Indian J. Phys. 49, 38-48 (1975)

Nonlinear interactions of electromagnetic waves in a hot
magnetised plasma

T. P. Kuax
Dinabandhu Andrews College, Garia, Calcutta 743505

AND
S. R. Roy
Jadavpur Unsversity, Calcutta 700032
AND

R. K. RoYoHOUDHURY
Moulana Azad College, Calcutta
(Received 30 May 1974)

The nonlinear intoractions of electromagnetic waves propagating
in a hot plasma across a magnetic field is invostigated. The excited
waves due to nonlincar interactions may be found to be unstable above
certain thieshold value of the amplitude of the pump wave.

1. INTRODUOTION .

Recently much effort has been made on understanding the nonlinear wave-wave
interactions in plasma. Pholps (1971) observed a nonlinear coupling of electro-
magnetic wavo and electrostatic wave resulting in generation of plasma wave
with the differonce froquency, whero the frequency and wave number ¢onserva-
tions were fulfilled between these interacling waves. Chang & Prokalab (1970)
observed the decay of a finite amplitude cycloiron harmonic wave into two
cyclotron harmonic waves. Etievant ef al (1968) observed the nonlinear inter-
action process of interaction of throe electrostatic waves in a cold plasma. As
long as the plasma temperature is low this description is correct. For warm
plasmas and working frequencies near the first harmonic of the electron cyclotron
frequency the nonlinear procosses considered by Ltievant et al (1968) depend
on the value of T, (Cano et al 1969). -

In this paper we report new aspects besides the power factor which serve
to deteov the scoondary radiation by conventional receivers. Among these
are (1) the rapid variation of the power factor about different values of
plasma frequency even when the freqrency of the extraordinary wave is equal
to the oyelotron frequency, (2) the threshold condition for decay process of three
interacting waves. Agreement bctween the experimental results of Chang et al
(1970) and the theoretical analysis is attained.
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2. Basio EQuation

We start with Maxwell equations coupled with the equation of motion for
a hot plasma. The ions are treated as fixed uniform background. The un-
perturbed state is taken to be a spatially uniform plasma with a constant magnetic
field along the z-axis

Y rvev=—uwlr_Llp VB,
1 B
UxB= Z—f —dmenV, )
v-B=0,

v.E = —4me(n—n),
where
v¢ = thermal velocity of the electrons.

To solve eq. (1), we oxpand the equations by perturbation technique
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First order staie

Wo look for stationary solutions of first order quantities of eq. (1) and by
taking the space time dependence exp i(K.r—wt). We obtain
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—i(0+ ) VO-QX VD = ——Eﬂ’—i— 3)
where Q and v are the cyclotron frequency and collision frequency respectively.
In a similar way other first order equations are obtained from eqs. (1) and (2).
These equations immediately give

VW = pu EW
where x is given by
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end @ = w-+iv and I is the unit tensor.
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Fourier tansforms of first order fields of Maxwell equations lead to

D.EY =0,
where

2 o 2
D= (Kz—-(‘:,’-,).r-myy+“-"-0";"—p. e ()

In the case of propagation perpendicular to B® we have the dispersion relation
Det DK, w) =0 ... (ba)

where Dy(K, ) is obtained by letting K, = K, = 0, Ky = K in D(K, w). Eq.
(6a) has two independent solutions,

2
. . .
(i) C?K? = w?—wy?+iv -:i’- , ordinary ourves,
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where
2 41132”(0) _ v
w'= T oo ,

In the following we shall denote tho extraordinary electric fields by E. and the

ordinary eleotric fields by E, [n the oasc of propagation perpendicular to 2
the first order solution for the extraordinary mode is given by (neglecting term
with collision frequency)

o = Aliaé+Klexp i(k.r— o) = ¢, exp i(k.r—wt)

cAdw? 24LK22\ . 1Q .
'Ve _— —mmpag [ (l—w—p—wz—‘- ) G'F;-K] exp ’l(k.r~wt)
B, = — w,(iK Az exp i(k.r— wi), e (7
Ne = _ik4 exp i(k.r—wt),

4dme

where A is the normalization constant
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The first order solution of the ordnary mode is given by

E,® = 6,,Z exp i(k.r— wt),

e 5 -
Vi = — = enZexpikr—ut),
B, CK 1€ €, 0xp i(k.r— wt), - (9)
n'? = 0. ‘

Second order equations

In a similar way we can develop the second. second order equations to obtain

VX(VXE‘”)—"— E(2)+i4f_’iﬂ B — 47”“’ Js, (10)
where
M 5 B
Js = —e [noﬂ, (” Z’B +7 o Av’l)) +np) ] (11)

By method of the Fourier transforms of eq. (10) wo obtain,

E®@t) =~ 0 expithr—at) | dygle, yo.2) 12)

where

T =(K'y—Ky)D!

