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Abstract

: We introduce and motivate the study of quantum spin chains on a one-dimensional Jatice We classify the vancties of methods that

wave been used to study these models mnto three categories. (a) exact methods to study specific models (b) field theories to desenibe fluctnations about
the classical ordered phases and (¢) numenical methods We then discuss the J —J,—& model in some detal and end with a few comments on open

problems
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1. Introduction

We start with the definition of a spin chain | 1,2] as a spin model
on a one-dimensional lattice — e. g.,

H=135.5,+53(5.5,) + 1,2 5.5+.. (1)

nn nn nnn

Here, i, j represent the sites on a lattice and the notation nn
(= < i, j>) stands for nearest neighbour, nnn stands for next
nearest neighbour and so on. The spins are Heisenberg spins

sausfying |81, S," =ig"""s“ and not classically commuting
variables, and hence it is a quantum spin chain. We would like
o find the ground state and excitation spectrum of these models.

But why are we interested in these models ? Spin systems as
models of magnetic materials have been used for many years [3]
because there exist large classes of materials where the electron
stays localised and magnetic properties reside in the individual
aoms — i.e., one has localised moments which can be modelled
by the spins.

But more specifically, there are several reasons for studying
one-dimensional quantum spin chain. The first is simply that
there really exist materials that behave like one-dimensional
antiferromagnets [4, 5]. CsNiCl, is one of them, because the
"atio between the intra-chain coupling and inter-chain coupling
nthis material is 0.018. Another compound which is even more

markedly one-dimensional 1s NENP (Ni(CZHle)Z(NO_.)(‘IOJ)
where the ratio is of the order 107, In both these materials. a gap
in the excitation spectrum was found although translational
symmetry remained unbroken. This was an experimental
verification of a conjecture by Haldane [1, 2, 6] that § = 1
Heisenberg antiferromagnets should have a gap in the spectrum
(unlike S 1/2) and would not break translational symmetry (unlike
dimers). More recently, even more exotic compounds which are
quasione-dimensional and can be modelled by unusual spin
chains (sawtooth spin chains) with missing bonds viz,

H=J%;8;-Siy+J125,(14(-1)')S;-S;,» have been
found [7]. ’

The second reason is that there exist exact solutions of some
toy models, which can then be used as a check or testing ground
for new analytical or numerical methods. Finally, quantum anti-
ferromagnets in higher dimensions have become particularly
prominent in the last few years in the context of high T,
superconductors. It is hoped that some of the methods to solve
quantum spin chains may have generalisation to higher
dimensions.

2. Varieties of approaches to solve quantum spin chains

In this section, we will discuss the various methods that have
been used to 'solve' models of quantum spin chains.
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1. Spin-wave theory :

In higher dimensions, the standard way to proceed is to start
with the classical ground state and then use spin-wave theory.
We first try to apply that method to the one-dimensional spin
models here. Let us start with the simplest spin-chain, the
Heisenberg antiferromagnet (HAFM)

H=JYSS,,. @

Here, i runs over the sites on the one-dimensional lattice. If
the spins were classical vectors, then

2

H = JS*Y cos(6, - 6;,;) A

which 1s obviously minimum when cos(6/—-6,,)=-1
=(6,-6,)=7.

Hence, the classical ground state (Neel state) is given by
|s.—s.s,-s,...) = IT 4 T. i) “4)

Note that this is not an eigenstate of the Hamiltonian, because
terms in the Hamiltonian flips nearest neighbour spins. However,
for very large spins

[s7.5!]= e s = 0(8) << 005 ®)

Hence, in the limit, § — oo the Neel state must be the ground
state. By perturbing about the Neel state, we can get the results
for large but finite spin. This perturbation theory is called the
spin-wave theory and is done using the Holstein-Primakoft
transformation [ 3], which is given by

S,‘z = S—Cl;a,'. Sf = "‘S+b"1bl N
172

172

Sl+ =J§'S[ ]—'&

a b'b.
, St=A28p1-""""
35 o ST=V2 [ 25

172

s N2 +
s,‘=J55a,*|1————“;:‘] .s,'=ﬁs(1—b‘b‘ b, 6

28

for the A and B sub-lattices, which are denoted as j ¢ 4 when
iis even and i € B when i is odd or vice-versa. We can easily
check that the spins satisfy the spin algebra when the a, b, and
their conjugates satisfy bosonic commutation relations. Note
that in the A sublattice, the absence of any bosons in a state
implies that it has the maximum spin and for the B sub-lattice,
the absence of any bosonic excitation implies minimum spin. In
the large S limit, the awkward square-root term can be dropped

and the spin raising and lowering operators can be approximae,
merely as

S} > J25a", S7 > J2Sa, .

