A fast electronic circuit designed to process ion beam in interaction $\pi-p \rightarrow X^{-} p^{*}$

P. N. Upadhyay
Department of Physios, Gaya College, Gaya (Bihar)
(Received 10 June 1974)

The production of mesons X produoed in interactions
and

$$
\begin{aligned}
& \pi^{-} p \rightarrow X^{-} p \\
& \pi^{-} p \rightarrow X^{0} n
\end{aligned}
$$

was studied near their production thresholds. The missing mass was calculated by measuring the nucleon time-of-flight and the incident pion beam momentum.

The nucleons were detected at a laboratory angle of $3.8^{\circ} \pm 1.7^{\circ}$ by a ring of six identical sointillation counters N_{1-6} placed 5.15 moter downstream of a liquid hydrogen target (figure 1). The front of cach of the N_{1-6} counters was oovered by thin scintillation counter's A_{1-6}. In ease of a neutron, the signal is obtained only from one of the $N_{1-\theta}$ counters whereas a proton gives simultaneous signal in the corresponding A_{1-6} counters. The nuoleon momentum is determined by its time-of-flight botwoen the counter N_{1-6} and a timing counter S placed just upstream of the hydrogen target.

Fig. 1. The experimental lay-out.
The pion beam produced by the interaction of proton of energy 6 GeV on a Copper target placed in one of the ootant of the proton Synchrotron at the High Enorgy Rutherford Laboratory, U.K. The pion beam was directed to a hydrogen target by quadrupoles and bending magnets. The determination of the pion momentum relied upon its detection by hodosoope counters which consisted of two

[^0]arrays of scientillation counters $\mathrm{G} 2-10$ and \mathbf{H}_{2-0}. Five momentum channels \boldsymbol{P}_{1}, $P_{2}, \ldots P_{5}$ were formod by grouping their $G_{i} H_{j}$ combinations such that $8 \leqslant(i+j)$ $\leqslant 12$ and the values of $(i+j)=8,9,10,11$ and 12 for $P_{1}, P_{2}, P_{3}, P_{4}, P_{5}$ respectively. This was possible because G and H counters were plaond at conjugate planes of unit magnification of the quadrupole and the dipole. The five momentum channels were combined together to form a $\sum_{i=1} P \pi_{i}$ channel. The hodoscope counters were calibrated by a floating wire experiment (Binnie \& Duanc 1970).

For a genuine pion beam, a pulse from only a single counter of oach hodoscope array, no pulse from the Cexenkov Counter, C (figure 1) to reject the electrons and a pulse from the timing counter S were demanded. The evonts with two or more particles detected by the G or the H-Counters were rejected by a circuit called $2 G-2 \mathrm{H}$ veto. This was designed to avoid ambiguity in the momentum dotermination of the beam and to reduce the accidentals. In order to reject an event with two or three particles coming within 304 Sec of each othr, a circuit dilled Interferenoe Remover or (IR) was designed (Upadhyay 1973). So a genuine beam particle would satisfy the following condition

$$
\begin{aligned}
& S .\left(y_{i} H_{j} \cdot o(\overline{2} G .2 H)(\overline{I R})\right. \text { with } \\
& 8 \leqslant(i+j) \leqslant 12 .
\end{aligned}
$$

The eloctronic cireuits were designed by employing standard cards (Milhorros 1973) available in useful forms like discriminator, Fan, OR gate AND gate, SetReset, levelchanger ctc. The circuit diagram of the beam logic has been shown in figure 2 (in five stages).

The photomultiplier pulse of the S-Counter as well as aach of the G and the H eounters was fed to a discriminator. The diseriminated photomultiplier pulse of the S-counter was fannod to obtain several pulses (stage 3 ; figure 2). In order to aswertain that a particle detected by one of the hodoscope-counters was also simultaneously detected by the S-counter, the pulse of oach of the hodoscope counters was scparately strobed by the S-counter pulse. This was done by resetting all the relevant set-resets (SR). In presence of the G or the H pulse, the respeetive $S R$ was sot by its discriminated pulse and an output was obtained from the corresponding AND gate within a typical resolving time of $10 n$ sec (stagos $1 \& 2$ of figure 2).

