for the sake of consistency of the theory. Prof. Bose’s remarks
had helped us immensely in introducing the factor x4 and thus formulating the scalar theory
succossfully. Of courso, all through we had the benefii of the vast scholarship and constructive
criticisms of late Prof. Max von Lauc. I would like to take this opportunity to express my
deep gratitude to these two savants as well as to late Prof. A. Einstein and to Prof. Louis de
Broglie for encouragemeont and certain important remarks before the work on the scalar theory
was finally published.

** 1t is interesting to note that Prof. A. Einsten liked this formulation of tho generalized
momontum as a function of the wave funotion. Later on, we found that the oxact and com-
plete solution of the corresponding nonlinear differcntial equation (18) together with (9),
(or the eorrosponding expression (122) of the voctor theory), could offer us the mass gpectrum
of free and rolatively stable elementary particles. The masses are given by (cf. eqns. 4, 5. 6
and 20).

]
o '_'}E[:ﬂ (-a-;—‘:—+ U)n—-(srud W--l’-)’:F-l;:,ifi2 ] o (08)
and
W 2! .
=[5 (ror-weawon)’] v

It must however be notod that for getting the mass spectrum of unstable elementary particles,
which arise from the interaction of wave fields within the vortical domains, (thus generating
turbulence), we are faced with insurmouptable mathematiogl difficulties gs well as completely
unknown physical laws.
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Energy-momentum density is therefore given by
ee*@ = _;% [e"'v_e—eve']. . (12)

In order to get the desired equation for the wave field wo postulate further that
the energy-momentum is conserved. That is,

V {(ee*p) = 0 (Postulate IT). .. (18)
(iv) Differential Equations :
Substituting (12) in (13), we get immediately the differential equation (14)
in a very symmetrical form :
e*e—e[]e* = 0. . (14)

One can also arrive at other equvailent expressions for the wave fiocld. Thus,
from (11) and (13), we get

Oe+ [;ﬂ: — g?.]crﬁ. ... (18)

Substituting here the expressions for p given in (9), we get

e~ [_I»(Xf — —V€*)2+ ':.'a‘.‘ ]e =0, .. (16)

4\ ¢ e

All these equations (14-16) are generally valid for any particle whose wave field
can be represented by a moalar function. They also satisfy the pilot principle,
(0q. 9), as well as the principle of energy-momentum conservation, (eq. 13).
Nevertheless, they are too general to be of any pracitical use, at least at the
present state of our knowledge. Moreover, in order to bridge the gulf between
the equations of this causal theory and the oxisting fundamental equations of
classical and quantum phyrics, we need a differential equation in which the
characteristic properties of a particle, (e.g., rest mass, charge) enter into the
equation explicitly.

This can be easily achieved if we use the definition (2) of the generalized
momentum and its connection with the wave field, (the postulate I, eq. 9). We
first note, (cf. eqs. 2, 4, 5, 6),

(P—pe)® = py* = —(umye)?. . {17)
Replaving the value of p? obtained from this equation in eq. (16) and remembering
the value of 4 given in (6) we finally obtain our desired equation, namely

Oe+gl2(@e-p)—pet—myiete] = 0 (18)
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Inserting the expression (9) for p here, and subsequently multiplying with e*

we got a symmotric form of the differential equation (19) of a given particle, which
contains bogides its wave function only its prescribed properties, namely, the
rost mass and the charge, moving under a given external field of electromagnetic
type.

* e ele? 2 [(e%ge—ege*) Pl s [(ma0)t+plec* = 0. (19)

We assert that oq. (18) or (19) represents the most general differential equation
governing the motion of a given particle, (whose wave field can be roprosented
by a scalar function), under a given external field of electromagnetic type. This
aggortion gats its full a posteriori justification from the fact that it reduces to the
well known fundamental equations of classical and quantum physics under well
defined rostricted conditions. )

Tt might bo noted that all the above differential equations are Aon-lineur
partial difforential equations. Our work on the Kepler® problem strong]y\,suggcsts
that nonanalytic and singular solutions of these cquations would be of groa
physical importance. An cxact and complete solution of this cquation (I8)

would be needod to understand as yel mysterious properties of a particle*.
TV. GENERALIZED HamiLTON-JacoBI EQUATION

Tf we nse the expression (6) for 4 and the postulate 1, (eq. 9), in the €q. (17),
we get

(VW —pottmplet = Rt E e (20)
From (9) it follows
p — gied W H=—a-gi .

Now, let us rewrite the fonr-vectors p and p, in the form
p = p+—Hs, (220)

Pe = pet+—Usy, (220)

* It might also be noted that all the above equations involve both € and its complex con-
jugate ¢*. What 18 the significance of the fact that no general wave equation can be formulated
ocithor with ¢ or with e* alone ? Mathomatically one can conclude from this that the most
goneral wave function is nonanalytic. What is the physical significance of this  Does it
moan that the invariant charge of the particle can perhaps be expressed in torms of the pro-
perties of the wave function only without explicitly assuming the existence of the charge 8%
an additional detum ?
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Eqg. (20) then for the case of point mechanics i.c.,[Ja — 0 (8) reduces to the well
known relativistio Hamilton-Jacobi equation (23) in thoe field of electromagnotio
type :

(grad W—p,)z—( H—; v )” F (o) = 0 .. (23)

Further, if H ia a system constant, one can oxpress W through integration of
(21) in the form

Wi(x,t) = S(x)—Ht ; H—my? = E = constant o (24)
Tn the nonrelativistic case éq. (23) reduces to the nonrelativistic Hamilton-Jacobi
oquation (25).

(grad S—pe

2 —
Co— )—+U=E; (l:]a:O; E — constant; m—"my
2m,

My

- i<<1) ... (25)
Thus, we are porfectly justified Lo characterize point mechanics ag well as geo-
metrical optics by the condition (8). Tt must however be noted that in order
to solve the generalized H—J equation (20) and to determine the trajectory of
the particle, onc needs the amplitude as a function of space and time. That is,
the initial value problem of classical mechanics has heen changed to the houndary
value problem of quantum physics. ,

Tt is obvious that the eq. (20) for the phase of the wave function % o dilleren-
tial equation of the first order and. cannot represent a wave equation. But in
the hands of Schroedinger this wa; changoed into a second order partial differontial
equation with, the help of operator formalism whose physical significance, T think,
has not yet been fully explored.

In wave mechanics, one defines

h
1’__ _V = _1_701) ees (26(1)
or
, % [ ]
| v Eed=pop; ;5 = —Ho
and
Pop® = —H2[] ... (260)

But, according to Function Algebra of physioally observable functions, the con-
volution product, (and not the usual product), of the gradiont operator with
iticlf yields the D’Alembert’s Operator. That is,

Pop *Pop = —H2[] . @)

(* symbol for vhe convolution product).
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From the general theory of Fourier transformation it therefore follows that
Pop of (26) is not physiocally identical with the generalized four-momentum of the
particle p(x,t) but its mathematical representation in the Fourier space. As
noted proviously, we are therefore justified in concluding that Heisenberg’s
Uncertainty Principle is the price of the ropresentation of the physical quantity
p(a, t) by its Fourier transformation.

