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Cross sections for X-ray plasmon and Compton scatterings
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An atternpt has been made to bring together for the first timo the
different formulae for X.ray plasmon and Compton scatterings in a
unified formalism. Numerical calculations are presentod for beryl-
lium and lithium in order to arrive at the optimum condition for
observing the pure plasmon scattered spectrum. It has been shown
that for beryllium it should correspond to k/kp ~ 0.5 and for lithium
klkp ~0.8. A new and simple method to obtain the plasmon scat
Luring cross soction is also described.

1. INTRODUCTION

Neveral workers (Priftis et al 1968, 1970, Tanokura el al 1970,Suzuki et al 1970,
Aloxandropoulos 1971, Miliotis 1971) have recently observed plasmon excitation
in X-ray scattering experiments from solids of low atomic number, such as, beryl-
lium, lithium and graphite. Very often the plasmon, Compton and the elastic
(Ruyleigh-Thomsn) components of the scattered radiation overlap on one another
making it very difficul to separate the plasmon spectrum. There exists consi-
derable theoretical work (Pines 1963, Pimpale & Mande 1971, Kliewer & Raether
1973) on the cross section for the X.ray plasmon scattering and the shape of the
plasmon scattered spectrum for different scattering angles. Most of this work
is either within the random phase approximation (RPA) or seeks simple modi-
fications of the RPA. 1t is gencrally recognised that the plasmon excitation
predominates the scattered spectrum for small seattering angles and the Compton
procoss dominates for large scattering angles. However, there do not exist any
specific caleulations of the relative amplitudes of the different components of the
scattered radiation which muy be present in the experimental curves. The
purpose of this note is to bring the different formulae for the cross sections in a
unificd formalism and to present specific calculations of these for the most often
studied exporimental materials beryllium and lithium. An attempt is made from
this study to see whether it is necessary to unfold the experimental spectrum in
its different components for a partioular scattering angle and whether it is possible
to oblain the experimental condition in which only plasmon excitation predomi-
lates, A new and simple method to obtain the pure plasmon scattering cross
scction within RPA is discussed in appendix 1.
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2. Cross SECTIONS FOR THE DIFFERENT SCATTERING PROCESSES

Tho most general expression for the scattering cross section from an inter-
acting many electron system, such as a solid is given by Pines (1963) as,

d2ojdQdw = (e2[mc®)¥(e; . ) S(k, w), o (D)
where Sk, w) = Z [(p)N)no ] * §(w— why) e (2)

is the seattoring form factor. In the above equations ¢; and ¢, are polarization
vuctors for the incident and the scatiered photons, kw and %k are respectively the
encrgy and momentum transferred by the photon to the system in the act of
scattoring, p, T is the clectronic density fluctuation operator, Fwy, is the system

oxcitation energy for the n-th state and the other symbols have their usual signi-
ficance. The cross sections for the plasmon, Compton and elastic scattering proces.
ses can bo obtained as spocial cases from oq. (1) by considering appropriate
physical situations,

Although the plasmon cross section within RPA can be derived in many ways,
we find it convenient to obtain it by a new and simple mothod (which is described
in the appendix) by employing the Bohm-Pines collective formalism and utilizing
their subsidiary conditions to obtain the plasmon wave function in terms of the
olectronic density fluctuations. The value of S(k, w) for plasmon scattering is
obtained as,

Spilk, w) = (Nhk*2mwp)d(w— wp), e, (3)

whero N is the numbor of electrons por unit volume in the system and wyp is the
plasma froquency. I'rom cq. (3) it is scen that the shape of the plasmon scattered
spoetrum is given by a delta function. This has to be modified as shown by Kliewer
& Raether (1973) 1o obtain a more realistic shape of the plasmon scattered line.
Howevor, we are not interested in this line shape but in the total intensity under
for a particular scatiering angle ¢. This can be obtained from oq. (3) by integrating
it over all frequencies, as accurately as from the more claborate formulae. Since
in the usual experiments no attention is generally paid to the polarization of X-rays
we average over the incident photon polarizations and sum over the final photon
polarizations. Wo thus obtain the angular dependence of the plasmon scattering
cross scetion as,

do[d€Q (plasmon) = (e?/inc?)*(1—} sin? @) Spy(k), ‘ e (4)
with pik) — (hk%2mnwy) = (Epfhwp)(klkr):. .. (5)