st o J2sb}, S; — J25b, ol

on the A and B sub-lattices. In fact, we can develop a systemarc
1/ expansion by expanding the square-root term, with the aboy ¢
terms being the first in the expansion. But in this review, we wil|
stop with the first term. Next, we writethe Hamiltonian in term.
of these bosons (using the above approximation) as

H=JY [-57+5(ala, +b]b, +ab, +a't;)].

<>

(K

After going to momentum space and performing
Boguliobov transformation, we get

H= Z E, (("ck +¢I,:(/A) ) 0
A€RBZ '

with E, = 2JS§ sin c, and d, are rerelated to the Four

transforms of the «¢, and b, fields as ¢ = uza; —wh'; any
dy =u b - v‘a[ . with u4; =cosh @, and v, =sinh ¢, and
furthermore, coth26, =-cosk . As k — 0. E; — 2JS||
which implies that the ¢ and & bosons, which are the spin-wave
modes, are massless and relativistic modes with spin-wave
velocity given by v, = 2JS . This in fact, gives us a clue thata
relativistic field theory description of the spin-wave modes might
be possible.

We can also understand more physically why there are two
massless spin-wave modes. The Neel state breaks the SO (3
symmetry of the spin variables down to SO(2) (rotations about
the S° axis). The spin-waves are the Goldstone modes of this
spontaneous symmetry break down. (Choosing a direction toi
the Neel state (ground state) spontaneously breaks the SO(3)
spin symmetry to the Hamiltonian down to SO(2)).

Spin-wave theory works quite well for three dimensional
magnets, but in low dimensions, spin-wave theory has problem:
due to quantum fluctuations. Let us calculate the reduction n
the sub-lattice magnetisation due to quantum fluctuations (in
arbitrary dimensions). This can be done by computing the

expectation value of <S,‘> .

(57)=(s-alar)=s-(Sefan) o
k
In terms of the spin-wave modes, this can be rewritten at

(57) = - Sl (eten) st el
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Hvklz<d:dk>+ukv:<c‘d‘)+|\"|2], 49

where the 4, and v have been defined before. All the expectation
values are zero in the ground state and we are left with

" 2 dk 1
57 = 5= Bl - 5- [ L L

which is linearly divergent in one dimension and logarithmically
divergent in two dimensions.

Hence, in one dimension, the Neel state is always'

destabilised by quantum corrections. This is just a manifestation

of the familiar result that there is no long range order in one’

dimension (Mermin-Wagner theorem) or equivalently, that there
1s no spontaneous symmetry breakdown in 1+1 dimensions
(Coleman's theorem). Both these theorems are a consequence
of the infra-red divergences in the theory.

Other methods used in higher dimensions are fermionic and
bosonic mean field theories. By substituting §; = w; &y [8] or
S, =aja; [91or S =ie“” a}a;. 110] in the Hamiltonian, we
get four fermion or four boson terms which can then be treated
through appropriate mean field ansatz. But in one dimension,
fluctuations beyond the mean field theory turn out to be infra-
red divergent. Hence, specifically in one dimension, other
methods are needed. We can divide them roughly into three
categories. The first one involves the exact solution of some
model Hamiltonians by sone ansatz wave-functions. For
example,

Heisenberg AFM for S = 1/2 .

The Heisenberg AFM for S = 1/2 in one dimension has been
solved using Bethe ansatz [ 11, 12]. The solution is hard to write
down, but it is known that the ground state is unique and that
there is no gap. Correlation functions fall off algebraically.

S =1 model

The Hamiltonian is given by

H=zsl'sl+l"2(si's:+l)2' (13)

For S = 1, this has a Bethe ansatz solution, which shows that
the model has a unique ground state with no energy gap.

Models with valence bond ground states

—  The Majumdar-Ghosh Hamiltonian is given by [13]

H= stisl+| + J/ZZSISNI (149)

For § = 1/2, the ground state is given in terms of valence bonds.
There are two degenerate ground states given by

a2);

(T1-11)

vz

There exists a gap in the spectrum and correlation functions
have an exponential fall-off. Translational symmetry is broken.