V. IMPORTANT SPRCIAL CASES OF THE GENERALIZED WAVE EquaTioN
(i) Klein-Gordon Egquation :

The generalized wave equation (18) reduces to the well-known Klein-Gordon
equation.

Oe— (32 )’e —o, - (28)

for the special caso p, = 0. \

(i) The Wave Equation of Optios :
For my = ¢ = 0, oq. (18) roduces to the wave equation

1 9%
VZG__‘.O_z a-t: = () cee (29)

From the generally valid equation (18), we can at onco conclude that eq. (29)
governs the motion not only of photons but also of any neuiral particle of rest
mass zero, provided its wavo field can be represented by a scalar function.

(iii) Bquations of Wave Mechanics :

In wave mochanios the differential equations are obtained from the operator
formalism. But in this theory p as a function of x and # is directly related with
its associated wave function, also a function of x and ¢, by the postulate I, eq. (9).
Now, one can casily establish that the usual operator formalism results when

the wave function e(x, t) is such that it satisfies the Schroedinger condition (30)
namely,

@ovele = — (55 .2 (30)

Using this relation in the generalized wave equation (18) we obtain the relativistic
Schroedinger-Gordon equation '

et s [ 2 (page)—pete—(moolte] =0 )



Hydrodynamical approach to quantum physics 35

Let us now look at the important special oase, namely, the so called stationary
gtates of the wave field. Then it follows from (1) and (11):

0% H\e

= ‘(T) ¢ .. (32)
provided oa oH

S=0 wmd 5 =0 . (33)

Using thoso relations in (18) we get:

v2e+fl, [(H:U)”-p,”—(moo)ﬂ-—z(p : p.)] e=0. .. (34)

For an oleotrostatic potential, i.e., pe = 0, eq. (34) is the relativistic Schroedinger
oquation used by Sommerfeld in investigating the fine structure of the hydrogen
spoctrum.

Finally, using the relations (30), (33) and the nonrelativistio approximation
| .M '-m°

S << 1 as well as the approximation |pe| << |p|, we get from (34)
0

the time-indepondont Schroedinger equation (85).

vie+ 2;:0 (B— 0)6*2%‘ (pe.grad €) = 0, <. (3b)

where
E=H —moc“.

VI. EXTENsioN oF PoiNT MECHANICS—DIFFRACOTION FORCE

It is well known that classical as well as relativistic point mechanics cannot
oxplain diffraction phenomena, since they do not take into consideration the
amplitude of the wave function. But with the redefinition of the kinetic momen-
tum of the particle as given by eqns. (4-7) one can study the motion of a particle
[ollowing the methodology closely analogous to that of the usual point mechanics.
Tho factor 4 produces a new type of force, the diffraction forco, which deviates
the trajectory of the particle whenever it passes through a slit and always accord.-
ing to the pilot principle.

In order to see this, lot us express the four-force F by

F= g; M. .. (36)

Since the kinetic momentum p is given by the difference of two field quan-
Lities P and p,, it can itsclf be lo—oked upon as & field quantity, Consequently,
Wwo can write (36) in the form

13 = (92)8” (37)
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¥rom this, using the four-dimensional vector notations, we get
F = y(ve.py)—[v[V px]l- (38)

(The subscript ¢ denotes that this quantity should be kept constant during tho
difforentiation processi.
- Further, from (9) and (2) it follows
lvp]=0;
or, - (39)
|lvpyl = — [V Pel.

Substituting this in (38) and noting that (v.F) = —;;(Mooz) we can writo the

four-foree F givon by (36) as tha sum of two types of foroes, namely, :

F = Fp+F., \

Fo =[]y o] b (40)

wheroe

is tho well known Lorentz force duo to the extornal olectrodynamic field and
ED = — MO’V /. .. (41)

Tho spatial compononts of this four-force Fp is given by

2

Fo— =" gadu; (k= \/——1_1.62/05- ) . (42)
We call this Fp as the diffraction force since it results from the diffraction
of the wave ficld and vanishes in the case of geometrical optics and the usual
point mechanics.  Since the diffraction force is obtained from the gradient of g,
one can also formally characterise 4 as the quantum potential, but it must not
be ovorlooked that it exists only when the wave field suffers diffraction or exists
in non-stationary statos. ,

VII. DE BRoGLIE RELATIONS

De Broglie had shown that the phase velocity x of the matler-wave is
a space-lika vector and the particle velooity » is the group velocity.

. Tho phaso velocity is given by dW/dr. One can express this as

d
- wow e (43)
where
b= o (atios) . (430)

V1—u?of)
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From (21) and (22) onc gets

(up)—H =0. v (44)

Remembering that p ig always orth;ogona,l to surfaces of constant phases, one
finds that the component u, of i along this orthogonal direction is given by

H _pmic*+U

Y= [p] = Tamgcvtpel” (45)
For u =1, this is the reciprooal relation of de Broglield,
Now, rewriting py given by (4) in the form
1
Py = py+ - Binso;
, ... (46)
py = Mv; Exy =me* ]
ono gots the genorally valid relation
2, —_
v =°__P_N - glad W—ed | (47)
Ey ow
a‘ +e¢o

which is known as formule du guidage of de Broglie*.

Finally, expanding the phase W in power series around a world point z,
and nogleoling all terms higher than the first order, one gots the famous Einstein-
de Broglie relations. Thus,

e(za+dz) =~ a(zq)exp [ ~{( W(xu)‘f'(dx P xa)}]

and

h R —~ H(xa)
el = —h .. (48)
As iy evident from above, the relations are strictly valid for plane waves. They
conneet the wave properties A,v with the corpusoular properties p, H in the
neighbourhood of the centroid of the particle, (i.e., the singularity of the wave
fild). But the relation (9) connects them everywhere and for all casos,

A¢=

VIII. GENERALIZDD ANALYTIOAL MEOHANIOS
(i) Lagrangian Mechanios :
The rate of change of the generalized momentum P defined in (2) can be
cxpressed as, (since it is a field quantity),
dp .
a-'; = z(:;,.lo). (of. 39) ' . (49)

11



38 S. N. Bagchi

or

s o
LI

Following Schwarzchild?® (and regarding the Lagrangian as a function of zy, vy, #)
we define the Lagrangian by (51)

.
L((tj, Vg, t) = ( ;(13) (5])
2
- _.4‘1?0_ +(wpe)—U e (52)
Now since \
0 Ly kv |
oy (K) =& e (53)

and the quantities pe, U and g aro functions of x and ¢, we get from (52), (50)
and (2) -

oL .
-a—;;zll'mol(vj"l'_pej‘—’pj; (z;:v,; .7=1,2,3) . (54)
opy _ 0L _ 3 (LB me g .
== o ()T S G=123 . @)

Differentiating (54) with respect to time along the world line of the centroid
of the particle we get Lagrangian equations of the sccond kind (56) :

d oL AL

e I M ._—-.. e 56
@i % o= =123 (66)

From (56) using oaleulus of variations one gots

J Ldt = Extremum .. (87)

It is interesting to note that we have not had to postulate the Principle of Least
Action. It follows automatically from our two postulatos and the definition
(51) of the Lagrangian.
(ii) Hamiltonian Meohanios :

In section IV wo havo seen that Hamilton-Jacobi equation follows from
our two postulates. Now, from (2-7) and (21-22) we get

