
Indian J. Phys. 80 (6 ), 599-607 (2006)

I J P

Nonlinear sigma model approach to quantum spin chains

Sumahi Rao
Harish-Chandra Rcscarcljf Institute, Chhalnag R oad . 

Jhusi, A llahabad  211 019. Uttar Pradesh. India

E -m ail .sum alh i@ m ri ernel.in

Abstract ; W e  introduce and m otiva te  the study o f  quantum spin chains on a onc-d im cnsiona l lattice We c la ss ify  the varieties o f  methods that 
hjvt been used to  study these m odels into three categories, (a ) exact m ethods to study spec ific  m odels (b )  f ie ld  theories to describe fluctuations about 
ihr classical ordered  phases and ( c )  num erica l m ethods W e then discuss the m ode l in som e deta il and end w ith  a fe w  com m ents on open

problems
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1. Introduction '

Wc start with the definition of a .spin chain 11,2] as a spin model 
on a one-dimensional lattice — e . f > .,

H  = J , ' ^ S , . S , + (1)
nn nn nun

Here, i, j  represent the sites on a lattice and the notation nn 

(-  < i, J > ) stands for nearest neighbour, nn n  stands for next 
nearest neighbour and so on. The spins are Heisenberg spins 
satisfying j’s " ,  s/'j = S/ and not classically commuting 
variables, and hence it is a quantum spin chain. We would like 
tf) find the ground state and excitation spectrum of these models.

But why are we interested in these models ? Spin systems as 
models of magnetic materials have been used for many years [3] 
because there exist large classes of materials where the electron 
stays localised and magnetic properties reside in the individual 
atoms -  i.e., one has localised moments which can be modelled 
by the spins.

But more specifically, there are several reasons for studying 
^me-dimensional quantum spin chain. The first is simply that 
there really exist materials that behave like one-dimensional 
^ntiferromagnets f4, 5]. CsNiCl3  is one of them, because the 
ratio between the intra-chain coupling and inter-chain coupling 
itt this material is 0.018. Another compound which is even more

markedly tme-dimensional is NENP (Ni(C^H^N^)2(NO^)C'10^) 
where the ratio is of the order 10“̂ . In both these materials, a gap 
in the excitation spectrum was found although translational 
symmetry remained unbroken. This was an experimental 
verification of a conjecture by Haldane [1, 2, 61 that — 1 
Heisenberg antiferromagnets should have a gap in the spectrum 
(unlike S 1/2) and would not break translational symmetry (unlike 
dimers). More recently, even more exotic compounds which are 
quasione-dimensional and can be modelled by unusual spin 
chains (sawtooth spin chains) with missing bonds v iz .

«  =  S, S i . . , + 7 / 2 E , ( l  +  ( ~ l ) ' ) s ,  • A’,+2 h ave  b een  

found [7J.

The second reason is that there exist exact st l̂utions of some 
toy models, which can then be used as a check or testing ground 
for new analytical or numerical methods. Finally, quantum anti­
ferromagnets in higher dimensions have become particularly 
prominent in the last few years in the context of high T 
superconductors. It is hoped that some of the methods to solve 
quantum spin chains may have generalisation to higher 
dimensions.

2. Varieties of approaches to solve quantum spin chains

In this section, we will discuss the various methods that have 
been used to ’.solve’ models of quantum spin chains.
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I. S p in -w a v e  t h e o r y :

In higher dimensions, the standard way to proceed is to start 
with the classical ground state and then use spin-wave theory. 
We first try to apply that method to the one-dimensional spin 
models here. Let us start with the simplest spin-chain, the 
Heisenberg antiferromagnet {H A FM )

(2)

Here, / runs over the sites on the one-dimensional lattice. If 
the spins were classical vectors, then

//=75-Xcos(^, - O u t ) (3)

which IS obviously minimum when cos(^/~ ) = — 1
=> {Oj -  Out ) = ^  ■

Hence, the classical ground state {Neel state) is given by

I 5,~5,...) = I T, 4, T, >1,.. .̂  . (4)