K' = K+dK.

D = Dy(k, w)+Dy(w, K,8K)  with Dy(w, K),
defined by eq. (6) and
D, =

and
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We now give D1 for ordinary wave and extraordinary wave respectively.
(a) Ordinary wave

A A

oy ZZ
D-1 — 2______._K8K” s .. (13)
(b) Extraordinary wave
M
DV = — (14)
v; w M vaﬁM v
2K6K (MVV+ Ga(ng M;)_i'cz(ng w;;)
where
| oMt K% ieQwyt+ K, 0
oz(Qz___ w?) ’ C2HQP—?) :
M- twwp? (C2K?— 0?)(Q2— w?) + wplw? 0
- Ca(Qz_ wzy . Ga(ga_ w2) ’
- 0 0 0_

In both cases above, the dependence of D-! oh 6Ky = K,'—Ky comes in as a
simplo pole. For a point outside the interaction region the integral in eq. (12)
can simply be deonoted as

By = | dyog(zye).

Interaction of an Extraordinary Wave with an Ordinary Wave

If one of the incident wave is ordinary and other extraordinary the second
order wave turns out to be an ordinary wave. In this case che second order
electiic ficld outside the source region is given by eqs. (11), (12) and (13) as

E®(z, 1) = :}:Z%’f:;i cos(k4.7— wt). ... (18)

We would like to express our results in terms of the incoming and outgoing
Poynting vectors. We obtain the dimensionless power factor

m\?  O5§; n 1 w2
Fiywy, wy, wa)=( ) (7r/2)R ’gs ng,nla Py (w_;) , ... (16)
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where

__1_711
n,=(1——z%:)i , | .. —(17)

where bar denotos time averaging and S; = K .S;, 1is the incoming extraordinary
wavo, 2 is the incoming ordinary wave, and 3 is the outgoing ordinary wave
and all frequencies havo been normalised in terms of cyclotron frequency.

Interaction of two ordinary waves

Interaction of two ordinary waves produces an extraordinary wave. Using
egs. (11), (12), (14), we obtain

eRyells €N wp? + K20 w  Q

B = O —a Fwy? + Ko — O K — o Fiop?)wrscs]

7 A ~ 2__(2 a_ 2
X[K: X Z sin(K L 2—w . t)+K . 008 (K z—w.b) w, 2—C*K  2—awp ]

(18)
Tho power factor in this caso is
8 C mec?
Fﬁ(wl (&) wp) S]_g 1’./ ( GR )
Y [Q‘wia(’-L'pz"l-Ks'vt”)]z
""2"1 Tw w3 T wp L K2 — P | YRR — wP+ wp?) I°
(19)

where 1 end 2 are the incoming ordinary waves and 3 is the outgoing extra-
ordinary wave and n,, n,, 7, are obtained from dispersion relation (17).

3. NuMmeRIOAL COMPUTATION AND RESULTS

Having exhibited, in the previous section, the basic formulas to be used
we now wish to compute F(w,, w,, wp) for differont values of w,, wy, wp. The
computational problem is one of search and optimization. We wish to find
largest F' for a given wp with some combination of w, and w, which will give
moaningful 6,, and 0,;,—1 < 008 6y, < 1 and —1  cos fyy < 1, where @y, Oy
& e the angles between the wave veotors K;, K; and K;, K;. It has been observed
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that the power factor Fy(w,, wy, wp) and cos Oy, cos (y depend appreciably on
the plasma temperatiure in the casc of w, = Q for difforent values of w, In
figures 1 and 2, plots of Fy(w;, wy, wp) and cos @y, cos Oy, respectivoly are shown
against (wy/Q)? for w, = Q and w, = 0.5Q. It is evident from the figures that
this time quantitios are very much sensitive to (w,/Q)? when the plasma tempera-
ture is sufficiontly high. Tt is interesting to note that Fy(w;, wg, wp), 008 &y, and
c0s @,y bocome practically independent of temperature when w, is less than Q,
and the graphs arc very much similar to those obtained carlicr by Etiovant ef al
(19868).
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Fig. 1. Powor factor F, versus (wp/Q)? with wy == 0.6Q and w, = Q, for differont values
of # as indicatod in the plot.
Criteria for instability
We look for plane wave solutions with varying amplitudes in the direction
of propagation ..,
Eolr) = duA k.r erker 9
= oy ) ek, . (20)

