Indian J. Phys. 80 (6), 659-662 (2006)

Some comments on fra§ality of proton at small x
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Abstract

© Using the concept of sclf-simularity in the structure of the proton at small 1. we comment on possibility ol a single positive fractal

dimension of proton in analogy with classical monofractals Plausible dynamics and physical interpretation of tractal dimension are also discussed
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Self-similarity is a tamiliar property in nature | 1.2]. Many of the
seemingly irregular shapes of nature have hidden self-similarity
in them. It is not the usual symmetry with respect to rotation or
translation, but symmetry with respect to scale or size: a small
part of a system is self-similar to the entire system. Such a system
1s defined through its selt-similar dimension, which is in general
fraction, hence called fractal dimension. Classical fractals
discussed in standard references [1.2] are Cantor dust, Koch
curve and Sierpinski gasket whose fractional dimensions are
0.63, 1.26 and 1.585, respectively, which lie between Euclidean
point and surfaces.

Notion of self-similarity and fractal dimensions are being
used in the phase spaces of hadron multiparticle production
processes since nineteen eighties [3-7]. However, these ideas
did not attract much attention in contemporary physics of deep
inelastic lepton-hadron scattering till 2002 when Lastovicka | 8]
developed relevant formalism and proposed a functional form
of the structure function Fz(x.Qz) at small x. Specifically, a
description of F,(x,Q?) reflecting self-similarity is proposed
with a few parameters which are fitted to recent HERA data
19,10]. The specific parameterization is claimed to provide an
excellent description of the data which covers a region of four
momentum transferred squared 0.045 < Q% < 150GeV? and of
Bjorken .x, 6.2x107<x<0.2.
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More recently, it was observed [ 11-13] that the positivity of
fractal dimensions prohibits some of the fitted parameters of the
structure function of Ref. [8]. Specitically. out of the fractal
dimensions D, D, and D,. one 1s negative (D, =-1.3). However,
the positivity of fractal dimension forbids such negative value.
In order to avoid such possibility. it is suggested that the proton
is described by the single self-similarity dimension D. This then
facilitates one to compare the self-similarity nature of the proton
at small x with the classical monofractals which 1s the aim of the
present note.

Under the hypothesis of self-similarity of the proton
structure at small x, Lastovicka [8] obtained the following form
of the structure function F,(x, Q7).

(exp Do)Q(%X_Dz“
1+ Dy + Dy log}{\,

~D, log| 1493 N 2 Dy+1
"o | x ( QO)(I‘*QAZ] -1 1))
0

by using the following form of un-integrated quark density
f(x.Q% of i-th quark flavor :

log f, (x. Q%) = D, Iog%log(l + Q%g)
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F(x,Q%) =
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+D;log Y+ D, log(l+97Qg)+ Dy (2

In egs. (1) and (2). D, is the dimensional
correlation relating the two magnification factors
I/x and 1+(?/Q3 . while D, and D, are the
self-similarity dimensions associated with them,
being the normalisation constant. Since the
magnification factors should be positive, non-
zero and dimensionless, a choice 1+ /O .

rather than Q? has been made, while Q7 is
arbitrary small virtuality, Q* > Q7. Explicit
confrontation with HERA data [9, 10] yiclds:

D, =0.339+0.145,

D, =0.073+£0.001,

D, =1013+001, 3

Dy =-1287+001,
U5 =0.0621001 Gel>.
As the self-similarity dimensions of fractals
are positive [1,2] by its definitions, one expects
D, 20, D, 20, D;20,a feature absent in
the empirical fit of [8] as far as D, is concerned.
In analogy with other classic fractals [1,2], we
therefore assume that proton at small x is a

monofractal with just one single fractal

dimension, so that
D, =D,=D,=0D. “é

Under such a hypothesis, eq. (1) is rewritten
as

(exp Dy) Q3x~ "
1
1+ D+ Dlog/x

~Diog{ 1497/, 2 D+1
x| x 8( ("')(HQA(}) -1 ®)