H = Ut-of(pmec)i-+(grad W—pe)tlh e (88)
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and from (22) and (52)

H = (pv)—L e (59)

It is therefore obvious that H represents the Hamiltonian. This can be proved
casily by putting g = 1,Ja = 0, (the conditions for the validity of point mecha-
nics) and using (64) in (68). We then get the principle of conservation of mechani-
cal energy, namely,

H=3% i’]:i. :i?,——L = constant ves (60)
i 0:::,

It must be noted however that in the gencral ease, (¢ #£ 1, [(Ja 5 0), H need

not remain constant. Nevertheless, due to tho continuity condition, (Postulate TT,

eq. (13)), the energy of the particle is not lost. As proved later, under suitable

conditions there can be an exchange of energy between the corpuscle and its

extended wave field. T would leave to you to guess what its significance might

he in the concept of pseudo particle, hare mass and renormalised mass of quantum
ficld theory,

In order to convince you finaily that H given by (568) is the generalizod
Hamiltonian function, we shall prove that H satisfies Hamilton’s canonical equa-
tions of motion.

Let us consider H as a funotion of py, 2y, vy, and 2. Then from (54) and (59)
we get

oH

A =0; '=15213
o, (J )

Consequently, H can be looked vpon as a function of the independent variables
*1, D1, t.

Moreover, from (54), (56) and (69) we get

_OL _ oH _ _ dp
0x; - oz ar
(j=1,2.3) .. (61)
OH _ dx
apy dt -

Those equations are evidently Hamilton’s canonical equations of motion. But
now they are proved to be valid generally, including diffraction phenomena.

It would be evident fiom sections TV and (VI) that the only drawback of
classical mechanios is the fact that it did not take into account the amplitude of



40 8. N. Bagchi

a wavo, although its phase W provided a powerful tool in the hands of Hamilton
and Jacobi. Tt is unfortunate that these classical giants did not consider the
phase W as tho phase of a physical wave, but only as a tool for calculations. Tt
is rather surprising that even Hamilton did not pursue his ideas more thoroughly
by taking the amplitude also into consideration. Were they too much influenced
by the philosophy of Newton that a physicist should not speculate ? Anyway,
one cannot but wonder at the beautiful and powerful edifice they had built up.
We have seen here that by mercly incorporating & factor x dependent on the
amplitude, the entire edifice of classical mechanios vetains its general validity
and this structure is powerful enough not only to offer an explanation for the
diffraction phenomena but also can cxplain quantum mechanics in the spirit of
Newton, Huygens, Maxwell and Einstein.

IX. CrassicAL WAVE PHENOMENA

equations of point mechunics and wave mechanics of a single particle.
this theory the corpuscle and its wave are intimtately connected together, we
should expect that this theory should also load us to the basic wave properties,
so far as they can bo deduced from a scalar theory.

In pre-quantum physics waves were thought to be generated by the motion
of a colloction of particles. The waves as such did not constitute a distinel
physical entity. For a single particle, it was meaningless to talk about waves.
In dealing with maocroscopic properties it was found to be cdnvenicnt, instead
of considering the motion of individual particles, to forget about the existence
of particles and consider only tho wave equation with proper boundary conditions.

From Maxwell, Hertz and Lorentz, we have learnt that for electromagnetic
waves, only the ficld quantities are of importance. Though this field is generated
by the motion of charged particles, the radiation itself can be studied only by field
equations and there is no place for a particle in this radiation,

With the emergenco of quantum phenomena the picture has been changed
radically. Not only it has becomo perfectly meaningful to talk about the wave
properties of a single partiole, radiation ilself is considered to be nothing but a
collection of particles and pseudo particles. The waves per se as & physical
reality had vanished from our concopt. The particles exhibit wave propertics
because their motion is governed by the so-called wave equations, although the
wave function itself is not a physical 1cality.

In the light of this new theory, however, both the corpuaéle and its pilot
wave are physical realities. For electromagnetic radiation, we have to explore
the corpuscular properties of the photon as well as its relation to its pilot wave
and the properties of the pilot wave itself. The trajectory of a single particle
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is completely determined by eq. (9), if we know its initial location and the wave
funetion for all world points. But, contrary to classical mochanics, the problem
involves the solution of the wave equation undor specified boundary conditions.
Morcover, in order to compare our results with those of classical and quantum
physics, we have to consider & collection of particles and various possible normali-
zations,

(i) Normalizations .

An onsemble of particles without mutual interactions can be defined in
such a way that the pilot wave e is the same for all partiolos, except for a statis-
tically uncorrelated phase shift §. That means,

ex eXp (10x) = ay oxp ¢ (%/—4’ +d‘k) = a exp (i I;EV), for all k. .. (62)

For this oollection of particles one can chooso the initial density of corpuscles
plx) within a time-like 3-dimensional hypersurface of the spaco-time world in
such a way that it is proportional to the square of the amplitude of the pilot
wave. That is

plx) = y%ee*; (y® = constant). (63)

This is the collective normalization. But if one chooses the proportionality
constant in such a way that only one corpuscle lies within this hyperﬂurfuca wo
have evidontly the individual normalization.

In order to ohoose y? appropriately for differont cascs, it is necessary to
consider the energy-momentum current density of the corpuscles.

From the postulate II, (eq. 13), we get for clectromagnetic fields
V-(ee*py) =0

P) .
0—? =0, Z-,Pe =0 and 1 Pe = % Us,. .. (64)

Consoquently, the energy-momentum of the corpuscle is conserved only in
stationary gtates and for p, # 0, in that particular inertial system in which the
sources generating the field lie at rost. The invalidity of (64) in the general case
does not mean that energy-momentum is lost, but only the fact (cf. eq. 13) that

there is an interchange of energy-momentum botween the corpuscle and its
pilot wave,

From Gauss theorem and eq. (13) we get
Jee* pd8 = 0.
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Now choosing this closed hypersurface S as the 3-dimensional physioal valym,
at two different instants, ¢, and #,, and using (22) we obtain
[ee*H dv, = [ ee*H dv, = C, = constant for all ¢ (65)
A 3
(dv, is 8 volume element in physical space).
Lat us now choose 2 in such a way that at #, within each volume element AV,

Alf7 y2ee*Hdn, = 1, for all k. ... (66)
k

Then within the world tubo enclosing only this volume element and lying
paralle]l 10 p the relation (66) remains valid for all time £.  Moreover, the density

of packing of such world tubes within the hyperspaces S (i.c., physical vqlluma V)
al any any time remains constant and is given by

plag) — A_lvk — yee H(xy), (67)

where z, i# any point within AV .

We now choose the ensemble normalization by the relation

Vi= g- (Ensemble Normalization)., (68)
[}

whore N is the numbor of such world tubes within V and reamains constant for
all time.

For the static and stationary casa, (cf. 64), if we construct the woild tubes
parallel to py, then

Plx) = v*(ee*H)(x) (69)

gives the density of corpuscles and remains proportional to ee* H for all time
provided it was chosen in such a way at a time # = ¢, The inertial system in
which this is the case is really the proper system, i.e., the system in which the
sources are at rest and the wave field is stationary.