The S-counter pulse was furthor examined by the IR, $2 \mathrm{G}-2 \mathrm{H}$ veto, and the Cerenkov veto circuits in stage 3 of figure 2 and a pulse S_{1}-is obtained. Different combinations of $G_{1} H_{\mathrm{j}}$ were formed by the standard coincidence circuits; in which a 10 nsec gate was formed by one of the strobed H-pulses. The G-pulse was allowed to arrive within the gate. Such combinations of the H_{6}-Counters have boon shown in stage 4 of figure 2 . Five separate momentum channels $P_{\pi i}$ formed by grouping different $G_{i} H_{j}$ combination have been shown in stage 5 of figure 2. These were obtained by strobing them by the pure S_{1}. Finally all the five
momentum channels were added together to form a combined momentum ohannal $\Sigma P \pi_{i}$.

Fig 2. Shows the beam logic. S / R and D roprosont respectively the discriminator, Sot Resel and 10 nSeo delay.

In Stages 1 and 2 the hodosenpe counters H2-6 and G2-10 are strobed by the diseriminated pulse (atage 3) of the timing counter S.

In State 3 a pulse $S 1$ is obtainod after checking tho boam particle (defected by the S Counter Counter) by the Interference romover, the 2G-2H Veto and the Cerenkov veto circuits,

In Stage 4, differont combinations of GiHj form with H-6 has been shown in which are grouped together in such a way that $8 \quad(i+j)$ 12. Five corresponding momentum channels $P \pi i$ strobed by $S 1$ have boon formod in stage 5 . Finally all these channels are combined together to form a combinod momen- tum channels $\sum_{i=1}^{S} P \pi i$.

The individual and the combined momentum channels were scaled and recorded on the magnetic tapes by a on-line PDP-8 Computer. With the occurrence of a genuine pion boam, the computer also recorded the statos of the G and the H counters which were fired. Results (Upadhyay 1973) obtained by this experiment on tha X^{0} (Binnie et al 1972), the δ the $A_{2}{ }^{-}$(Binnie et al 1971)mesons have already been published.

Adinowledament

The author wishes to thank his colleagues at Imperial College, London and Southampton University, Southampton who collaborated in this work. The studies were carried out at the Rutherford Labofatory, Chilton, Didoot, Berks, U.K.

Referenoes

Binnic D. M. \& Duane A. 1970 Nucl. Inst. Meth. 77, 329.
Binnio, D. M., Oamillieri L., Duane A. ct. al. 1971 Phys. Letts 36B, 257, 537
Binnie D. M. Camilleri L., Duane A. et al 1972Phys. Letters, 39B, 275.
Upadhyay' 'P. N. 1973 Ind. Jour. Pure \& Appl. Phys. 11, 425.

Indian J. Phys. 49, 410-411 (1976)

A preliminary study of the $\pi^{+} \pi^{-} \pi^{+} \pi^{-}$decay mode of the X^{0} meson

P. N. Upadhyay
Department of Physios, Gaya College, Gaya, Bihar

(Received 10 June 1974)
An enhanoement near the X° region at mass $956 \pm 2 \mathrm{MoV} / c^{2}$ and wid $1 \mathrm{~h} \leqslant 12 \mathrm{MoV} / \mathrm{c}^{2}$ produced in $\pi^{-} p \rightarrow X^{0} n$ have already been reported (Upadhyay 1973). The $X^{0} \rightarrow \pi \pi \eta$ decay mode was also studied (Upadhyay 1971). Some data was further analysed to study a rare docay mode $\pi^{+} \pi^{-} \pi^{+} \pi^{-}$of the X^{0} meosn reported by Barash-Schmidt et al (1973).

The missing mass of the X^{0} meson was determined by measuring the neutron time-of-flight and incident pion momentum. The number of the charged particles and the neutral particles was determined by an array of the sointillation counters which surrounded a liquid hydrogen target. The details of the apparatus have been given by Upadhyay (1973).

Fig 1. Yield curve for the $X^{0} \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-}$events in the four-momentum tranefer region ranging from -0.38 to $-0.79(\mathrm{GoV} / \mathrm{c})^{2}$.

[^0]: *Work done at the Rutherford Laboratory, Chilton, Didcot, Berks,

