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Complex shape parameter for s-wave scattering from zero-energy wave functions
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Abstract

Using an extension of the method of Kermode and Van Dyl [ Phvs Rev C42 1891 (1990) | we show how a complen shape patameter

for comples local potential can be determimed i terms of zetoenergy wave functions for s-wave scattering
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Ithas recently been shown that the shape parameter () and co-
ctticients of higher powers of k% 1n the effective range expansion
(FRE ) functions may be obtained from the zero-energy wave
tunctions for a real local potential which supports no more than
one bound state[ 1]. The usefulness of this approach lies 1n the
lact that calculation of P is not gencrally simple if the potential
s not of a simple form and the shape parameter is small in
magnitude.

In this note, we extend the approach of Kermode and Van
Dyk|2] tor complex local potentials and try to see whether the
shape parameter in such a situation can also be obtained
reasonably simply to permit its application to antiproton-proton
scatterings. Hence, we have derived an expression for complex
shape parameter in terms of integrals of the zero-energy wave
functions.

In view of the present experimental works with low energy
antiprotons scattering off protons both elastically and via
annihilation channel, the determination of effective range
barameters has been of considerable interest [3-6]. Kroll and
Schweiger | 7] have found a set of complex square well potential
Parameters for various partial waves which seem to fit the angular
distributions and the © parameter reasonably satisfactorily.
They use different ranges for real and imaginary parts of the
Potential in the presence of coulomb interaction.

While Kroll and Schweiger used different ranges for real
and imaginary parts of the square well potential for realistic data

Effective 1ange theory, shape parameter. zero-cncigy wave functions

fitting , we have simplitied the problem by taking identical ranges
for both, since at this stage, our intention is only to demonstrate
the usefulness of this method and no claim is made about the
actual determination of shape parameter for antiproton- proton
scattering. We would need to include coulomb maodification in
this approach. At this stage of available information, it will be
premature to lay any claim to that effect since even scattering
lengths and effective ranges are still to be unambiguously
identified. In view of this, for demonstiation purposes, we have
used potential parameters with identical ranges. We thus show
that Kermode and Van Dijk’s approach can be extended to
complex potentials also with some modifications.

Complex shape parameter :

Here. we have taken a spherically symmetric local complex
potential (V(r)+ iW(r)) instead of areal potential. We define the
real and imaginary parts of the s-state wave functions as (#,(r) +
iu(r)) for cnergy k2 and (u,, (r)+iu, (r) for zero cnergy
respectively and assume the same boundary conditions as given
by Kermode and Van Dijk for both real and imaginary parts
separately viz.

11,(0) = 1, (0) = 11(0) = 1¢,(0) = 0. (1a)
1, (R) =ty (R), u (R) =11, (R), (1b)
ll,(o) = “()r(o) = I ’ “,(0) = "()I(O) = Ov (]C)
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where R is the distance beyond which both real and imaginary
parts of the potential are negligible. As mentioned above, we
are assuming for convenience, that R is identical in both cases.
Defining a complex shape parameter P = P + (P, in the standard
effective range expansion for the complex potential,

Kcot (8, +i8,)=—1/(a, +ia,)+ 12 (r, +ir; k>

. L3

(B +iR) (o, +irg,) k4. @

with &'s as phase shifts, a’s as scattering lengths and r,’s as
effective ranges. It can be shown that P satisfies

. SN2 4 R . \2
(P +iP) 1y, +iry,) k= —k7(.....) = J}) [(u(,,. +iy,)

=it + i) g + ity ) = (g +iTiy)* + (T i) gy + i, )| b
3

and hence in the limit &* — 0,we obtain expressions for P_and
P in terms of zero-energy wave functions as follows

. S ON3 2 (R .2
(I)r +’I)| ) (r()r + ”bl) = llml 20 I/L" _[) [(“()r +“‘()/ )

=(u, + it ) (o, +ing; )= (g, + ity )™ + (&, + T, ) (TG, + ifty; )] dr.
4)

However, the above expressions still contain «,,«, and «,
u, which are not zero-energy objects. In order to get rid of them,
we do a Taylor expansion in k% and write the wave functions in

terms of complex objects B, +if5, and B, + /},

u, (r)+iu(r)= [l +(B.(r)+if, (N)k 2(u,,, (r) +iuy, (r))] (5a)

(@, (r) +iiw; (r)) =[1+(Z§, +5) k3] (T, (r) + it (1)), (5b)
This leads to
(P +iP) (o, +iry,)’

_ -’-OR(”_ (B, +iB,) (teo, +i"o.)2 _(Er +B-,) (i1, + ity )2] (6)

which after separation, gives the real and imaginary values of
the shape parameter.