Further, if H is a system constant, then in this particular rest frame, one
can choose ' -

= % (Maxwell Normalization)
o, oo (70)
p = Nee*.

For reasons to be discussed later we call this Maxwell Normalization.
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One oan then also choose

1
'_-—-
Y=g

| Y
p = ee* (Wave Mochanical Normalization)
In these two special oases ee* has the dimension of donsity (cm-3). From (71),

we also get
Jee*dv, = 1. v (72)

Tt is to be noted that though (71) is also valid for nonstationary wave field and
nonstatic exicrnal fields, the subsidiary condition H = constant implies that
for nonstationary and polychromatic wave fields and nonstatic oxternal fiold ee*
cannot give us the density of corpuscles.

Finally, the individual normalization is obtained when y? vanishos in all
volumo clements cxcept in one particular one around z = zj(ty) which has the

1 .
value -W. With AV; — 0, we have
= ;* S(@—ay(ty)) . (13)
and [ ylee*Hdv,, = H(xy (t)), (of. aq. 67) . (14)

(8 18 Dirac’s delta-function).

Eq. (74) givos the measurod valuo of tho encrgy of the corpuscale at the
point z; at & time £.  In most of the experimental situations we havo the ensomble
normalization.

(if) The properties of the photon and its pilot wave in Fraunhofer and Fresnel Zones

We havo already proved that the pilot wave of a photon satisfies the
oquation of wave optios (soalar)

Oe=0 e (29)
From eqns. (4-7) and (46) it follows :

Py = py+ Z Enso

py =My ; Ex = Mc? e (78)
1
M =pmgic; My=pm,; VS

Since for photons my = e = 0, we have

My = pmy = Eo‘/_':'g' e (76)
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For the diffraction force on the photon (cf. eq. 42), we have
p ko _ @
FD—- -—K grad .J ao nae (77)
The volocity ¢ of the photon vorpuscle (cf. cq. 47) is given by

(78)

We noto that tho corpuscular properties of the photon given by (75) cun be cal-

culated only with the help of tho properties of its pilol wave e. TFrom tho known
propertios of Fraunhofer diffraction we can infer that in this domain. |
\

Ca = 0. \ (79)

Thus in the Fraunhofor zone both M, and Fp vanish and the velocityt of the
photon corpuscle |p| = ¢, other.wise py and Ey would vanish. Consequently,
in Fraunhofer zone, the photon corpuscles move in a straight line normal to the
surfaces of constant phasa of its pilot wave with a constant velocity o. This also
follows from (9b) and (20) :

0=M,= 1 v —(vW)y .. (80)
Consequently, y_W ie a light-like vector. )

From (9a) we find that the rest mass of tho photon corpusclo expressed
in torms of its pilot wave, namcly,

my = 1 \/El—_‘-’;ﬁ (YW)z (cf. 9a)

also vanishes identically throughout the Fraunhofer domain. In the general caso
the phase equation (20) reduces to

(grad W)— (%b"ti)’ = %‘1 72 . (81

which for goomettical optics, ((Ja = 0), is identical with the eikonal equation.
The Lagrangian and the Hamiltonian functions are given by (cf). eqs. (52)
and (58)

I =Y o
__..K\/ D-; | o (82)

H=o \/(grad W)’—hgg—F = M e (83)
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Evidently, in the Fresnel Zone [Ja cannot bo equal to zero. From (76) we
sec that in the Fresnel zone we must huve

Ha <0, (84)
otherwise M, would be imaginary.

No§v, s.nce for photons de Broghe relation (46) becomes
uplo| = & (85)

The phase velocity component up, must be greater than ¢, otherwise M would
be¢ imaginary.

Consequently, in tha Frasencl zone tho valocity of the photon cotpuscle must
bo less than ¢.  This does not contradict the second posulate of the spccial theory
of relativity since it dealg with point mechanics and the transport of encrgy vakes
places through the photon corpuscle moving under conditions wheve the relation
| Ja == 0 is fulfilled*.

We must thorefore carefully distinguish between the velocity of the photon
corpuscle and the constant velocity of the Huygon’s elementary waves. That
the Huygen’s elementaly waves propagate with the constant velocity ¢ follows
also fro m the wave eqn. (29) and its fundamental solution (see Hosemann
and Bagchil?).

One can also show, (for detaile sce ref. (8)), that the intensity of the diffracted
heam in the Iiesnel zone is not proportional to the squaro of the amplitude of the
pilol wave, but is given by :

' I = ce*|grad Wk| ... (86)

From the foregoiny it would be clear that in order to obtain new results out
of this scalar theory we have to solve the non-lincar differential equation exactly
aud completoly, a task hardly feasible at the moment. But theie we have two
important results of this new approachk, namoly (i) the velocity of the photon
torpusele in the ¥'resnel zone is less than ¢; (ii) the intensity of the diffracted
light in the Fresenel zone is not proportional to the squarc of the amplitude of
its pilot wave. Both these conclusions can be tested experimentally with the
help of microwaves**.

X. HEISENBERG'S UNCERTAINTY PRINCIPLE

From the foregoing disoussions it will he obvious that in vhis theo'y tho
bosition as well as the energy and momentum, considered as a function of x and

* CL. Bhapiro’s work?®,
** Another experimental proof could be obtainod if one ezn measure the intrinsic angular
momentum of a collection of free electrons from the torque oxorted (and not from the energy
Spectrum which is related to the corresponding Spin. For details see section XII(iv)).

12
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t, of a oorpuscle are perfeotly determined through the definitions (2-7) and the
two postulates, (eqns. 9 and 13). Hoisenberg’s uncertainty relation xesults from
the fact, as stated, previously, that in quantum theory one defines the momentum
not as a function of coordinates of Minkowski space, but by those if its reciprocal
space. Conscquently, this uncertainty is the price of representation and follows
generally from the theory of Fourier transformation. In actual experiments
involving a collection of free particles with ensemble normalization, (cf. eq. 68),
we get the uncertainty relation connecting the integral widths of the centroid
of the collection and of its avorage momentum, the latter being oxpiessed as a
function of the Fourier space. Tn no way this should lead to the conclusion that
the position and momentum (both considered as functions of physical spacc
and time) cannot be determined. at loast in principle, simultaneously. T would
like to think that the scetion [II-TX had convincingly proved that it i possilble
in principle to doscribe the quantum phenomena causally and deterministioally
at loast for a single particle whose wave ficld can be represented by'\a soalar
function. \

Boefore we deduce the expression for this uncertainty relation in ilt.s more
general form, let mo state here, for convenience, some of the relevant formulac
in the theory of Fourier transformation which we shall have to use to deduce the
unoertainty relation. These formulac are gencrally valid for any function
complex. For the proof of these relations one might look into Sections IT, TTL,
and V of the reference 4.

Let E(_b) be the Fourier transform of e(r). .
B(p) = F(e) = | o(x) exp[—2mi(b.zldv, . 8Y)
b=bttvs; |bl = . (9)

b is tho four-veotor reciprocal to the four-vector g of the Minkowski space.