where d,, is & unit veotor and in accordance with our assumption
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Fig. 2. Tlot of cos 0,, and cos O3 versus (wp/Q)? with w; = Q and wy = 0.5Q for different
values of # as indicated on the curves.

Using cq. (17) in oq. (10) and sinco Dy(k, w).E, = 0 when K and w satisfy the
linear disporsion relation we obtain dropping the second derivative of 4 in com-
parison with K24

2 (1- Ka ) )& a““’l = —dw* 45’5,;5’! Jaetkr, .. @)

where J,, can be written as,
aw]_*-J,m = ?:CZV((OII (Ugl (Ds)

dmenyw, {

1
V(w | wa| wy) = — ~50% —u;[dwa./lw,.dw,dwl*. P K

— Ko By Bug do,* f.80y)— 2" Ky oy 899 8% 0, floy (fog duy)

—L Kyttoy By 8%, flogao,+2 = 3 b
Wy

for each of the three interaétin,g waves.
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We can givo the expression for V obtained from the interaction of two
ordinary waves with an extraordinary wave. Let

-~ .
Aoy, = Quwy =2 ordinary waves

aw = + TFap (za2e+1( ) extraordinary waves

and now dofine

&= I"{'lil‘: Viw| o] ﬁ’a)\
K22 K202
gl ) (15 ‘
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e 0p°Qu K, [Qw
= ngw 1m [ wz; +(wp+ 02— w, 2-«{—]&20;2)2]
and writo equations for threo waves following Sagdeev & Galcev (1969)

0Aw
-"‘-asl"- = AwlA(.)z,

9 Aw,*
S = f Au*iAuy .. (23)

L
61;;“ =9 Aw{"Amz

where r = n.S.

Wo now investigate the process of decay instability in the nonlinear inter-
actions of threc waves. Tho perturbations Aw, and Aw, are assumed to be
small compared to the amplitude of incident wave Aw,. Assuming Aw, and
Awg to bo slowly varying functions of § such that Aw,~ Aws~e's and
Q%a—)-‘ ~ Aws.Awy~ 0 i.0., Aw, heing constant, the instability may be possible

with the maximum growth rate given by

A =[fylide,
ew,, QAw, K, K2, K202\ 14
- s A | (0 S ST
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provided the inequality

A> Im K> 52 ( Koo, ~ Ko )’ (26)
is satisfied which gives the threshold value of Aw;. It may be mentioned that
Prokalab & Chang (1970) had calculated the threshold value of clectron
Bernstein wave decay instability using Vlasov equation. Though it is generally
helioved that such instability cannot be obtained from fluid equations because
it involves electrostatic Bernstein waves it is interesting to note that our cal-
culation are in good agreement with experimental results. Substituling the
following exporimental values of Chang & Prokalab (1970).

Temperature of electron plasma = 3.7 eV

Number density of electrons = 2.5 x 1010 cm—3

Eleotron-neutral collision fraquency v = 5x 108 sec—2.

The frequencies and wave number of three waves

w; = 758 MHz K, =194 om™,
w, = 335 MHz K, = 39.6 cm™?,
wg = 420 MHz Ky =20.7 om™,

Wo find the threshold value of the amplitude of the incident wave to be
Aw, = 2.7 voltfem

which is in good agreement with experimental value 4w, ~ 2-3 V/om of Cha-ng
& Prokolab (1970)

4. CoNOLUSION

Our numerical computation shows that the power of the generated wave
is a rapidly varying function of wp?. Tt may be mentioned that, contrary to
the case of cold plasma the power is not independent of w,? when the frequency
of the cxtraordinary wave is equal to the cyolotron frequency. It is not much
sensitive to plasma temperature when o, < Q. The excited wave is found
to be unstable above certain threshold value of the pump wave. Our analysis

may help to interpret the results of instabilities of waves in a nonlinear decay
prooess.
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