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A b s tra c t W e in trod u c e  a qu an tu m  u n t ife r ro m a g n e t  m o d e l, h a v in g  e x a c t ly  s o lu b le  th e rm o d y n a m ic  p ro p e r t ie s  It is an in f in it e  ra n ge
antifcrromagneiic Is ing m odel pul in a transverse fie ld  T b c  free energy g iv es  the ground state energy in the zero  temperature lim it and it also g ives  the 

low temperature behaviour o f  the sp ec ific  heat, the exponen tia l variation  o f  w h ich  g iv es  the precise gap  m agnitude in the excita tion  spectrum o f  the 
system The detailed behaviour o f  the (random  sublattice) staggered magnetisation and susceptibilities are obtained and studied neai the N<5el temperatuie 
and the ze ro  tem peratu ie quantum c r itic a l point.

K e y w o rd s  * Quantum an tife rrom agnets, Is ing m odels  in transverse fie ld s , quantum critica l point 
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With the realisation in the mid last century, that the N^el state 
can not be the ground sate, or even an eigenstate, of the quantum 
Heisenberg antiferromagnets, considerable efforts have gone 
in search for the nature of the ground state for such quantum 
antiferromagnets. Searches have also been made for low lying 
eigen states of Heisenberg antiferromagnets even in the semi- 
classical limits, or in some other variants of the model where 
exact ground state and other eigenstates are available 11,21. In 
particular, the exact dimerised (two-fold degenerate; disordered) 
ground state is the one dimensional next nearest neighbour 
interacting heisenberg antiferromagnet (having strength ratio 
1/2 between the next nearest and nearest neighbours) has been 
found out [3] and this observation has attracted considerable 
attention in the context of high temperature superconductors 
occurring in materials having antiferromagnetic properties (1,2]. 
Regarding the excited states in such quantum antiferromagnets, 
the Haldane conjecture [2,4] states that the integer spin 
systems are massive (have a gap), while the half-integer ones 
itre massless.

The low temperature limit of the exact free energy obtained 
here for the (spin -Vi) long-range interacting transverse Ising
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model shows that the specific heat has an exponential (in gap 
and inverse temperature) variation, giving the precise magnitude 
of the gap in the model. The order-disorder transition, driven 
both by temperature and the tunneling or transverse field, are 
investigated studying the ordering and susceptibility 
behaviours.

The model wc study here has the Hamiltonian

^  i.J

(1)

where J  denotes the long-range antiferromagnetic {J > 0) 
exchange constant and and 5" denote the x  and z components
of the N  Pauli spins (S  = 1/2) :

......

Denoting half of the randomly chosen lattice sites as 
members of sublattice A and the rest of B, and expressing the 
cooperative term in Hamiltonian (1) as the difference of two 
quadratics, the Hamiltonian can be rewritten as

©20061ACS

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IACS Institutional Repository

https://core.ac.uk/display/158963393?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


610 Bikas K  C hakrabarti and J unde h i I  none

i i

In fact, the Hamiltonian (1) is meaningful when the spins in 
the cooperative term there belongs to two different (though 
randomly defined) sublattices, each consisting of N /2 spins, 
using the Hubbard-Stratonovich transformation, the partition 
function can be expressed as

~  ^H B )) (2)

where /3 denotes the inverse temperature T  and m_ are 
related to the (uniform ; z-component) magnetisation and
M g  of the sublattices A  and B respectively

+ M g ^  and m_ = — M g ^ .  The trace in (2)
can now be easily performed [5] as each spin 5 can now be 
imagined to be isolated and present only in a vector field h  

having both z and x components \ ^  F  and h " -  P J m . In
the yv —> limit, the free energy /per spin can be obtained
fk)m

Z  =  exp[-A^>9/],

/ = ^ [ ( A / i  + A / i )

^  log] cosh - h f
2 p

2 P
log c o s h ^ y j ( 2 J M ^  -  h f  +  r ^ (3)

where the sublattice magnetisations and M g  are given
by the (self-consistent) saddle point equations :

{ - 2 J M  ̂  +  /i) r ------------------ Ti
I  ̂  ̂ tanh p ^ ( - 2 J M %  +  h)

^ ( - 2 J M ^ + h f  + r ^
+  r ^

n ---------------------------
— ..,r— ------- tanh / 3 y l [ - 2 J M x  + h ) '  + p -

^ { - 2 J M \ + h f d F -

(4)

The spontaneous sublattice order M \  and M g  vanishes 
at the Neel phase boundary Tfsj{F) ; sec Figure 1. It may be 
noted that the choice of sublattices here is purely random and 
the sublattice order therefore looks like that of a glass. Also, 
deep inside the antiferromagnetic phase (at 

oo, 0, /t = 0) ), M \  = 1 = -  M'g , so that the free
energy/can be expresssed as /  -  {1/P )  log[l + exp(-2/^(d)] 
and the specific heat d “ f  j d T ^  will have a variation like 
exp[-“2 /?2d(/'')] , similar to those of a two level system with a 

gap ^ (/ ')  =  V 4 y - + F ^  . This is the exact magnitude of the 
gap in the magnon spectrum of this long range transverse Ising 
antiferromagnet. Actually, the above result for the gap can be 
seen directly from the effective Hamiltonian in (2) having a simple 

a  b  \
matrix form where a  =  2 p J t n  and b — F ,  giving the

b  - a  j
eigen values ±  p ^ A J ^ n r  + F "  • This gives the gap P A  at 
7" = 0 = /", where the magnetisation ni becomes equal to unity