Note that this is not an eigenstate of the Hamiltonian, because 
terms in the Hamiltonian flips nearest neighbour spins. However, 
for very large spins

[s,", s f ]  = e^, s; = 0 (5 ) «  0 (5^). (5)

Hence, in the limit, 5 —> oo the N eel state must be the ground 
state. By perturbing about the N ee l state, we can get the results 
for large but finite spin. This perturbation theory is called the 
spin-wave theory and is done using the Holstein-Primakoff 
transformation [3], which is given by

5/ = 5 -  a U i . S r  = - S  + h! b, ,

1/2 .

X xl/2 X . \I/2
(6)

for the A and B sub-lattices, which are denoted as i e A when 
i is even and i e B when i is odd or v ic e -v e rs a . We can easily 
check that the spins satisfy the spin algebra when the 1 2 ,̂ and 
their conjugates satisfy bosonic commutation relations. Note 
that in the A sublattice, the absence of any bosons in a state 
implies that it has the maximum spin and for the B sub-lattice, 
the absence of any bosonic excitation implies minimum spin. In 
the large S  limit, the awkward square-root term can be dropped

and the spin raising and lowering operators can be approximaied 
merely as

5/  -> ypisa^, S f  -» y/2Sa, ,

5;  7 2 5 * / ,  57 7 2 5 * ,  (7)

on the A and B sub-lattices. In fact, we can develop a systemutK' 
1/5 expansion by expanding the square-root term, with the ab>\c 
terms being the first in the expansion. But in this review, we will 
stop with the first term. Next, we write the Hamiltonian in terms 
of these bosons (using the above approximation) as

H  -  J  ^  J-5^ + a , + b^b^ + a ,b j + a,'b j j j . (Ki

After going to momentum space and performing 
Boguliobov transformation, we get

KgRBZ
(0;

with = 275 sin and are rerelated to the founci 

transforms of the and fields as - u j ^ h \  and

dk = ^kl^-k ~ , with — cosh and sinh and
furthermore, coth2̂ ;̂ . = -cos/: . As X:—> 0, —>275|a|
which implies that the c and bosons, which are the spin-wave 
modes, are massless and relativistic modes with spin-wave 
velocity given by \ \  = 275 . This in fact, gives us a clue that a 
relativistic field theory description of the spin-wave modes might 
be possible.

We can also understand more physically why there are two 
massless spin-wave modes. The N e e l state breaks the SO (3i 
symmetry of the spin variables down to 50(2) (rotations about 
the 5" axis). The spin-waves are the Goldstone modes of this 
spontaneous symmetry break down. (Choosing a direction loi 
the N eel state (ground state) spontaneously breaks the 50(3) 
spin symmetry to the Hamiltonian down to 50(2)).

Spin-wave theory works quite well for three dimensional 
magnets, but in low dimensions, spin-wave theory has problem̂  
due to quantum fluctuations. Let us calculate the reduction m 
the sub-lattice magnetisation due to quantum fluctuations (m 
arbitrary dimensions). This can be done by computing the

expectation value of ^ .

{ s f  )  =  (5 -  a:a,) = 5 -  ^. (10)

In terms of the spin-wave modes, this can be rewritten as

(s,*)  *  s  -  S [ K  *'* )
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+1' ' * \^{dldk )  +  U tv l {c^ ii^ ) +  |vj 1̂ j , (11)

where the and have been defined before. All the expectatit>n 
values are zero in the ground state and we are left with

5; = s - S k r  - 5 - J
d " k  1

(12) 1

which is linearly divergent in one dimension and logarithmically 
divergent in two dimensions.