Then,

Fy) = 2mib; F(O) M —4n?b?, .. (89)
Flo*e,) = By By, Fleysy) = BBy Fe¥) = BX=b), ... (80)
lim ) = [ edv, = E(0);~ . (9D

b—>0

— * Jrk(_
Flee*) = E(b) *E*(-) } 92)

[ ee*dvy = [ EE*dv

5(64;*};) = -:;; -.%'F(e*ge-—.ey_e*) = %[E*("?)*@E)“‘E'@E*("2)]: .. (93)
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[ (ee*p)dv, = h [ (EE*b)dy ' e (94)
Fleep’) = —h* F*De—alla) = RE* OB E)—A*(124)] ... (95)
[ (es*p*)dvg = W[ | (EE*b)dup— [ (A)dvn) ... (98)

[A = F(a)].
Let us now define the mean values of tho relevant quantitics for the
ensemble in the conventional way. Thus,

_ Jee*pdv, [ ee¥adug: _,  Jee*ptdv, o7
=7 ee*dv, 7 [ec*dy b [ ee¥dv, @7
. EE*bdy, EE*bedvy ___ A2hh

I D0Vy 2 ) £ b TF = I hedy, (98)

0= TEERa Y T TERG J Adu,
From (93) the de Broglie relation for the mean values of the ensembloe also follows :

= hb e (99)

=]

Further, let dzy denote the integral width of the density distribution p(x) of the
ensemble, &p;, that of the momentum distribution in Minkowski space and db;
that of its spectrum in Fourier space. We also define them in the conventional
way: (j denotes the components 1, 2, 3. 0) :

I ee*(x2—Z,2)dn,

(0xg)? = T T edtdv, (100)
e*(p2—p,2)dv,

(8py)? = J_ii‘f_f’ﬁ%zg:?_”_ e (101)

| EE*(b2—bg*)dvy (102)

a - e e
OOl ==

Now, the theory of Fourier transformation shows that in general
8x50b; = f: .. (108)

(For Gaussian distributions, # = 1 and for other reasonable distributions 8 = 1).

Hence from the mathematically valid relations given above, it follows :

8py = hy/(BbyP—(by )2 .o (108)

and —_— ‘
© Owydpy = fha/1—(bs')?/(64) .. (105)

1t can be proved (see ref. 9) that outside the nuclear domain and the Fresnel
zon¢ where one may put x = 1, the correction term whtin the square root is
negligible,
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For the observable corpuscular momentum py one can prove similarly

Py = hB—Pe . (106)

= g A[1 b1 (20 Dypu—Opes)I[B®
Suypy; = fh 101 HL2D (1;!1)13)_2-___61,__/“_ e (107)
=ph for |p—1l<<l: |py|l<<|p| ... (108

XT. CurRrENT DENSITY J

(i) Photons and Classical Electromagnetic Radiation
From (2), (3) and (13) and m, = ¢ = 0, it follows gonerally

ok i
div. GG*pN-l— (;12 (?763(;— EN =0 i sas (109)

Now, using the ensemble normalization (68)*, whioh in this case becognes

!
,},zzN. .
C!

0
wherc
C, = [ ee* Epdv, = Constant for all ¢ and for any arbitrary inertial frame,

the continuity condition (109) for the collection of photons can be oxpressed as
i op 20k 2
d“’(Pv)“l’gE‘ =0: p=1kKpy Py = Yee*umyc?, e (110)

Here p is the numboer density of corpuscles in the volume element dv,; p, = proper
density and [ pdv, = N, the total number of corpuscles in the ensemble, (cf.
eqs. (67) and (68)).

If instead we choose the normalization (70), we get from (109) the relation

. 1 oE
(dWS)+c—* ~at--=0 ... (111)

where
S =ppy; E=pEy; p= Nee* .. (112)

Evidently, oq. (111) is the continuity condition of the classical clectromagnetic
radiation and S is the Poynting’s veetor. It must, however, be emphasized that
contrary to cq. (109), eq. (111) is valid only in the inertial system in which E i3
constant for all x and t. Further, we get (111) only by using the relations (112).
It is for this reason that we characterized the normalization condition (70) as
Maxwell Normalization.

* We are using here the generally accopted notion that classical electromagnetic theory
deals with a collection of photons.
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Tt is perhaps worth noting that the restrioted validity of (111) is not really
due to the subsidiary condition £ = constant. since any polychromatic radia-
tion can be 1esolved into monochromatic radiations through Fourier analysis.
It arises from the subsidiary condition p = Nee*, which means that the intensity
of the radiavion is proportional to the square of the amplitude. We have proved
hefore thtat this is not correet in the Fresnel zone (seo cq. (86)).

XT1I. WAVE MECHANICAL CURRENT DENSTTY

First, let us note that contrary to the general validity of oq. (109) for photons,
this equation, as we have emphasized before (ef. eq. 03), is not genorally valid
for a particle whose rest mass is not zero. Consequently, we prove now that
the wsual expression for the quantwm mechanical current density, is not correct
in the general case. Tt is valid only if any one of the [ollowing conditions is
satisfiod.

a) There is no external field, i.c., = 0,

b) There exists an inortial system for which da/di = ®. grad o = 0 for
all x and ¢,

¢) There exists an inertial systom for which &, — |grad ¥| = 0 for all x
and .
Lot us consider a collection of particlos, (m, # 0), with ensemble normalization
(68) and put
Ve =¥
(¥ is not to be identified without further qualifications witl, the time dopendent
relativistic quantum mechanical wave function), and

Py
vEPN (113)
my
From (2, 8 and 9), it then follows
— "I *_ ¢ ¥ —
T= tmim, (FVE—TVE) =, ¥¥*2 =0. (114)

Eq. (114) is nothing but the usual expression for tho quantum mechanical four-
current density.

Now, the generally valid continuity condition, namely, Postulate I, eq. (13),
can be expressed in the form '

0 = v.(ee*p) = V.(e6*pn)-+0’V .pe+2apeya. o (115)

Consequently, utiliziang the Lorentz condition for the four-potential, we see that
the devergence of J is.given by

vJ =221 @y e (116)

M
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Henoo, i in divergence free only in the oase when any of the restrictions (a)-(c)
mentioned above are fulfilled.
Evidently, ee*pn i8 a measure of the current density of energy-momentum

of a corpuscle registered by the measuring instrument under normal experi-
mental situations. If we construct again a world tube parallel to the py—field

in which the particles are subjected o ensemble normalization, we sec that
only under these restricted conditions ¥¥* is a measure of the intensity of the
current within the ensemble and the density of corpuscles p satisfies the continuity
oondition (110). Further, using the relation (47) for the veloecity p of the cor-
pusucle, we get the expression (117) for the intensity I of a beam ol particles
obeying the ensemble normalization and tho condition (b). '

i

I = constant ¥¥*|p|Ey t
= constant|grad W—e® | ¥¥*. \ 17)

In the absence of the external field, eq. (117) reduces to the eq. (86) we had ol;tmned
previously for photons in the Fresnel zone.