The Hamiltonian for one of the Affleck-Kennedy-Lieb-Tasaki
(AKLT) models [14] for S = 1 is given by

H=JYS,S,,,+J/33(5,S,.,)". (15)
This has a unique valence bond ground state found by

congidering each S = 1 to be built of a symmetrised product of 2s
=1/2's.

( _) = symmetrisation

The ground sate is formed by symmetrizing after forming the
singlets. Here, again, it was found that there exists a gap in the
spectrum.

Besides all those explicit exact solutions of specific moels,
there is another exact statement that can be proven in general.
That is the Lieb-Schultz-Mattis LSM theorem | 15]. This theorem
proves that teh 1/2 integer spin chain either has massless
excitations or degenerate ground states corresponding to
spontaneously broken parity.

To prove this, let us start with a chain of length L obeying

periodic boundary conditions. Let us call its ground state |, )
and assume that this state is rotationally invariant and an even

eigenstate of parity. Now construct a new state |l//,> = Ull/lo)
where

U= e(ur/L)x’l,_,(jﬂ)S; 16)

i.e. every site from —/ to + [ is rotated about the z axis through
angles in/l,2ix/l,...2izw, where | is some number of O(L).

First, we have to show that |,) is degenerate with |¥) inthe
L — oo limit. To do that, we compute

(w1 |H = Eolw,) = (wo|[U" (H = Eg)U|w,) . )

where H|w,) = Eo|w,) . Now using the commutation relations
of the spins, we can show that

2Jn

2
@+,

(w1 |H - Eolw,)= 18)
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where J is the coupling constant of the spins and ¢, = E, /L.
The point to note here is that the R.H.S. is of O(/) and goes to
zero as | —» =0 . This shows that for an infinite chain, |y, ) and
|w,) are degenerate. There is still a possibility that
asymptotically |{) — |¥) . so that we have only one state.
But to disprove that, let us look at the behaviour of IW.) under
parity. Under parity, §7 — §7, and under rotation about the y-
axis through 7, S/ — —S7 . Note that both parity and rotation
about the y-axis through 7, are symmetries of the Hamiltonian.
Hence, under a combined action of both these symmetries,
SF —-8%.So

U= e(ix/L)}:’,__,(/u).v e(-zm)z’,,_, 55 (19)

P U=
Hence, the state |y,) =U|w,) . under a combined symmetry
operation of parity and rotation, goes to Ue 2™ E1 ] Iy/0>
= 2T\ S] w,)- But since Z',.-, S =(21+1)S. we see

U H

that ¢@7PZ)-1+DS) _ ) if the spin S is odd and is equal to +
1 if the spin § is even. Hence, for 1/2 integer spins, the state
|l//.) has odd parity and is distinct from |W()). In fact,
(wo|w,) =0.Hence, for 1/2 odd integer spins, we have proven
that as L — oo , there exists a state ly/,) distinct from [Wo) ,
but degenerate with I'I’o) . Hence, either there exists a massless
excitation with odd parity, or if there is a gap, then there is a
degeneracy in the spectrum. This result is the LSM theorem.
The Bethe ansatz solution for the Heisenberg AFM with
massless excitations falls in the first class and the Majumdar-
Ghosh model with two degenerate ground states and massive
excitations falls in the second class.

11. Field theory treatment of fluctuations

The idea here is to derive a low energy continuum limit of spin
models, keeping only the lowest derivative terms [1,6]. We shall
first derive the field theory is detail for the Heisenberg AFM,
and then briefly discuss how it is done for other general models,
including the Majumdar-Ghosh model [13].

For the Heisenberg AFM, we start by defining two fields

sz: - s2i+l

o2 TPy 2 = 25

Sz + S84y
vy = Uiy = —= 2a

(20)

Here, a is the lattice spacing and the fields are defined at a
point x,, , - between the sites 2i and 2i + 1 where the spins are
defined. So that pair of spin variables are now replaced by the
pair of fields @ and [ . The commutation relations for the spins
imply that @¢(x) and I(x) behave like a scalar field and angular

momentum field respectively. We can also check thy,
@2 =1+1/S-a’1?/s* =1 in the large S limit. Hence, ¢
constrained field.