Hence, in one dimension, the N e e l state is always 
destabilised by quantum corrections. This is just a manifestation 
of the familiar result that there is no long range order in one 
dimension (Merm in-Wagner theorem) or equivalently, that there 
IS no spontaneous symmetry breakdown in 1+1 dimensions 
(Coleman's theorem). Both these theorems are a consequence 
of the infra-red divergences in the theory.

Other methods used in higher dimensions are fermionic and 
bosonic mean field theories. By substituting 5/ = y/J& y/ (8| or 
■S', = rt/a, [9] or S f  = i e “'’‘ a ^ t i ,  110] in the Hamiltonian, we 
get four fermitm or four bostin terms which can then be treated 
through appropriate mean field ansatz. But in one dimension, 
lluctualions beyond the mean field theory turn out to be infra­
red divergent. Hence, specifically in one dimension, other 
methexis are needed. We can divide them roughly into three 
categories. The first one involves the exact solution of some 
model Hamiltonians by sone ansatz wave-functions. For 
example,

H eisenberg A F M  f o r  S = J/2  .

The Heisenberg AFM for 5 = 1/2 in one dimension has been 
solved using Bethe ansatz (11, 12 j. The solution is hard to write 
down, but it is known that the ground state is unique and that 
there is no gap. Correlation functions fall off algebraically.

S' = / m o d el

The Hamiltonian is given by

(13)

For 5= 1, this has a Bethe ansatz solution, which shows that 
the model has a unique ground state with no energy gap.

l^o d e ls  w ith v alen c e  b o n d  g r o u n d  s ta te s

-  The Majumdar-Ghosh Hamiltonian is given by [ 13]

<+l (14)

For 5 =s 1/2, the ground state is given in terms of valence bonds. 
There are two degenerate ground states given by

"V T

There exists a gap in the spectrum and correlation functions 
have an exponential fall-off. Translational symmetry is broken.

The Hamiltonian for one of the Affleck-Kennedy-Lieb-Tasaki 
(AKLT) models [14] for 5 = 1 is given by

(15)

This has a unique valence bond ground state found by 
considering each S = 1 to be built of a symmetrised product of 2.v 
= 1/2's.

(

(

) ( ) ( )

) = symmetrisation

The ground sate is formed by symmetrizing after forming the 
singlets. Here, again, it was found that there exists a gap in the 
spectrum.

Besides all those explicit exact solutions of specific moels, 
there is another exact statement that can be proven in general. 
That is the Lieb-Schultz-Mattis LSM  theorem 115]. This theorem 
proves that teh 1/2 integer spin chain either has massless 
excitations or degenerate ground states corresponding to 
spontaneously broken parity.

To prove this, let us start with a chain of length L obeying 
periodic boundary conditions. Let us call its ground state |^o) 
and assume that this state is rotalionally invariant and an even 
eigenstate of parity. Now construct a new state \ W \) -  ^ \W o ) 

where

(16)

Le. every site from — / to + / is rotated about the z axis through 

angles i7 t / l , 2 i n ! f  ... 7.171. where I is some number of 0(L). 

First, we have to show that \ W \) is degenerate with ]
L —» oo limit. To do that, we compute

(17)

where ^ q\Wo)  ■ Now using the commutation relations
of the spins, we can show that

-  E o k i) =  + 2) , (18)
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where J  is the coupling constant of the spins and ê y = .
The point to note here is that the R.H.S. is of 0 { l )  and goes to 
zero as / —> oo . This shows that for an infinite chain, | and 

k i>  arc degenerate. There is still a possibility that 
asymptotically |^o) ' so that we have only one state.
But to disprove that, let us look at the behaviour of | ) under
parity. Under parity, s f  under rotation about the y-
axis through 5/ —> - S f  • Note that both parity and rotation 
about the y-axis through ;r, are symmetries of the Hamiltonian. 
Hence, under a combined action of both these symmetries, 
S f  - S f i . So

Hence, the state \ W \ ) -  ^|(^o)' under a combined symmetry 
operation of parity and rotation, goes to \