Tt is to be noted that the above conclusion, namely, the four-current donsity J

is notl divergence free under more goneral conditions, does not mean that the
number of particles is not conserved, even when annihilation or creation processes
cannot take place. This states only that under these circumstanoes there is an
cannot take place. This states only that under these circumstances there is an
intense intoraction and exchange of energy and momentum betwoen the corpusele
and it associated wave. The continuity condition for the generalized four-
momentum, postulate TI, eq. (13) assures us that everywhere under all circum-
stances the energy-momentum is conserved and the corresponding four-current
density J’ is always divergence free, not only for an individual particle but also

for any ensemble. In order to see this, let us write
:_T_’ = y”ee*g_o. «. (118)
From (13) it immediately follows
v =0 . (119)

and putting ye = ¥', we get for ensemble normalization

—

¥'¥'*dv, = N = constant for all 7. o (120)

But now ¥'¥* is not a measure of the density of corpuscles (even under ensemble
normalizations) which one gets experimentally, Consequently, problems like
Klein’s Paradox and the positive definite character of density arising out of the
disoussions of Klein-Gordon equation according to the formalism of quantum
mechanics are not relevant here at all.
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X1II. TuE EQUaTiON OF THE VECTOR FIELD OF A PARTICLE

So long we have been talking of the scalar wave function associated with a
particlo. Its logical consistency and pedagogical success in bridging the gulf
between classical and present day quantum physics more realistically and its
ability to derive an equation based on almost self-evident postulatcs which under
well defined restricted conditions gived rige to almost all the basic and relevant
equations of physics compelous to extend to it the more realistic case, namely,
that of the veotor wave field of a particle. Though as yet due to the unsolved
problems, of mathematios and physics, this causal theory could not prediot new
results which, could be easily verified, we have alroady referred to three conolu-
sions derived from this theory which can be verified experimentally. The sub-
sequent sections, I hope, will convinee you that it is worthwhile to overcome theso
limitations of mathematics and physics for the progross of physios.

(1) Définitions and Postulates

Lot the wave function assoviated with a pa ticle be representod by tho four
vector

e(x)= A(z) cxp iW(x)/k (121

Now, in order to define gencrally the four momentum density ee*P(x) we would

like to express it as a function of tho wave field €, (and not by the gradient of the
phase W of the wave field). We therefore, define it, (analogous to eq. 12), by
relations*

6e'P =, [E'Ye—(cD)] (122)
where
e¥(z) = A(z) exp—iW [k (122g)**

* We shall presently see that in order to avoid confusion with gymbols used proviously,

wo are to express the generalized four momentum by the new symbol P (instead of p used
previously). - -

** It should be noted thut e*(x) defined in this way in not the usual mathematical com-
rlex conjugate of €(z) (contrary to the scalar casei. Smce tho scalar product of two four-

voctors must be Lorentz invariant we cannot writo
*(@) = A¥(x) (exp—1iW[h)

(where _f_l"' is the usual mathematical conjugate of A) because é(f), _A*({f) is not Lorentz

lnvariant whereaa A(z). A(x) denoting the square of the amplitude of the wave function is
always Lorentz invariant.
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Using four dimensional voctor caleulus, one can write (122) in the form

SP = g [T e (@) - (128)

= A2p+ 4w . o (124)

or, P=ptow ‘ e (125)
where p=yW - (126)
and w = [sa(s4p]| L

54 is the wnit vector voctor in the dircetion of 4.
"The vector P is parallel to A and from (125) we sce at onee that the fvectm' r

is composed of an irrotational part p and a rotational purt w. As bo&m‘u, we
identify p = yW as the four momentum of the corpusale i.c., i

_'_!’ = Z’N‘i‘f}z . (128)
and

Pe = ed (3)

Py = pmny? o (129)

The scalar mass factor g should now be exprossed as
o (4.04). % o\21d
=l (.~
# I. 42 (moo ) ]

Evidently, the function o is then to be associated with the lincar momentum of

. .. (130)

the pasticlo due to the vortical motion of its wavefield so that [ryw] would denote

the intringic four-angular momentum of the particle, if r, is the radius of & colum-
nar vortex.
We now postulate that the continuity condition is applicable to the entire
wave field. That means,
V.(e6*P) =0 o (13D
(ii) Differential Equations for the Vector Wave Field

From (131) and again using vector caleulus we get various equivalent forms
of the differential cquation for the wave ficld of any partiole.

For oxample,

e Oe+e*yly ell—eOe*—ely[y e*]] = 0 e (182)
or, . -
e = 4@4_.%@_ | o (139)
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gubstituting in (133) the relation

Py = (p—po)?
or,

P* = 2p.pe)—pe’—pimylc’
and value of g given by (130), we obtain
f*.]jg-{-f};: [2(_p._p.)--§a¢’—m0'c“]_e*._e = 0. ... (184)

Since e* and € aro not mutually (pseudo-) orthogonal, we have the wave equation

(135) containing the specific and assigned properties, (e.g. rest mass and charge)
of a given particle.

D6t 25 [2(ppe) —pet—mootle = 0. e (185)

Fmally, using the relation (125) wo obtain our desired equation for a single partiole
agsoeiated with a vector wave field.

l:]f—l-’iln [2(_13.@7,)—_1),2—11@;,’02](_-:— = ;,,22 (ai.?g).f. ... (186)

We assume that (136) is the most general equation for any single particle
(containing its mass and charge), whose associated wave can be represented by
& vector field. Wo justify this by deducing from this equation various known
equations of physics.

(iii) Important Special Cases of the Egq. (136)
Yor photons, my, = e = 0, eq. (186) reduces to

Ce = 0. . (187)%

In a force—free field we get the equation of Prooa type

[J6— (ﬁ‘iﬂg’i) .€=0, (for p, =0). ... (188)

We notioe that w does not enter explicitly into this equation. Consequently,
wo believe that this equation is valid for all particles (inoluding electrons) in
the absence of an external field. In order Lo prove this we shall convert eq. (136)
to the “iterated” Dirac oquation, (cf. Sommerfeld!)**.

* At the present state of our knowledge it would be premature to identify € with the

aclf four-potential.

** 1t should be noted that a veotor can be rapresented in terms of spinors and tensors
n terms of vectors.

13



54 8. N. Bagchi

X1V. TreraTeED Dirac EquUATiOoN

We shall assumo that the wave function shows a columnar vortex of radius 7,
around the centroid of the paiticlc, (i.c., singularity of the field) al zq. In the
rost frame of the particle and averagod over the dimension of the vortex we can
write for tho scalar coefficient al the right hand side of eq. (136) the expression

71?"‘ ' § (Pe-)ds = 7?‘3 §[f’e (%a).0+Bpe.wds

=& 19 ellagl

Sinoc, as is well known, o vanishos at 2, and its average valuc over the aroa of

the vortex is also zoro and the cireulation is to be quantized, :wcording to the

pilot. wave thoory, in integral units of A, so that tho circulation \
[ § wds =" S (8e)
: my \

where n is an integer and mn, is the rest mass of the particle.

sy is the ij-th component of tho antisymmetrie six-veolor representing the
four-rotation of the vottex field. It might be noted that at least formally. sy
has the same rolevant algebraic properties as Dirac matrices and the hypercomplex
quantities introduced by Sommerfeld in Dirac’s theory. Consequently, equation
(136) under these conditions, i.c., when the fiold is averaged over the dimonsion
of the vortex, can bc expressed as

et 1, [@Pp)—pi—motle =1 Ly el . [sule
¢ 3 e . 3
T g o swl e i B -t o s (40

Eq. (140) is complotoly cquivalent to the iterated Dirac cquation of Sommerfeld
provided we replace P by the corrosponding quantum mechanical operator* and

the hyporcomplex quantitios yg ¥ by e Fay 8re the components of the fiold
tengor given by v ?].