1n the above cquation Kp = k2kp/2m and kp is the value of the wave voctor at
the Fermi surfaco,
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The Klein-Nishina cross section for the usual Compton scattering by an ideally
freo olectron (after averaging over the incident photon polarizations and
summing over the final photon polarizations) is given by Feynman (1962) as

do/dQ(EN) = (¢'/mc*)*}ws|w;)(wsws+ w, | ws—sinP), (6)

where w; and w, are the frequencies of the incident and scattered photons and ¢

> is the soattering angle. When w¢ =~ w,, €q. (4) reduces to the Rayleigh -Thom-
son scattring cross section,.

do/dQ(EN) = do|dQ(RT) = (¢?/mc?)¥(1—}sin? $)S,y(k). (7
Tt is easily seen that
Sa(k) = 1. (8)

For caloulating the cross section for Compton soattering from electrons in solids
eq. (7) is inadequate since it does not take account of the Pauli exclusion principle.
Wo therefore make use of the Hartree-Fock approximation to ealculate this cross
section. In this approximation one obtains, as shown by Pines (1963),

Scur(k, w) = 33 O(w— wgr), 9)

where wep = fiq*/2m—+Kk.q/m. (10)

In tho above equation the summation over g runs over the electronic states
satisfying |q| < kr, | q+k| > kr, where kp is the value of the wave vector

st the Fermi surface. Integrating eq (9) over all frequencies we obtain the
cross section for Compton scattering in HFA as,

do[dQ(CHF) = (e2/mc?)? (1—4sin® @) Scur(k) (11)
with Scurk) = > £ 16 29 (12)
CHF =7 76-; Fe
If we take into account the electronic correlations, then, within the RPA, the
scattoring form factor for Compton scattering becomes
Scrp(k, w) = Scar(k, w){|e|?, (13)

where ¢ is the RPA dieleotric function. Noting that the «’s involved in egs.

(6) and (10) are small as compared to wp, wo may use the following approximate
value of ¢ as

€ = 1+k2pp/k?, (14)
where kpp is the Fermi-Thomas screening wave vector given by
kpr = +/3mwpfhkp. (16)
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Using oqs. (13) and (14) wo easily obtain

do|dQ(CRP) = (¢/mc)(1— dsin’e) Scralk), o (16)
where ‘
Scrp(k) = {% ,g‘l;— E’;:—F ) / (L+k2pr/k2)2, .. (17

3. CALOULATIONS

Since considerable experimental work on X-ray plasmon scattering has been
reported on beryllium and lithium, we have numerically calculated the values of
Spi(k) and Scre(k) for these solids for the values of k/kp ranging from 0 to 1. For
these calculations the values of the plasma energy #w, and the Fermi energy Ep
aro necessary. We have employed in our calculations the recent experimental
values of Awy(Pines 1963) and Er (Wallace 1960, Crisp & Williams 1960). For
beryllium Ew, = 19 ¢V, Ep = 13.8 oV and for lithium kw, = 8 eV, Ep = 3.0eV
The variation of Sp(k) and Scrp(k) thus caleulated for beryllium and lithium is
depicted graphically in figure 1. The points corresponding to ke/krp where k is
the plasmon cut-off wave vector are also shown on the Sy;(k) curves.

FLASMON (B9)

o8

’,
" PLASMONLT)

COMPTON ( Be)

- T _ 1 COMPTORILI)
° o2 o4 06 o8 0

/g —

Fig.. 1. Tho variation of the scattering form factor S(k)with k/kp for Compton and plasmon
processes for beryllium and lithium.

4. DisoussioNn

The optimum experimental conditions can be determined from figure 1 in
association with the following points :
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1. The plasmon width increases slowly with % for & < k. and it is not a well
dofined excitation for k > ko in that the plasmon width increases rapidly with
k when it has crossed the cut-off value k,. ‘

2. The Compton line profile given approximately by Scur(k, w)/|€|? [ogs.

(6) and (8)] is highly asymmetrioc and its width on the high energy side is much

_lowor than that on the low energy side. Further, for values of k/kr < 1, the
oncrgy of the Compton profile peaks is, generally, considerably loss than fws.