_  But since S j = (2/+  1)5, we see

that if the spin 5 is odd and is equal to +
1 if the spin 5 is even. Hence, for 1/2 integer spins, the state 
l^ i ) has odd parity and is distinct from \w'o) • fact,

I <^i) = ^ • Hence, for 1/2 odd integer spins, we have proven 

that as L 0 0  » there exists a state 1 )  distinct from ] ̂ 0 ) » 
but degenerate with | ̂ 0 ) • Hence, either there exists a massless 
excitation with odd parity, or if there is a gap, then there is a 
degeneracy in the spectrum. This result is the LSM theorem. 
The Bethe ansatz solution for the Heisenberg AFM with 
massless excitations falls in the first class and the Majumdar- 
Ghosh model with two degenerate ground states and massive 
excitations falls in the second class.

II. F ie ld  th e o ry  tr e a tm e n t  o f  f lu c t u a t io n s

The idea here is to derive a low energy continuum limit of spin 
models, keeping only the lowest derivative terms [1,6]. We shall 
first derive the field theory is detail for the Heisenberg AFM, 
and then briefly discuss how it is done for other general models, 
including the Majumdar-Ghosh model [13].

For the Heisenberg AFM, we start by defining two fields

^ 1+1/2 2̂i+l/2 — 2̂/ ~ ^2
25

I 2i^l/2 m ix  -® ^2i+W 2 ^
+ s 2/+I
2 a

(20)

Here, a  is the lattice spacing and the fields are defined at a 
point between the sites 2i and 2< + 1 where the spins are 
defined. So that pair of spin variables are now replaced by the 
pair of fields ^  and I . The commutation relations for the spins 
imply that ^(;c) and i ( x )  behave like a scalar field and angular

momentum field respectively. We can also check that 
= 1 + 1/5 =1 in the large 5 limit. Hence, ^ is a

constrained field.

To derive an effective field theory, we write the Hamiltonian
as

(21)

then write the spins in terms of the fields and then Taylor expand 
the fields. After doing a lot of algebra, we find that [2, 16)

H  = 2 J a j d x (22)

where and E2/(2a) -  I d x  ■ We now introduce the

spin-wave volocity = 2 J a S  and also the coupling constants
= 2/5 and Q =  2 n S  • This allows is to rewrite the Hamiltonian 

density as

(23)

which, with some more algebra can be shown to be derived from 

the Lagrangian density given by

L  = ^  V  • d  0  X d , 4
2 g “

(24)

with ffP" Note that we have already taken the large 5 limit 
This is necessary not only to have = 1, but also to justify 
the Taylor expansion. By keeping terms only upto second oidei 
in derivatives, we are assuming that the deviations from the 
equilibrium positions of the spins are small, which is justified 
only in the large 5 limit. With these assumptions, we find that 
the spinwave modes or fluctuations in the /MFAf arc described 
by an 0(3) non-linear sigma model {NLSM ) with a Hopf term 
(the term proportional to $ ) ,

The Hopf term is a total derivative, but its integral is an 
integer. Hence, the action

5 = f d td x L  =  —^  f d  ^ x d  . . ^ d ^  tft + i6 Q  
J 2 g ^ J

where

(25)

(26)

is an integer (in Euclidean space). Hence, in the partition function.
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Z = ĵ <!>e ^ jjj periodic in 5.5 = 0 is equivalent

to all 5= integers and 5=  1/2 is equivalent to all 5=  1/2 integers. 
Also> we note that for integer spins, the topological term can be 
dropped because = i for all configurations, but for half
integer spins, it is cither + 1  or —1 depending on value o f Q, 

Thus, the Hopf term plays an important role for half-integefj 
spins. This was what in fact, led to the famous Haldan^^ 
conjecture that the H A FM  for integer spins has a gapped| 
spectrum and is massless for half-integer spins. |