To derive an effective field theory, we write the Hamilionan
as

H= Jz ZSZI 'szu-l +S2:—l ) s‘.’.t Q1)

then write the spins in terms of the fields and then Taylor expand
the fields. After doing a lot of algebra, we find that (2, 16]

S 2 SI¢'
—_a "
(I+ @ ) + (22)

H=2Ja_[dx

where ¢’ = %Z’x—- and ¥,,(2a)= Idx We now introduce the

spin-wave volocity v, =2JaS and also the coupling constanty
g2=2/Sand @ = 275 . This allows is to rewrite the Hamiltonian
density as

Ad

Y
== g+ —¢"| + )

which, with some more algebra can be shown to be derived trom
the Lagrangian density given by

1

0 v
L=2g23ﬂ¢&”¢+-8;€“ ¢‘o7;,¢x9‘,¢ 24)

with ¢2 = 1. Note that we have already taken the large S limit
This is necessary not only to have ¢_2 =1, but also to justify
the Taylor expansion. By keeping terms only upto second orde!
in derivatives, we are assuming that the deviations from the
equilibrium positions of the spins are small, which is justified
only in the large S limit. With these assumptions, we find that
the spinwave modes or fluctuations in the HAFM are described
by an O(3) non-linear sigma model (NLSM) with a Hopf term
(the term proportional to @).

The Hopf term is a total derivative, but its integral is an
integer. Hence, the action

1 .
S = [drdeL = o [a?x3,9540 +ic0 @5
where
Q_;._Ljd*e‘%-a %00 26)
8z “

is an integer (in Euclidean space). Hence, in the partition function.
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Z= jD¢e's e'® = ¢>™5C ¢ periodic in $.5 = 0 is equivalent
toall § = integers and S = 1/2 is equivalent to all § = 1/2 integers.
Also, we note that for integer spins, the topological term can be
dropped because ¢275C =] for all configurations, but for half
integer spins, it is either +1 or —1 depending on value of Q.
Thus, the Hopf term plays an important role for half-integet
spins. This was what in fact, led to the famous Haldane;
conjecture that the HAFM for integer spins has a gapped
spectrum and is massless for half-integer spins. §

From the field thcory mapping. in fact, it is easy to see thai
integer spins models have a gap, but it is more non-trivial t(‘
show that half-integer spin models are gapless. Lct us start with
a semi-classical analysis of the integer spin models.
Scmiclassically, we assume that the SO(3) symmetry of the
Lagrangian 1s spontancously broken to U (1) = S0(2) by the
Neel state or vacuum state given by ¢ = (0, 0, 1) . Fluctuations
about this state are described by

b.3..(-87-32)" )= (8.6.) @n

to linear order in fluctuations. Hence, the Lagrangian

L= —]"1'8//¢8”¢ g 3 é’uﬁé”‘ﬁ + %aﬂéa”& (28)
2 . 2g .

2g-
is just the Lagrangian of two free bosons. This is the same as
the result that was obtained using spin-wave theory.

But using the field theory, we can do a lot better. Firstly, we
can use renormalisation group (RG) to go beyond naive
perturbation theory, i.e., we can compute the £ -function. Since
the manifold here (of values taken by the fields (@, .9,. ?; )) is
a sphere, we can use geometric methods to compute the RG
equation and we find that

2y d8° &~
PEI= iintja 27
= g2 (L) = g0 @9

(1 ~(gd1n L/a)/27r) '

where g2 is the microscopic coupling that was derived at length
scale L = g to be 2/S. From this, it is clear that the coupling

constant blows up when (gg In L/a)/2ﬂ =1 which implies
L/a = /% = ,™ . Thus, as a function of g2, we expect a phase
transition to the strong coupling regime, where the earlier
perturbative result of two massless bosons is no longer valid.
Since the length scale is of o(e"s) , masses of order o(e""s)
are expected i.e., one expects to flow to a strong coupling regime,
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where there is a gap of 0((:"’” ) to excitations.