However, (B, +if;) and (B, +if;) arestill to be determined.

Determination of functions [3(r) and E(r) :

Since we have,

(i, (r) +iw; (r)) = sin(kr) cot (8, +id,; )+ cos(kr)

with

u.(r)= I—{r (1,./((1,2 +a,-2)}+ rro,k2/2
+{k2r3a,/(6(a,2 +a,"'))}—k2r2/2. \

w(r)= {r ai/((t,? +a} )}+ rroik > [2 +{k2r3cr,-/()(a,‘? +u;’)}
(T

to order of k2, and 1, ‘s being the following

or(r) = 1={r a, (a3 +a?)} &

—_ 2 2
g, (r) = {" ('i/((’l t+a; )} . (Shy

Using equations (5).(7) and (8). we obtain
B—,(r) = r[{3(a,2 —al-r (1,.) (ror = r)+r(a, = r)+3ra,n, ;/
()((a,. - r)2 +a} ):' , Oy
B., (r)y= r“3rm ((1,2 +u,2 -ra, ) + 21'2(1, =3ra,, 1/

()((al - '-)2 + a/: )] . (Oh)

These appear to be correct expressions because /7,(/.
reduces to Kermode-Van Dijk's /7,(;') when imaginary part s
switched oft while [—;’,-(r) becomes zero under that condition
B.(r) and B, (r) can now be determined by substituting
(u, +i, ) from eq (5) into the appropriate Schrodinger equation

1y

giving
(/}, +if3 ) (g, +ing,) +2(ﬂ,. +i,q)“ (ug, +iny,)"

+(I+(ﬁ, +i[ﬁ)k2)(ll(,,+i140i)$0, (I

Letting k*>— 0, we get a differential equation for complex /"
as

(o, +iug )" (B, +iB)'=~(ug, +iug,)*
= —I(uo, (8) + ity (s))zds )

The constant of integration is taken to be zero 17
convenience.
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M,,,],(-urion to complex square-well potential of identical

ranges -
The appl‘()priale informations for a complex square-well potential
of depth

K*>=V+iW and range R are,

K= Kr+ IKI ,

Kr= (V"" ( Wl + V2)|/2/2)|/3

K =WIQ2K),
sith

y, (r) = A, sin(k,r) cosh(k,r) = A, cos(k, r)sinh(k, r)

P e

s

.

1y, (r) = A, cos(k,r) sinh(k,r) = A, sin(k r)cosh(k,r).

iy, (r) = l-{r (1,/(«,2 +u,2 )} .
Uy (r) = {r (1;/((1,2 + a,-2 )} .

0, = R=[K, tan(K, R) (1~ tanh* (K, R)) + K, tanh(K, k)

‘(14 an(K,R))] /(1\'3 +K2)(1+tanh? (K, R)tan* (K, R))

a, =[K, tan(K, R) (1~ tanh* (K, R)) - K, tanh(K, R)
(14 :;nﬁ(l(,k))]/(i(,2 + K7 )(1+ tanh? (K;R) tan* (K, R))

With the square-well potential for which R is taken to be the
ange of the potential, we used R = 2.02 fm and K = 0.9343 (m’!
and we found P =-0.040 and P =-0.006. The finiteness to P,
hinteresting because the imaginary part of the potential is very
large. We show in Figure 1 the £ - functions and we note that
while the behaviour of A, and E, is very similar to that
obtained for purely real case, £, and g, show a distinctly
different behaviour including some oscillations. Further, their
magnitude is an order less than £, 's. Again, we have shown
that the coefficients of the effective range expansion can all be
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expressed in terms of the zero energy wave function. This feature
is especially useful in the determination of the complex shape
parameter, which 1s calculated in a straightforward manner by
integrating simple functions made up of the square of the zero-
energy wave functions. We have thus shown that Kermode and
Van Dijk method can be conveniently extended to complex local
potentials as well and a complex shape parameter can be defined.
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Figure 1. The real and imagmary parts of the £ and /7 funcuons for
the complex square well potenual
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