From the field theory mapping, in fact, it is easy to see tha| 
integer spins models have a gap, but it is more non-trivial toj 
show that half-integer spin models are gapless. Let us start witht 
a semi-classical analysis o f  the integer spin models. 
Scmiclassically, we assume that the 50(3 ) symmetry o f the 
Lagrangian is spontaneously broken to U ( [ ) - S O ( 2 )  by the 
Neel state or vacuum state given by ^ = (0, 0 ,1) . Fluctuations 
about this state are described by

to linear order in fluctuations. Hence, the Lagrangian

(27)

^
(28)

S '  ^ S '

is just the Lagrangian o f two free bosons. This is the same as 
the result that was obtained using spin-wave theory.

But using the field theory, we can do a lot better. Firstly, we 
can use renormalisation group (R G ) to go beyond naive 
perturbation theory, i.e., we can compute the -function. Since 

the manifold here (o f values taken by the fields , 0 2 » *̂3)) »s 
a sphere, we can use geometric methods to compute the RG 
equation and we find that

d  In L ja

5"
2 / r

where there is a gap o f ) to excitations.

One can also substantiate this by solving the field theory in 
the large N limit, i.e., by extending the 0 (3 ) NLSM to 0{N ) 11,2|, 
with a Lagrangian

N

25"
(30)

with <pr = 01̂  +0? 0 3 -f-...+0 ,̂ = J , In other words, instead o f
having just the usual spin variables with three components, we 
have extended it to N  components. This can also be thought o f 
as taking the number o f dimensions in which the spin moves to 
be N. In the limit o f large N, it is actually possible to compute the 
path integral explicitly and obtain the mass generated and we 
find that

m ^ A e - ^  (31)

for each o f the N  bosons, where A is an ultra-violet cutoff. As 
N S oo but /I —> oo as well, so as to keep m fixed.
Higher order corrections will go as (9(1/A )̂. Having obtained 
this result for large N, we now bravely set = 3 (assuming 
corrections will be small) and conclude that the integer .spin 
HAFM has an excitation spectrum consisting o f a triplet o f 
massive bosons with masses o f the order o f e ~ ^

All o f this was for integer .spins. N(>w what about 1/2 integer 
spins ? Here, the field theory incldues the non-trivial Hopf term 
and IS quite difficult to solve. However, Affleck 12] has mapped 
the model to a /: = J Wess-Zumino-Witten {WZW) mcxJel and by 
studying its symmetries, he has argued that the n  case is 
massless. This difference between the integer and half-integer 
spins was the big contribution o f field theories in spin models.

Similar mappings have also been used to write down field 
theories o f other models, such as the Majumdar-Ghosh model 
and its generalisations f 16, 17]. For instance, for the M G model 
for arbitary spins, we can write down as 50(3), x 50(2)^^ field 
theory [16J by introducing an 50(3 ) group valued R field as 
follows -

5o (29)

where g- is the microscopic coupling that was derived at length 
scale L = < 3 to be 2/5. From this, it is clear that the coupling

constant blows up when [^g ^ ln  L j a ^ j 2 ^  ssl which implies

L ja = • Thus, as a function of we expect a phase
transition to the strong coupling regime, where the earlier 
perturbative result of two massless bosons is no longer valid. 
Since the length scale is of  ̂masses of order )
are expected i.e., one expects to flow to a strong coupling regime.

^0.1 021 031 ^

012 022 032
<013 023 0.33

In terms of the R field, the Lagrangian is given by 

1

(32)

. t r [ R ^ k \ -----R ' l ^ ) (33)

with g~ = - J Z / s  and c  = J S a jT T / S  and /j being a diagonal 3 
X 3 matrix with diagonal entries (1,1,0) and all other entries zero. 
Here, R denotes the time derviati ve of the matrix-valed field R
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and R ' , its space derivative. The fields ^  are related to the 
spins as