One can also substantiate this by solving the field theory 1n
the large N limit, i.e., by extending the O(3) NLSM to (N) | 1,21,
with a Lagrangian

L=""5,65"p 30,

<8

with @2 = ¢f +¢)_,2 +¢32+‘..+¢,‘:, = | . In other words, instead of
having just the usual spin variables with three components, we
have extended it to N components. This can also be thought of
as taking the number of dimensions in which the spin moves to
be N. In the limit of large N, 1t 1s actually possible to compute the
path integral explicitly and obtain the mass generated and we
find that

m= Ne ™ 31)

for each of the N bosons, where A is an ultra-violet cutoff. As
N — o0, 8§00 but A — oo as well, so as to keep m fixed.
Higher order corrections will go as O(1/N). Having obtained
this result for large N. we now bravely set N = 3 (assuming
corrections will be small) and conclude that the integer spin
HAFM has an excitation spectrum consisting of a triplet of
massive bosons with masses of the order of ¢™™

All of this was for integer spins. Now what about 1/2 integer
spins ? Here, the field theory incldues the non-trivial Hopt term
and 1s quite difficult to solve. However, Affleck |2] has mapped
the model to a £ = 1| Wess-Zumino-Witten (WZW) model and by
studying its symmetries, he has argued that the & =7 case is
massless. This difference between the integer and half-integer
spins was the big contribution of field theories in spin models.

Similar mappings have also been used to write down field
theories of other models, such as the Majumdar-Ghosh model
and its generalisations [16, 17]. For instance, for the MG model
for arbitary spins, we can write down as SO(3), x SO(2), field
theory [16] by introducing an SO(3) group valued R field as
follows —

oy P O
R=\0 ¢ ¢ 32)
Gz D3 P33 )
In terms of the R field, the Lagrangian is given by
L= tr(RTR) = =51r (R"RI
(R R)= 5o (R R) o

with g° = f6-/5 and c= JSa,/27/8 and /, being a diagonal 3
x 3 matrix with diagonal entries (1, 1, 0) and all other entries zero.
Here, R denotes the time derviative of the matrix-valed field R
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and R’, its space derivative. The fields ¢ are related to the
spins as

0 3 N :s,'.!l_—l __s_sy_,l
3s
#), = Sy 1+83,-285
U

J3s
(), = (@), x (),

Note that the field theory has no topological term. This is
not unexpected, because here the manifold of the fields is SO(3)
and [1,(SO(3)) =0, whereas for the HAFM, the manifold was
S2and 1, (S 2) = Z . So at least naively, no difference is expected
for integer and half-integer spin models. Also, note that the
global symmetry of the action is SO(3), XSO(2)g , which
means that the effective action at any length scale can be written
as

(34

L=[_17-_1_,
281 48

(87 )+ 52 __‘_z.}r(krmz)

287 2g;

_l____L /T ps 1 - 1 /T pe
+(28§ 4g}}r(R R)+(2g42 2g%}r(la R'I,)

with the microscopically derived Lagrangian having g,2 =
g% = g;? = 2g;“’ =g’= JE/S . But these values change as we
go to larger length scales in accordance with the RG equations
or A -functions given by

2_ &1 88384 2
8 == =S + 8183 35—
2 g} (8184 +8283) (sf 3

2
2_ 83| 8388 1
;=22 +8.18| = -—
[ g2 (8:184+%8283) '{gsz g2

4 2
_gd s (1 1 ) ( 1 1 )
gi=2= & & —<—— | t2&8| |-

x> '(s;’ & 83 83) O
We integrated these equations numerically [16] and found
that the length scale where strong coupling takes over is
¢ = Lja =€, which is of the same order as €™ that we had
found for the HAFM. Moreover, we found that the flow is such

that g,/g, and g./g, flow to unity, so that the symmetry gey,
enhanced to SO(3), xSO(3)g, and Lorentz invariance |,

restored. Thus, the Majumdar-Ghosh model for arbitrary valye,
of the spin flows to a disordered phase. We shall come back
this analysis in the last section where we study a general
dimerised and frustrated model.

NI. Numerical methods

The third method that has been used to study spin chains 1,
through numerical computation. Here, I shall only quote various
results.

Exact diagonalisation of small systems

The frustrated Heisenberg antiferromagnet modeled by
H=J Y58, +a). S5, (36)

has been studied for S = 1/2 to upto 20 sites and it was found
that the critical value of o for which a gap opens up 1n the
spectrum is give by a, =0.2411+ 0.0001 [18]. This is the poin
at which the fluid-dimer transition takes place.