Sommerfold had shown that the iterated Dira® equation gives the samo
eigenvalucs as the original linearizod Dirac equations. Eq. (140), however,

* Corfesponding Lo the Schrodinger condition, eq. (30), we have here the Dirac condition
for the validity of the operator formalism

(8 p--w)-e—%_e‘"’/" Pe.v4A =0 .o (1408)



Hydrodynamsical approach to quantum physics 55

Iwing & second order equation, may in more general cases provide solutions which
need not be contained in the linearized first order Dirac equations. Further, in
owr case P in (140) must be replaced by (125) so that oq. (140) in itself is non-

linear and its singular as well as nonanalytic solutions might he of physical interest.
Nevertheless, it should contain atl the solutions, obtainable from the original
equations of Dirac as special cages.

Tt might be noted that we have quantized the oirowlation in integral units of A,
(ef. ey. 139). Consequently, the intrinsic angular momentum of any particle
(in the strict sense of claskical definition) is nk, where n is an integer. Thanks
to the differential equation (140) this does not contradict the obscrvable data and
we get the energy eigen values in an external field corresponding to this intrinsic
angular momentum correctly in units of 4Z. Hence, we conclude that this theory
and the wave equation (130) or (140) contradict ncithter quantum theory nor
the observable spectral data. Tt must bo remembered that the quantum mechani-
cal spin is independent of tho space-time coordinates and is therefore, as is well
known, not to be identified with the intrinsic angular momentum of which we
are talking here, In quantum mechanics, we only lormally associate (on the basis
correspondence principle) a canonical dynamical variable with the corresponding
energy eigen value. Recalling this basic featu e of quantum mechanics we can
therefore as well say without any cont.adiction whatsoover that whoreas the
intrinsic angulux momentum (in the sense of olassical mechanics) ol any particle
is nh, (n is an integer), its spin momentum (in quantum moechanical sense) is nh./2.
This remarkable feature is ossentially due to the expression (122) which contains
the quantum mechanical definition of energy-momentum vector ax a special case.
The wave field associated with a particle at rest in gencral shows vortical nature
and we find that the results derived from this theory are perfectly consistent with
(uantum theory and with experimental observations. The only objection which
might he put forward against this theory, is thal the gyromagnetic ratio of any
charged particle in the free state should be 1, bul experiments on ferromagnots
in the solid state definitely show that this value is 2. This is a point which needs
further eareful invostigation. But it should be noted that it is rather risky to
extrapolate the behaviour of a ferromagnet in the solid state to the region of free
clementary particles. Further, that the actual ratio of magnetic moment and
intrinsic angular momentum for the case of free clectron is 1 (and not 2) is strongly
suggosted. by the value of the effective numbor (2.221) of Bohr magnetons per
wnit volume for the case of iron (of. Dekker?®).

Once we accept this theory and realize that we can say that the intrinsic
angular momentum of a paxrticle ix nk, whereas its spin momentum (in the language
of quantum mechanios) is #h/2, we can also put forward a model for the electron,
the so-called, Zitterbewegung model of the clectron proposed by Schroedinger.



56 8. N. Bagchi

We can then also explain very naturally the strange property of a Dirac electrop,
namely, that the electron at rest has the velocity c.

XV. THE PrOPERTIES OF FREE QUANTUM VORTICES PHYSICAL MODELS ¥oR
ELEMENTARY PARTICLES

The detailed and exact behaviour of a single stable clementary particle can
be investigated only if we can find all possible solutions of the nonlinear differen.
tial (eq. 136). In order to explore the mutual interaction of suoh stable particles
which may generate unstable elementary particles, we have to known how the
individual quantum vortices interact when they penetrate into the domains of
these vortices. We hve also to know the turbulent behaviour of the resultant
wave field and in particular its stability conditions. It is therefore, nbvums that
the present state of our knowledge we are faced with as yet unsolyed problems
of physics and mathematics. Novertheless, if we want to guess&\he physical
nature of elementary particles, we will be obliged to make risky extrapolations
of our existing knowledge. We rhall therefore in this section make son‘ft\a physically
plausible conjectures by constructing simplified models and utilising already
known physical and mathematical results.

We have seen that the vector field associated with a particle consists of an
irrotational part which describes the translational motion of the particle and a
rotational part which we have associated with its nonolassical intiinsic angular
motion around the centroid of the particle. Consequently, a particle even at
rest would posses, because of its intimate association with its own field, an
intrinsic angular momentum. The controid of a moving particle would there-
fore describe a helical motion of the singvlarity of the field. Because of simpli-
city, we shall restrict ourselves mainly to columnar vortices whoee radiue is of
the dimension of the Compton wave-length of the particle and assume at first
that these vortices do not interpenetrate into one anotker. Moreover, we shall
apply the well known laws of classical hydrodynamics, although the motion* of
the single partiole, according to tris theory, iz governed by eq. (136).

We assume further that these waves represent the topological distortions
and fluctuations of the World Aether from its state of equilibrium and this world
aether always moves with the velooity ¢, in consonance with the velocity of
Huygen’s elomentary waves. This would at once make the Zitterbewegung
of the electron consistent and also make meaningful the strange property of tho
Dirac clectron at rest. .

* For an exact thoory one should distinguish between the phase velocity of waves in
a3ther and group velacity of the motion of the vortex as well as the density distribution
within the vortical element. For simple models, one can also think of vortex ring and
spherical vortex.
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(i) Schroedinger’s Zitterbewegung Model of the Electron

1t is very likcly that the charge could cventually bo 1epresented by the wave
field alone. But at this moment, one is not quite surc how to represent the
charge of a particle as a function of ite wave field. Consequently, we shall
assume the existence of charge as an external property given empirically.

Let us Fuppose that the vortex of the world acther which would represent
the elcotion is generated by tho circular motion of the aether around the centroid
of the clectron, (the singularity of the field), having the radius B. The frequency
of the vortical motion is thcrefore

(4]
V'='2‘;R-. s (141)

Now, the rest mass of the entity which we call electron is known to be m,
and the frequency v of its de Broglie wave is given by

hv = myct. . (142)

We assume that this frequenoy of de Broglie wave is really the frequency of the
vortical motion of the wave field associated with the clectron and the total energy
of the vortex represents thc rest mass of the clectron*. Hence it follows

Moe? = hy = 2-};—;, or. R = fime. ... (143)

The oorresponding angular momenium ig
R™ —% (144)%*

snd the value of the magnetic moment is given by the Bohi magneton.

ev eR el

g = (7) R = =g ... (145)

Tt might be noted that the value of R is the Compton wavelength of the electron.
Consequently, this model shows why we shall have difficulties within thie domain,

* This at once clarifies the mysterious relation between the energy of a particle and the
frequency of its de Broglie wave and might eventually lead to the physical meanings of ‘“bare
mass” and ‘‘renormalised maes’’ of an elementary particlo, since somo energy remdeu, in the
wave field outside the domaiain of the vortex.