\ ““A 3 / + 1

V 3 5

V 3 5

that ^ , / ^ 2  unity, so that the symmetry gets
enhanced to 50(3)/^ x 5 0 (3 ) »  and Lorentz invariance is 
restored. Thus, the Majumdar-Ghosh model for arbitrary values 
of the spin flows to a disordered phase. We shall come back tu 
this analysis in the last section where we study a general 
dimerised and frustrated model.

ni. N u m e r ic a l  m e th o d s

(^)-u = (^ ) , ,  x (^ ) , r (34)

Note that the field theory has no topological term. This is 
not unexpected, because here the manifold of the fields is 50(3) 
and 02 (*5^(3)) = 0 , whereas for the H A F M , the manifold was 
5̂  and fl 2  ~ ^  . So at least naively, no difference is expected
for integer and half-integer spin models. Also, note that the 
global symmetry of the action is 50(3)^ x 50(2)^ , which 
means that the effective action at any length scale can be written 
as

L =
[ 2g f  4 g i J ^  ’ { 2 g i  2 g f J ^

s i   ̂ ’ U « |  2 g U ^  ■ ’

with the microscopically derived Lagrangian having g f =
S 2 -  s i  -  2g4 = = y f b / s  . But these values change as we
go to larger length scales in accordance with the R G  equations 
or ^-functions given by

^ 2  ^ S 1 5i 5 3  8 4  ^
‘ ( 8 1 8 4 - ^ 8 2 8 3 )

8183
s i

82
s i )

+ 2«|
K s i

The third method that has been used to study spin chains is 
through numerical computation. Here, I shall only quote various 
results.

Exact diagonalisation of small systems

The frustrated Heisenberg antiferromagnet modeled by

H  = J (36)

has been studied for 5=1/2 to upto 20 sites and it was found 
that the critical value of a  for which a gap opens up m the 
spectrum is give by cr, = 0.2411 ±  0.0001 118]. This is the point 
at which the fluid-dimer transition takes place.

D ensity-m atrix ren o rm alisatio n  g ro u p  (D M R G ) [19]

This is recent method which has gained ground and is remarkabl\ 
accurate. The idea is to combine exact diagonalisation methods 
with the idea of renormalisation group. vSo a small system is first 
diagonalised exactly and then the system size is increased by 

adding two spins at a time on either side. This is done repeaiedl) 
using R G  ideas. For the same model as above, DMRG also finds 
a^, = 0.241 . D M R G  was also used to study a more general model 
involving bond alternation [20].

3. Frustrated and dimerised AFM spin chain
The idea is to study the -  J 2 - S  model given by

// = y, (37)

838x82 
8 a ( 8 x8 4 ^ 8 2 8 3 )

+ 5i53(_L__L
I S3 s i

si - s t  3 f  i 1 Y  -3 f   ̂ ^5i| 2 2 I 2 2
V8 3  8 4 )  K8 4  8 3  J

• (35)

We integrated these equations numerically [16] and found 
that the length scale where strong coupling takes over is 
^  JUfa =  , which is of the same order as e ^  that we had
found for the H A F M , Moreover, we found that the flow is such

in detail [17]. Classically, the ground state is a coplanar 
configuration of the spins with energy per spin.

£ 0  = S * j^ -^ (l + «y)cos<?, +-^(l-<y)cos(92 + y2COs(^i +<%)

(38)

Minimising this energy with respect to B. gives three 
phases

N ee l p h a s e

n n n n . (39)
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This is stable for { l - ^  J  2 /  J  x .

Spiral p h a s e

Here, the angles between neighbouring spins alternate

T T
between and 6  ̂ where

- 1  \ - S ^  5  47,
COS ^ + -

\ +  S  ^ J . / J x  l +  S^  Jx

and cos <9, = - S  47.
\ ^ S  4 7 . 7 7 , \ ~ S -  7, (40)

This phase is stable for \ - S “ < ^ 3 ^ 1  J \  < { \ - S ^ ^ j s . 