In the classical case, near the Neel temperatmc 
^T fsi ( F  — 0 )  . we expand the equations (4 ) around 

M -  0 ,  M g  -  0  for /i = 0 and obtain -  - 2 J P M g

+ A fi=-27y0yW ^+<9(^(A/A)"]. The only

possible solutions for these linearized equations are 

Af^ = -A f ^  = Af" = 0  and M \ ^ - M % ^ M '

where = 2 J  . The longitudinal linear 

susceptibilities ;i^^/g are given by XAfB

-  ^ (I-27^B ,^ )cosh - P { ^ 2 J M X b!a \  Hence, 

X  = X a -^ X b behaves as

X ^
rv  + 7 ’cosh^(2yAf^)/7' (5)

This gives ^  = for high temperatures T > T s

(where Af ̂  =  -  M g  =  A f ' =  0 ) and at 7^ it grows upto a 
value i/2y and drops down again to 0 as T 0 « giving the well 
known cusp behaviour (see e.g., [6 ]) for the classical 
antiferromagnets.

In the pure quantum case { T  =  0, F  ̂  0 ), the tanh term in 
(4) equals to unity and with a similar expansion near the quantum 

critical point =  2 7 , one gets the longitudinal



s u s c e p tib i l i ty  Z = X a + X b < Z b/a =••»«/,-»o
3/2

 ̂ ( y - 2 J z  bi a ) / b/a )  + I • We then have
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(6)

giving Z  ^  2/(/^-\r F }^ ) for r  >  and growinguptoa value 

1/27 at 7^= F[sj and then decreasing eventually to a value | 
x ^ f ' I a j  ̂ as 0. Again a cusp behaviour is seen for i
the susceptibility at the quantum critical point for such a 
quantum antiferromagnet (see Figure 1). The behaviour is of 
course qualitatively similar to that the classical critical (Neel) 
point One can also study the transverse susceptibility

d M ^ /d F^  behaviour. One finds Z a tbr

r >  Fj^ and Z a ~  ~ Z b for the ordered phase (see
Figure 2).

F igu re  1. V aria tion s o f  lo n g itu d in a l su b la ttic e  m agn e tiza tion  and 
'^usceptihilitie.s in the classical and quantum cases (./ =  I ).

nal

Figure 2. Variations o f  transverse magnetisation and susceptibility in the 
quantum case (7 ® 1).

In view of the intriguing ground state properties of quantum 
antiferromagnets [2J* indications coming often only from

approximate theories (see e.g., |7j for a long range quantum 
Heisenberg antiferromagnet) or numerical simulations (sec e.g.,
[8] and references therein), our proposed quantum 
antiferromagnetic model, having exactly soluble thermodynamic 
properties, should be of some interest. The model consists of 
an infinite range antiferromagnetic Ising system, pul in a 
transverse field. The classical ground slate of the model is highly 
degenerate. Although no signature of slow dynamics, like in 
glasses, can be seen here, the ordered state in the system 
corresponds to (quantum) glass-like system as well. The number 
of degenercite states can be estimated to be , which is
larger than that for the Sherrington-Kirkpalrick model 

[9j. xhis may be compared and contrasted 
with the transverse Ising antiferromagnets on topologically 
frustrated triangular lattices studied extensively in the last few 
years [10]. The free energy in (3) gives the ground state energy 
in the zero temperature limit and it also gives the low temperature 
behaviour of the specific heat, the exponential variation of which

gives the precise gap magnitude =  yl4J~ + F~  j  in the 
excitation spectrum of the system. It may be noted that although 
it is a spin-1/2 system, because of the restricted (Ising) symmetry 
and the infinite dimensionality (long range interaction) involved, 
there need not be any conHicl with the Haldane conjecture. 
Although our entire analysis has been for spin-1/2 (Ising) case, 
because of the reduction of the effective Hamiltonian in (2) to 
that of a single spin in an effective vector field, the results can 
be easily generalised for higher values of the spin S. No 
qualitative change is observed. The order-di.sorder transition in 
the model can be driven hx̂ th by thermal fluctuations (increasing 
T) or by the quantum fluctuations (increasing f " ) .  These 
transitions in the model have been investigated here studying 
the behaviours of the (random sublattice) magnetisation and 
the (longitudinal and transverse) susceptibilities. No quantum 
phase transition, where the gap ^  vanishes, is observed in the 
model, unlike in the one dimensional transverse Ising 
antiferromagnets 11,5].
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