** The previous difficulties and inconsistencies of the Zitterbewegung were essontially
due to the incorrect assumption that the intrinsic angular momentum (in the classical sense)
of the electron is %/2. It would be interesting to oxplore the excited states of the vortical
elemont and its connection, if any, between the electron and the muon. In principle, the
nonlinear differential equation can offer such excited unstable states.
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ginee we cannot assume the electron to be'equivalent to a point charge for electro.
magnetic interactions within this region.

One can oasily extond this idea to get the equivalent radius of the voitex
due to anucleon. One comes to the right order of magnitude so far as the nuelea
radius is conceinod, but to get the correct magnotic moment one has to assume
spceific charge distribution within this region.

(ii) Rotons of Landam

Consider a spherical particle of radius r, and mass m, at rest at absolute
zeoro degree of temperature. Aocording to this thoeory, it should possess parctically
only rotational energy due to che vortical motion of the aether. The energy of
the vortex at the ground svatc (if we neglest the slight energy contained in its
wave field outgide the singularity), 18 the usual rost energy of tho part.ic' e. The
rotational energy of the particle at higher temperatures s theicfore du& to the

cxeitation of this vortex.* !

\
. \
Sinec for quantitative expressions in this section XV, for reasons already
mentioned above, we shall uge the corresponding relations given by existing
thoories, we take this rolational energies as given hy

n2h?

Wrot = 57— (n=1,2,3,..). o (146)

(I = moment of inertia of the partile).

T the pamticle rotates, we l'ave the lowest rolational energy, W, for n =1 in
(146). The minimum amount of energy required to oxcite the particle to its next
rotational level is therefore W = W,—W,. Wo assumec that this exoitation
energy of the vortex of the acther corresponds to the encrgy of exicitation of the
rotone postulated by Landau**. Tn order to account for the ohserved propertics
of liquid *He near abrolute zero, Landau suggested that its energy spectium is
given by

E(p) = A+ (-P—%'r'hpfgz w. (147)

* For dealing with real particles, columnar, vortex would not be an adequate representa-
tion of the particle, Even for the simplest case. we have to consider a.spherical vortex.
Further, for an atom containing many elementary particles, a single vortex representing the
atom cannot bo justifiod without further quantitative invostigations. Novertholess, this
simple mode] seems to be instructive.

**It is interesting Lo note that at first Landou suggested that the roton should corres-
pond to vortex motion.
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Atkins, by comparing (147) with the oxperimental rosults obtained the follow-
ing values.

:— = 8.940.2°K

Po = (2.140.05)101? ¢rg sec om~?

Do — -1
5 =199 A
m = 0.26 mo

k = Boltzmann constani.

For owt model it is natwal to corrolate A with W, and p, with (2mW)t. Taking
tho standard values for 4He, namely,

ro= 138, m,= 6.6010-2%¢
we obtain the following results :

Ekl = 8.9°K; Po = 2.2 10~*% erg.sec.om!

Polh = 2.1064-1.

(iii) Zero-Potnt Motion

In a collection of ideal gas like particles the vortices asoribed to each particle
are froe and consequently, according vo the well known laws of hydrodynamics,
if tho neighbouring vortices are antipasallel, the centire of each vortex would move
perpendicular to the line joining the two vorlices with a velocity.
r nk
Srd = o ... (150),

Uy =

where d is the distance between the centres of the two vortices and m the mass of
a particle. Hence oven at absolute zero the vortices would move and coixes-
pondingly the particles would have translational motion. A colleotion of free
particles, therofore, cannot remain at rest.* Thus one can understand the causes
for the random motion of ideal gases postulated in an ad hoc fashion in classical
kinetic thoory. Iv is interesting to rocall that Lord Kelvin® already suggested
that this translatory motion was to be asoribed to the interaction of his Vertex
atoms. According to our model of the particle, the average cnergy of an idcal
monatomic gas at room temperature (neglecting the proper energy), is principally
due to the intrinsic oxcited rotational energies of the vortioal element plus the
kinetio energy due to the translational motion of this vortical element as a result
of the interaction of the neighbouring vortices. ‘

* Note that this zero-point energy exists even if the particles do not vibrate.
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(iv) Spatial Arrangement of Vortices. Quantum Statistics

How would the vortices helonging to elementary particles be arranged in
space ? Unless wo can answer this question, we would not be able to under-
stand why Nature provides us with only two kinds of statistics, symmetric and
antisymmetric.

The correct answer to these questions ir to be obtained from consideration
of stability and mutual interaction of vortices, in analogy to ». Karman's
vortex stroets of classical hydrodynamices. Tt is obvious that at the present
state of our knowledge, we vannot hope to answer these questions satvisfactorily.
The equation (136) describes the motion of a single particle but as yet we do not
know the nature of interactions between quantum vortices even when they do
not penotrate into each other. But if we consider a collection of free vortices
in a force.frec field, we can guess how the two states for the eollection ma,jfl‘ arise.
In this case, eq. (136) becomes linear and we can apply the principle of jguper-
position in deseribing the state, at least outside the domain of their singul%iﬁiea.
If the neighbouring vortices arc arranged antiparallely we see that by ‘\ per-
position they give rise to a symmetric wave funetion corresponding to a collec-
tion of bosons. In the case of fermions, the phases of adjacent antiparallel vortices
must thon differ by an additional amount of #/2 to give rise to an antisymmetric
wave function.

(v) Nuolear Forces—Turbulence

It is known that whercas two antiparallel voitices induce translatory motion
on each other, two paralle]l vortices inducc a common rotational, motion about
the center of gravity of the vortices. Can wo not make a bold conjecture that
the tremendous energy which binds the nucleons is essentially due to this coupl-
ing of parallol vortices ? A simple calculation* shows that an energy of 8.4 MeV
is required to separate two neutral nucleons (each of nuclear mags 1) bound in
such a fashion that the centre of each, vortex rotates with a common radius of
7o =10-13 om. Tuking the binding energy of the deuteron as 2.226 MeV the
distance ocomes out as 1.94x10-1* cm. o that for the distancoe Dbetween the
controids of the proton and the neutron we get a value 3.88x 10-13 om. quite

* The linear volocity of rotation is given by

T _ & -
Vi =5d = wrm for d = 2ro.

and the energy roquired Lo separate two nucleons is

= B o= B _ 841 MeV £ 101 _ -
B Z T dr Sm'ro“ = 8.41 MeV for 7o = 10 em, m = 1,87x 10 g

e (149)
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cose to the radius of the deuteron. For atomio distance (108 cm) this
energy slready reduces to the order of 10-! ¢V. Many of the properties of
,wcleons could be understood qualitatively on the basis of the existence of such
quantizod vortex couples within the nucleus.

In nuclear bombardment of high energy partioles, the vortices within the
target would suffer tremondous disturbances due to the known Maguus force
ws woll as due to the interpenetration of the vortices (about which we do not
xuow anything as yet). As a result, it is very likely that the turbulent motion
would be generated inside the nucleus of tho target. The stability conditions
would then decide how many and what type of new eddics disguised as elemen-
tary particles would emerge out of this turmoil. The basic troubles of high
energy nuclear physics appear to lio in the inherent diffioulties of the subjeot of
tnrbulenco and the complete solution of the nonlinear partial differential equation.
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