ColUnear p h a s e

This phase can be thought of as u special case of the spiral 
phase where — 7t and 6̂, = 0 . It can be denoted as

T t i i T T i i ....  (41)

This phase needs both frustration and dimerisation and is 
stable for { \ - S ^ ) j S  < A J :^I  ■

These three phases in the classical phase diagram are 
depicted in Figure 1.

Figure 1, Semi-classical phase diagram of the -72 model.

We can study fluctuations about the classical ground state 
as described earlier. In the N eel phase, there are two modes with 
equal velocity and the Fourier transform of the spin-spin 
correlation function S{q^ is peaked at ^ ^  . In the spiral phase,
've have three modes, two of them with equal velocity describe 
«ut-of-plane fluctuations and the third one with a higher velocity 
describes in-plane fluctuations. S (q ) is peaked at n j l  < q  < n  . 

In the collinear phase, once again, there are two modes with 

equal velocity, but here is peaked at < 7 = n j 2  . But as we 
have already seen earlier, we do not expect spinwave theory to 

accurate in one dimension because, there is no long-range

order, no spontaneous symmetry breakdown and no Goldstone 
modes in one dimension.

Next, what do we know about the model exactly ? For 
72 = <̂  = 0, the model is just the H A FM  and the solution for S 

= 1/2 is a unique ground stale with no excitations. For 7, = 7,/2 
and S  = 0 *  which is the M G  model, the solution for 5 = 1/2 is the 
doubly degenerate valence bond state, with massive excitations. 
In fact, this state turns out to be the ground state even with 
dimerisation along the line 27. +<5 = 7,.

Now, let us study the field theory model for the fluctuations 
in the three classical phases.

(i) In the N eel phase, even with 7. and S  ’ the mapping 
is to an 0(3) NLSM, with the Hopf term as given in 
eq. (24). The only difference is that now 

c = 2 J f O S ^ l - S -  - 4 J 2 / J 1 . g - = 2 / ( S 0 - S - -  

47./7,)) and B = 2/rS(l -  S )  . We expiect the theory 
to have a mass gap in general and to be massless 
only when B = 2 /tS (l -  S )  -  tr  . Note that a 
topological term is present to distinguish different 
spins, but spin is not really a continuous variable. So 
for each spin, integer or half-integer, there are specific 
values of ^  which can be chosen to get massless 
points.

(ii) For the spiral phase also, the field theory still turn 
out to be the 50(3)^ x SO('2)^ invariant, but with a 
Lagrangian given by

1
4cg -

- t r ( R ^ R P o ) -
2 g ^

- t n R ' ^ R ' p , ) (4 2 )

where and F, are diagonal matrices with the 
diagonal elements given by

Po = (j/ 2 gJ. l/2 g|, l/gf .  l/2 g|) and />, = 

( 1/2 ^ 4 . 1/2 ^ 4 , l/gj -l/2g|),respectively.The/?C 

equations are the same as the ones given in eq. (35). 
However, the initial microscopic values of the 
coupling constants are different now and are given 
by

8 2
2 1 f472 I 

47, -  7.

s i  = 2 g i  ,

and [i + (1 ~* î / 2-/2T]- (43)

As before, the R G  equations can be integrated 
numerically with these initial conditions and it can be
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shown that the theory flows once again to an 

50(3) I X 50(3) Lorentz invariant field theory.

The interesting point is that this theory turns out to 
be an exactly solved model [21]. The low energy 
spectrum consists of a ma.ssless spin 1/2 doublet. 
Hence, in the spiral phase (which requires sufficiently 
large frustration and dimerisation), we can make the 
prediction that both integer and half-integer spin 
models should have massive spin J/2 excitations. The 
long wavelength excitations are expected to be 'two- 
particle* excitations, the spin triplet and the spin 
singlet excitations.

Although there is no topological term in the 
Lagrangian, we claim that there d(^s exist a difference 
between integer and half-integer spins in this phase. 
Tunneling between soliton sectors can lead to a 
unique ground state for integer spins, but this is not 
possible for 1/2 integer spins, which have a doubly 
degenerate ground state, in accordance with the LSM 
theorem.