From figure 1, with due cognizance to the above points, we note that in the
case of beryllium the best plasmon spectrum with practically no other inelastic
component would appear for k/kp ~ 0.5t00.6. For k[kp > 0.6 tho plasmon width
would be considerably large and so also would be the width and intensity of the
Compton profile. Tn the range 1 > k/kr = 0.5 ono would have a superposition
of u wide plasmon spectrum and the Compton profile. In the caso of lithium the
best plasmon spectrum would appoar at kfkp~ 0.8. From figure 1 it is also
ovidont that one would obtain a better contrast for lithium than for beryllium
wince the probability of Compton scattering is very much lower in lithium.

For the CrKj, radiation which is often used in experiments (A = 2.08534,
ki — 3.01 354-1) the above condition of k/kr corresponds 1o the scattering angle
¢ ~ 20" £-2° for beryllium and for lithium it corresponds to the scattering angle
¢ ~ 14°+2°. At these angles ono can expect to get the plasmon spectrum with
practically no superposed Compton spectrum, i.c., a pure plasmon spectrum and
it would not be necossary to separate out different components of the inelastic
spoctrum. For incroasing the scattering angles one may employ low energy
radiation such as T4Kj, (~ 4.9 KeV) for which the optimum scattering angle
for beryllium is 27° and for lithium 20°.

APPENDIX I

A NEW METHOD T0 OBTAIN THE RPA X-RAY PLASMON SCATTERING CROSS
SHWOTION

In the Bohm-Pines collective formalism the system wave function is given
by
|¥ > = ¥rX ¢ (plasmon), (A1)

where i is the determinant wave function of the eloctrons and ¢ is the plasmon
wave function. In the ground state the plasmon execute only the zero point oscil-
lations and their wave function (in momentum space) is given by

PP,
¢ (plasmon) = exp {—k<zk. —2';—‘;’—}, (A.2)
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where Pj, is the collective momentum variable. P, is connected with the dénsity
fluctuation pp through the subsidiary condition

{Pr—Mppg}|y > =0, . (A3)
where M)?2 = 4me?/k®. From eq. (A.3) we can write

¢ (plasmon) = kgkaexp{—Mk'pk?pk/%w,}. .. (A4)

Eq. (A.4) resembles the unnormalized wave function for an assembly of k.®/6x?
independent harmonic oscillators in their ground state, each with frequenoy wp
M,? and p,tp, play the roles of the force constant and the square of the position

coordinate for the k-th oscillator. The first excited state for the E-th oscillator
is then given by

¢*(k-th oscillator) = N p, exp(—Mi*p,tp, [2hwy), e (AL5)

where Ny is the normalization constant. From eqs (1), (A.1), (A.4) and (A.5),
using proper normalization constants, and assuming that only a plasmon is excited
in the act of scattering, we obtain the value of Sy (k) as given in eq. (3).

REFERENCES

Alexandropoulos N. G., 1971 J. Phys. Soc. Jap. 31, 1790.

Crisp R. 8. & Williams 8. E. 1960 Phil. Mag. 5, 526

Feynman R. P. 1962 Quantum Electrodynamics (Benjamin, New York) p. 102.

Kliewer K. L. & Raother H.1973 Phys. Rev. Lett. 30, 971.

Miliotis D. M. 1971 Phys. Rev. B3, 701, R

Pimpale A. & Mando C. 1971 J. Phys. O : Solid St. Phys. 4, 2503.

Pines D. 1963 Elementary Hzcitations in Solids (Benjamin, New York).

Priftis G., Theodossiou A. & Vosnidis P. 1968Phy. Lett. 27A, 5717.

Priftis G. 1970 Phys. Rev. B2, b4.

Suzuki T. & Tanokura A. 1970 J. Phys. Soc. Jap. 29, 972.

Tanokura A., Hirota N. & Suzuki T. 1970 J. Phys. Soc. Jap. 28, 1382.

Wallace P. R. 1960 Solid State Physics, Vol 10 ed. F. Seitz and D. Turnbull (Academic Press,
New York) p. 28.



