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Abstract : We have considered the Periodic Anderson lattice model and fitted the pairing
state gap parameter to a power law (7' - T, )" with T near the critical temperature T, It has
been found that n lies between 0 41 and 0 45 for almost all values of the localized level in the
narrow half-filled conduction band The specific heat shows anomalous behavior when the
localized level 1s above the Fermi level, while 1t can be fitted to an exponential law when the
localized level 1s below the Fermt level
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Heavy Fermions and non-conventional superconductors are now two most important
systems of intensive experimental and theoretical investigations [1,2,3,4]. One of the most
serious contenders for the description of these systems is the Periodic Anderson lattice

model [5,6] with the hamiltonian

H=H,+H,
HO = 2(8"-‘7 "sF)c;,aCk.a + Z(Ea -ep)a:,'aam,a
k.o m,o
+ —lzj— Z(a;n.aam.o‘)(a;n,ﬁam,a)'
m,c
g _ik.R,)a! h.c]. (1)
H = Wkgc[vh exp( zk.R,,,)a,,,’oc,,_,, + C]
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Here the c-s correspond to the conduction electrons (with momentum k, spin o and energy
€ o)» the a-s correspond to the localized electrons (at the N sites R, with energy E,), U is
the on-site Coulomb interaction strength, V; is the momentum-dependent hybridization
interaction and &f is the Fermi energy. In an earlier work [7] we had shown that on-site
pairing of the localized electrons is possible in this model provided U, when dressed by the
conduction electrons, is negative and satisfies a further condition. This condition depends
on the relative positions of E4, € and the magnitudes of I/ and V. In the case of a half-
filled narrow band system, £y - A£/2< & o < €y + Ac/2 with & = &, it was found that
within an allowed region of the (U, Ey — €;) phase space it is possible to have on-site
pairing of localized electrons given by non-zero value of the temperature-dependent gap
parameter A = (@, oG, z) Where Eg =X E_ /2.

The bare localized state parameters of the hamiltonian are dressed by the conduction
electrons and these dressed quantities are denoted by the corresponding symbols with a
tilde above them, like Epand U. In terms of the dimensionless reduced variables
t=kgT/ Ule= I-:‘o /\UI we had previously obtained [7] the temperature dependence of the
gap parameter A (Figure 1) for different values of e, dependence of the critical temperature
1. on €2, re-entrant behaviour in large magnetic field and the nature of the transition from

normal to pairing phase.
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Figure 1. Gap parameter A(/) as a function of ¢ for e = 0.0 (a), 0.1 (b), 0.2 (¢),
0.3 (d) and 0.4 (e).

We are here interested to investigate whether there is any universality in the
transition. Such universal scaling properties have been observed [8~10] for Hall coefficient
and thermoelectric power in the normal state of Bi-2212 and T1-2212 systems. In case of
any phase transition universality is one of the first properties that is first looked into.
In Figure 2, we have plotted A(#)/A(0) as a function of ¢/, for e = 0.0, 0.1, 0.2, 0.3 and 0.4.
The figure suggests that there is at least an approximate universality. To see it more clearly
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Figure 2. Reduced gap parameter A(1)/A(0) as a function of #/1. for e = 00,
01,02,03and 0.4.
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Figure 3. Power law fitting A/AO)Y= A( O~ 1t )" fore= 0.0 (a), 0.1 (),
0.2 (¢).0.3(d)and 0 4 (e)

we have fitted in Figure 3 A(2)/A(0) = A(1.0 — t/1.)" for t near t. with the best fit
values of A andn given in Table 1. At low temperaturc for t ncar 0 we have fitted in

Table 1. Best fit values of A and n in the fitting A(D/A0) = AL 01/t ¥ for
t near 1, for different values ofe

€ A n o
00 1 46348 0451741
ot 1 38678 0410222
0.2 141512 0.421230
0.3 1.41323 0 408642