Alternately, monofractality is attainable also
for D, =0 (zero dimensional correlation) and D,
= Dy = D, so that eq. (1) takes the alternate form:

2 D+t
(5]
20
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FR(x.0%)=

(exp D) Qx>

F(x0h = 1+D
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x
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Some comments on fractality of proton at small x

In Figure 1, we plot Fy(x, Q) versus x in bins of Q2 as
measured by low Q2 data of ZEUS [ 10] using eq. (5). Results of
the fit yields:

D, =—1692+£0.14

D= 006530029, 7

Qi = 0.0449+0.0003 GeV > y

However, this fit (eq. (7)) can not be extrapolated to higher§
©* range of H1 [9]. Even for 0?> 0.4 GeV2 of ZEUS | 10] data,!
7° becomes large. :

In Figure 2, we show the similar analysis using eq. (0) for~
7ZEUS data | 10]. Results of the fit yields:

Dy =-2713+£0.231,
D, =0,
D=1.107+0.008,

Qf =0.045£000012 GeV *. ®)

This fit (eq. (8)) can be extrapolated to higher Q@ range of H1
[9}upto Q=12 GeVZ The ¥ foreqs. (7) and (8) are recorded
inTable 1.

Table 1. The z: for cqs (7) and (R)

Fit I:/duf
¢q.(7) (0.045 = Q? = 04GeV?) 78 504 1.402
¢q.(8) (0.045 = Q* = 12GeV?) R3 156 0621

Our analysis thus indicates that only in the limited x — Q>
range (Q* £ 12 GeV?), the notion of monofractality of proton
holds. In that range, dimensional correlation (D)) vanishes and
the proton possesses fractality (D = 1.107) close to Koch curve
(D = 126) . Description of F,(x, Q%) in the entire small x range
in terms of monofractal will result in a continuous x, Q,
dependent fractal dimension [13] which is a considerable
extension of parameter space and contrary to the usual notion
of fractal.

It is also instructive at this stage to ascertain the physical
interpretation of fractal dimension of proton, since the notion is
rather recent in literature. As is well known [14], the fractal
dimension measures the way, in which distribution of points fill
a geometric space on the average. If the distribution is highly
inhomogeneous, the set of points have a distribution of fractal
dimensions leading to multifractality. Extending the notion to
the x — Q2 plane of the unintegrated quark density, fractal
dimension tells, how densely small x partons fill the proton in
self-similar way on the average. In the special case of
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D = D, >> D,. Dy, unintegrated quark density takes the simple
form:

7(x0%)= ()’ ©

and fractal dimension is essentially close to x-slope | 15] o1
Pomeron intercept [ 16-18].

Let us conclude this note with a few comments. The limitatuon
of the present approach as indeed with that proposed by
Lastovicka | 8] is that it provides merely a parameterization of
structure functions based on fractality in terms of a few
parameters to be determined from data and identify them later as
tractal dimensions. Because of the availability of extremely high
quality data [9,10] and accurate parameterizations ike CTEQ
[19] and MRST [20]. such new approach to parametrizing the
proton structure function must have strong physical reason for
.

In the present note. we have shown that in the monofractal
hmit, fractal dimension is closely related to more famihar v-slope
[15] or Pomeron intercept | 16-18] as is evident from eq. (9). As
fractals can be seen 1n the context of renormalization group (RG)
[21,22], as well, eq. (9) can be interpreted as a solution of RG
type of equation for the self-similar structure function F, iself:

dF, (X
a '((\l)=ﬁ(F1)~
d In —

X

10

where the  function obeys a power series [21,22]in F, .

BF)=ay+a\F +ayFs+......... (1

with a,. a,, a, being constants. Retaining terms upto linear in
F, and choosing the boundary condition Fy(x)=0atx=1.cq.
(9) immediately follows if the coefficient «a, of the § -function
is identified as the monofractal dimension D.

It is also noteworthy that similar to the present approach,
fractal characters of hadrons have been pursued in Refs. [22,23]
within a statistical quark model with considerable success. Our
results compliment such notion in deep inelastic regime.
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