Density-matrix renormalisation group (DMRG) | 19]

This is recent method which has gained ground and is remarkably
accurate. The idea is to combine exact diagonalisation methods
with the idea of renormalisation group. So a small system is first
diagonalised exactly and then the system size is increased by
adding two spins at a time on either side. This is done repeatedly
using RG ideas. For the same model as above, DMRG also finds

a,. = 0241 . DMRG was also used to study a more general model
involving bond alternation [20].

3. Frustrated and dimerised AFM spin chain
The idea is to study the J, — J, —J model given by

H=J,[Z[l+(-—l)'5]s,-s,“+JZZS,S,+2] 37

in detail [17]. Classically, the ground state is a coplanar
configuration of the spins with energy per spin.

E, = Sz[—’g"—(l +8)cos, +%(l—5)cos62 +J,cos(6, + 6, )].
39

Minimising this energy with respect to g, gives three
phases

Neel phase

TITLTLITL. 39
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This is stable for (1—52) >4J,/J,.

spiral phase
Here, the angles between neighbouring spins alternate

petween 6, and 6, where

1 1-62 S a4y,
cos 6, =—- +-
1+6 4J,/J, 1+6% J,
cos 6, = —- 1-6% S 4/,
:md it ]+5 4"2/"] 1_52 ‘,l (40)

This phase is stable for 1-5% <4J,/J, < (1_52)/5.

Collinear phase

This phase can be thought of as a special case of the spiral
phase where @, =7 and 6, = 0. It can be denoted as

TTUITTLL L.
This phase necds both frustration and dimerisation and is
stable for (1_52)/5 <44/, -

These three pﬁascs in the classical phase diagram are
depicted in Figure 1.

@n

1.0

Colinear

025 1.0
Figure 1. Semi-classical phase diagram of the J,-J, -6 model.

We can study fluctuations about the classical ground state
as described earlier. In the Neel phase, there are two modes with
equal velocity and the Fourier transform of the spin-spin
correlation function S(q) is peaked at ¢ = 7 . In the spiral phase,
we have three modes, two of them with equal velocity describe
out-of-plane fluctuations and the third one with a higher velocity
describes in-plane fluctuations. S(g) is peaked at mf2<g<rxm.
In the collinear phase, once again, there are two modes with
€qual velocity, but here S(q) is peaked at g = z/2 . But as we

have already seen carlier, we do not expect spinwave theory to
be accurate in one dimension because, there is no long-range
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order, no spontaneous symmetry breakdown and no Goldstone
modes in one dimension.

Next, what do we know about the model exactly ? For
J, =8 =0, the model is just the HAFM and the solution for §
= 1/2 is a unique ground state with no excitations. For /, = /,/2
and § = 0, which is the MG model, the solution for S = 1/2 is the
doubly degenerate valence bond state. with massive excitations.
In fact, this state turns out to be the ground state even with
dimerisation along the line 2J, +8 = J, .

Now, let us study the field theory model for the fluctuations
in the three classical phases.

()  Inthe Neel phase, even with J, and § , the mapping
is to an O(3) NLSM, with the Hopf term as given in
eq. (24). The only difference is that now

c=2J,a8\1-8>-41,/7, . g*>=2/(S1-67-
4J,/J,))) and @ = 275(1 - &) . We expect the theory
to have a mass gap in general and to be massiess
only when @=2za8(-8)=n. Note that a
topological term is present to distinguish different
spins, but spin is not really a continuous variable. So
for each spin, integer or half-integer, there are specific
values of § which can be chosen to get massless
points.

(i) For the spiral phase also, the field theory still turn
out to be the SO(3), x SO(2), invariant, but with a
Lagrangian given by

C

L= ~tr(R""R'P)
&

42)

~tr(RTRPy) - 5

4cg
where P, and P, are diagonal matrices with the
diagonal elements given by
Py =(1/283.1/283.1/8i = 1/283) R =
(/282.1/282.1/83 ~1/28}). respectively. The RG
equations are the same as the ones given in eq. (35).

However, the initial microscopic values of the
coupling constants are different now and are given

and

by

2_ . 2_ 1[40+,
82 = 84 S 4}2_11’
g3 =2¢3 .

and g} =g} [1*‘(1‘-’1/2-’2)2]' @3)

As before, the RG equations can be integrated
numerically with these initial conditions and it can be
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shown that the theory flows once again to an
SO(3),; X SO(3)g Lorentz invariant field theory.