04 1.39814 0.378980
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Figure 4 A(2)/A(0)=1.0-A exp (- az/t) with the best fit values of A and a given in Table 2.
The values of n given in Table 1 show considerable deviation from Ginzburg-Landau value.
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Figure 4. Exponential fiting A(1)/A(0)=1 0~ Aexp- at [t for e = 0.0 (a),
01(5),02(c),03(d)and 04 (e)

Table 2. Best fit values of A and « in the fiting A(1)/A(0) = 1.0 - Aexp(-ay, /t)
when ¢ is near O for different values of e

0.0 318547 2.13348
0.1 327402 2.17336
02 3.44061 2.22653
03 362535 2.33737
04 6 02010 277457

The specific heat for the system shows quite interesting feature. The values
calculated from eq. (39) of Ref. [7] for positive values of e have been shown in Figure 5
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Figure 5. Specific heat C(1)/Nkpg as a function of ¢ for e = 0.0 (a), 0.1 (b), 0.2
(), 0.3 (d) and 0.4 (o).
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and those for negative values of e have been shown in Figure 6. Whilc for the negatve
values of e the curves are similar to those for systems with gaps in the energy spectrum, for

0.00
0.

Figure 6. Specific heat C(¢)/Nkg as a function of ¢ for e = 0.0 (a), -0.1 (b),
-02(c), 0.3 (d)and <0 4 (e).

positive values of e there are humps before the peak and the succeeding drop.
This behaviour has been reported [11,12] in experiments performed on Ba,_, K, BiO;
and Bi, Pb,BaO;. For negative values of e specific hcat attains a constant value in the
normal phase after the drop as in classical physics, the constant value being independent of
e. The specific heat data for negative values of e could not be fitted to a single power law

C(t)/Nkg = A(1.0 - t/t.)". But fitting to exponential laws.
1. C(t)/Nkg = A cxp- a(].O ~ t/tc) shown in Figure 7 with best fit values of A and

a given in Table 3, and

ﬁ <

|

n

o

] d:
X c.
4 i ‘
N ! "
4
o

o ‘ --------- 22222 00000 22aaaatidd Saaaanalnl Aa 4 Al

000 0035 0.0 013 020 025 03

1.0 - t/t ¢ —————

= Aexp- a(1.0-1/1;) for e =00 (@),

.

Figure 7. Exponential fitting C(1)/Nkgp
-0.1(b), 0.2 (c), -0.3 (d) and -0.4 (o.
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Table 3. Best fit values of A and & in the fitting C(1)/Nkp = Aexp- a(1 0-1/t.)
when ¢ is near ¢ for different values of e.

e A a
00 11.7515 6.63387
-01 19.9804 7.59467
-0.2 28.4975 7 68435
-0.3 31.3607 6 94682
-04 243347 5.38330

2. C(1)/Nkg = Aexp- a(t_/t - 1.0) shown in Figure 8 with best fit values of A and

a given in Table 4
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Figure 8. Exponential fitting C(t)/Nkp = Aexp- a(1./t-10) for e = 0.0 (a).
-0.1 (b), 0.2 (c), -0.3 (d) and 0.4 (e).

Table 4. Best fit values of A and a in the fiting C(1)/Nkg = Aexp—- a(l.[t-1.0)
when ¢ is near ¢, for different values of e.

a
0.0 11.0289 5.19188
-0.1 18.4818 5.89484
-0.2 26.1624 5.89660
-0.3 28.5635 5.18112
-04 21.92%2 3.76084

is possible. Of these two fittings, the first one seems to be slightly better. This points to a
non-conventional type of transition. But the almost equality of the values of & again
indicates at least an approximate universality. It should be pointed out that all the
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calculations have been done for zero external magnetic field. A point should be noted about
the Figures 5-8. The specific heat has really been plotted with the numerical estimate of the
derivative of the Helmholtz’ free energy as the ratio of two differences. In reality in
Figure 6 there is a jump in the specific heat at the transition point.

This analysis confirms the general feeling that Heavy Fermionic and non-

conventional superconducting systems have masy peculiar features which are not observed
in ordinary systems. ‘
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