(iii) Finally, we can write down the field theory for the 
collinear phase as well. Here again, the field thory 
turns out to be an 0(3) NLSM , but without the Hopf 
term. This means that the pha.se is always gapped 
both for integer and non-integer spins.

We generally expect these field theories to be valid in the 
large 5 limit, but for small values of 5 such as 5 = 1/2 and 5=1, 
the above analysis is only indicative and numerical studies are 
needed to get the phase diagram accurately. These have been 
obtained (18, 20] and we only reproduce the phase diagrams 
here.

As can be seen by comparing these diagrams, with the 
classical phase diagram in Figure 1, the qualitative picture is 
reproduced for spin 1/2, but for spin 5 =1 , there are many new 
unexpected features in the 5 = 1  phase diagram obtained 
numerically. For the spin 1/2 chain depicted in Figure 2, in region 
I S{q) is peaked at ^ ^ , in region II, S{q) decrease from ^ = /r
(near region I) to ^ = t t j l . (near region III) and 5(^) is peaked at

q  = 7 1 (2  in region III. There exists a gapless line running from /. 
= 0 to = 0.241. It is straight forward to identify region I with 
the Neel phase, region II with the spiral phase and region Ii] 
with the collinear phase. However, the phase diagram for spin i 
depicted in Figure 3 is much more complex. There is a gapless 
solid line and the rest of the phase diagram is gapped. Regions 
II and III are identified with a Haldane phase, whereas regions! 
and IV are expected to be non-Haldane singlet phases. For details, 
sec Refs. [18, 201. It is not clear to us why the .semi-classical 
large 5 theory, works for spin 1/2 qualitatively, but fails 
completely for the spin I case.

Figure 2. 5 s 1/2 phase diagram of the model.

Figure 3. .V = 1 phase d iagram  o f  the ./, -  m odel

4. Conclusion
In this paper, we have given an overview of the field of quantum 
spin chains, with emphasis on the non-linear sigma model 
mapping. To recapitulate, quantum spin chains are spin models 
on a one-dimensional lattice. For parity invariant systems, the 
Lieb-Schulz-Mattis theorem says that for half-integer spin 
models, the ground state is either doubly degenerate, or the 
spectrum contains a massless mode. Using the N LSM  mapping, 
we demonstrated that the difference between 1/2 integer spin 
chains and integer spin chains was caused by the existence of a 
topological Hopf term in the Lagrangian. The presence of this 
term for 1/2 integer chains led to a gapless spectrum, whereas 
integer spin chains which did not have the Hopf term were 
gapped. For more general models, such as spin chains with 
dimerisation and/or frustration, the N LSM  approach can only 
give a qualitative understanding. For instance, the mapping ol 
the Majumdar-Ghosh mode! (more generally, the spiral phase ot 

a frustrated and dimerised spin chain) to the RG fixed point 
Lagrangian of an 50(3)^ x 50(3)^ model leads to the prediction 
that the low energy spectrum consists of a massive spin 1/2 
doublet. But for low values of 5, such as 1/2 and 1, often 
numerical methods are needed to get better results, as seen in 
the explicit phase diagrams for the spin 1/2 and spin I frustrated 
and dimerised models.

One of the important issues in this field is to get a proper 
understanding of the Haldane gap. Usually, a gap is formed 
when some symmetry is broken. So we need a symmetry that
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exists for half-integer spins and is broken by all integer spins. 
Since the distinction between the integer and half-integer spins 
occurs because o f the topological Hopf term, it is expected that 
(he order parameter characterising the massive and massless 
phases is also topological in nature. A  claim is that there exists 
a hidden x Z^ symmetry in the S = 1 model, which when 
broken leads to the gapped Haldane phase. But this phenomenon 
IS not well-understood.
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