The interesting point is that this theory turns out to
be an exactly solved model [2]]. The low energy
spectrum consists of a massless spin 1/2 doublet.
Hence, in the spiral phase (which requires sufficiently
large frustration and dimerisation), we can make the
prediction that both integer and half-integer spin
models should have massive spin 1/2 excitations. The
long wavelength excitations are expected to be ‘two-
particle' excitations, the spin triplet and the spin
singlet excitations.

Although there is no topological term in the
Lagrangian, we claim that there does exist a difference
between integer and half-integer spins in this phase.
Tunneling between soliton sectors can lead to a
unique ground state for integer spins, but this is not
possible for 1/2 integer spins, which have a doubly
degenerate ground state, in accordance with the LSM
theorem.

(iii)  Finally, we can write down the field theory for the
collinear phase as well. Here again. the field thory
turns out to be an O(3) NLSM, but without the Hopf
term. This means that the phase is always gapped
both for integer and non-integer spins.

We generally expect these field theories to be valid in the
large S limit, but for small values of S such as S=1/2 and S =1,
the above analysis is only indicative and numerical studies are
needed to get the phase diagram accurately. These have been
obtained [ 18, 20] and we only reproduce the phase diagrams
here.

As can be seen by comparing these diagrams, with the
classical phase diagram in Figure 1, the qualitative picture is
reproduced for spin 1/2, but for spin S = |, there are many new
unexpected teatures in the S = 1 phase diagram obtained
numerically. For the spin 1/2 chain depicted in Figure 2, in region
15(q) is peaked at ¢ = 7 , inregion I1, S(q) decrease from ¢ = 7
(nearregionI)to ¢ = 7:/2 (near region IIT) and S(q) is peaked at

10 .

L >
0.25 10

Figure 2. § = 1/2 phase diagram of the J,-J, -4 model.

q = /2 inregion III. There exists a gapless line running from ;.
=0toJ, =0.241. Itis straight forward to identify region [ wyj,
the Neel phase, region II with the spiral phase and region Jj)
with the collinear phase. However, the phase diagram for spin |
depicted in Figure 3 is much more complex. There is a gaples,
solid line and the rest of the phase diagram 1s gapped. Region.,
IT and I1I are identified with a Haldane phase, whereas regions |
and IV are expected to be non-Haldane singlet phases. For detals.
sec Refs. [18, 20]. It is not clear to us why the semi-classical
large S theory, works for spin 1/2 qualitatively, but fal,
completely for the spin 1 case.

10 %

10
Figure 3. § = | phase diagram of the J,—J, -5 model

4. Conclusion

In this paper, we have given an overview of the field of quantum
spin chains, with emphasis on the non-linear sigma model
mapping. To recapitulate, quantum spin chains are spin models
on a one-dimensional lattice. For parity invariant systems, the
Lieb-Schulz-Mattis theorem says that for half-integer spin
models, the ground state is either doubly degenerate, or the
spectrum contains a massless mode. Using the NLSM mapping.
we demonstrated that the difference between 1/2 integer spmn
chains and integer spin chains was caused by the existence of 1
topological Hopf term in the Lagrangian. The presence of this
term for 1/2 integer chains led to a gapless spectrum, whereas
integer spin chains which did not have the Hopf term were
gapped. For more general models, such as spin chains with
dimerisation and/or frustration, the NLSM approach can only
give a qualitative understanding. For instance, the mapping of
the Majumdar-Ghosh model (more generally, the spiral phase of
a frustrated and dimerised spin chain) to the RG fixed point
Lagrangian of an SO(3), x SO(3), model leads to the prediction
that the low energy spectrum consists of a massive spin 1/2
doublet. But for low values of S, such as 1/2 and 1, often
numerical methods are needed to get-better results, as seen in
the explicit phase diagrams for the spin 1/2 and spin 1 frustrated
and dimerised models.

One of the important issues in this field is to get a proper
understanding of the Haldane gap. Usually, a gap is formed
when some symmetry is broken. So we need a symmetry that
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exists for half-integer spins and is broken by all integer spins.
since the distinction between the integer and half-integer spins
occurs because of the topological Hopf term, it is expected that
the order parameter characterising the massive and massless
phases is also topological in nature. A claim is that there exists
a hidden Z, x Z, symmetry in the S = 1 model, which when
broken leads to the gapped Haldane phase. But this phenomenon vb
1s not well-understood.
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