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Nonlinear interactions o f electromagnetic waves in a hot 
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Tho nonlinoar intovaotiojiia of olectromagnotio waves propagating 
in a hot plasma across a magnetic field is investigated. The excited 
waves due to nonlinoar interactions may he found to be unstable above 
certain thieshold value of the amplitude of the pump wave.

1. Introduotion ,

Recently much effort has been made on understanding the nonlinear wave-wave 
interactions in plasma. Phelps (1971) obsexved a nonlinear coupling of electro­
magnetic wave and electrostatic wave resulting in generation of plasma wave 
with the difference frequency, where the frequency and wave number conserva­
tions were fulfilled between these interacting waves. Chang & Prokalab (1970) 
observed the decay of a finite amplitude cyclotron harmonic wave into two 
cyclotron harmonic waves. Etievant et al (1968) observed tho nonlinear inter­
action process of interaction of throe electrostatic waves in a cold plasma. As 
long as the plasma temperature is low this description is correct. For warm 
plasmas and working frequencies near the first harmonic of the electron cyclotron 
frequency the nonlineax processes considered by Etievant et al (1968) depend 
on the value of (Cano et al 1969).

In this paper we report new aspects besides the power factor which serve 
to detect the secondary radiation by conventional receivers. Among these 
are (1 ) the rapid variation of the power factor about different values of 
plasma frequency even when the frequency of the extraordinary wave is equal 
to the oyolotron frequency, (2) the threshold condition for decay process of three 
interacting waves. Agreement between the experimental results of Chang et al
(1970) and the theoretical analysis is attained.
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2. Basio Eqttation

3d

We start w ith  M axwell equations coupled w ith  the equation o f m otion for 
a hot plasma. The ions are treated as fixed uniform  background. The un­
perturbed state is taken to  be a spatially  uniform  plasma^ with a constant magnetic- 
field along th e z-axis

dV
dt + V .V  v =  - . , ■ 5 "  — [ ® + ^

_  1 dBV x £ -  ^  ,

n I dE , , ,
=  -m

V.J5 =  0,

Xf.E =  —4rrc(?i—n®), 

vt =  therm al velocity  o f the electrons.

To solve eq. (1), we expand the equations b y  perturbation technique

(1)

where

V „(0) ;̂(X)

E E<®>
+ A +A®

Jg(2)

B BIO) ^U) J5(2)

n 7j,(0) ^(1) w'*>

(2)

First order state
Wo look for stationary solutions o f first order quantities o f eq. (1) and by  

taking the space tim e dependence oxpi{K .r—o)t). W e obtain

in (3)

where £i and v are the cyclotron frequency and collision frequency respectively. 
In a similar w ay other first order equations are obtained from eqs. (1) and (2). 
These equations im m ediately give

where ji is given by

£1* A iQ / , . \ A
^ m ( a 8-<i«)L a* oiy

and u> =  m +iv  and I  is  the unit tensor.

K W

(4)
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Fourier tansform s o f first order fields o f Maxwell equations lead to  

whore

In  th e case o f propagation perpendicular to we have th e dispersion relation

D et I>o(K, o)) =  0 ... (6a)

where D qIK, w) ib obtained b y  letting Kg =  0, Ky =  K  in  D {K , cd). Eq. 
(6a) has two independent solutions,

(i) =  CO*— cop®+^V ^  , ordinary curves,

. . .  (6)

where

47re*?î ®̂
m  ̂ O ’

In  th e following we shall denote the extraordinary electric fields b y  Ee and the 

ordinary electric fields by E q- tn the case o f propagation perpendicular to  2 
the first order solution for th e extraordinary mode is given by  (neglecting term  
with collision frequency)

Ee =  -4[^ae+.ff]exp i(k.r—ĉ t) ^  exp i(k.r—iat)

Ĉ CO* f / ,  CO*>2+ X V  \
-------- ins— )

Be =  — Azexpi(k.r—ci)t),

iK A  
^  ~~Ane

... (7)

whore A  is the aorm alization conetant

A  := l ( l + ^ ) * r ’ | 5 | '

... (8)
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The first order solution of the ordnary mode is giv«Mi by 

£„<!> =  6iiZ expi{k.r—wt),

Vo*̂ ’ =  — ^  ^iiZ  exp i(k.r—wt),

Bo(1) CK li Cji exp i(k.r—<jut).
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(9)

=  0.

Second order equations

In a aimiJar way we can develop the second second order equations to obtain

v x ( v x » ” ) - g ; s « > + i 5 ^ =. J . .

where

Js  =  —e ^n% ^
X m
C

Vl „(1) j .

By method of the Fourier transforms of eq. (10) wo obtain,

y
£<*>(*. t) =  — exp i{k.r—wt) ]^dy^{x, yo, z).

(1 0 )

(11)

(12)

where

and
T ^  (K^y^Ky)D‘^

K ' =

T> =  D^(k, to )+D i(to , K , SK) w ith  I>o(w> K ),

defined by eq. (5) and

‘̂ KSK ^oiCliV^^KdKif 1CSK oi^t^KSKfi HcoQvt^KSKj/ —ioiOx^KSKt
" 02(f2*-a)*) ’

_irxir I (d*vt^KSK„ icoQvt^KSK^  ̂ K^Vt^2KSKy vsiir i o>h>t̂ KSKe
®'^Oa(Qa-ai2) ’ •“'“**'+C*(£l*—w*)~’

^ ’ -[ l+ ^ ^ K S K ^ " ^ , 2KSK„



We now give for ordinary wave and extraordinary wave respectively,

(a) Ordinary wave
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Z Z
2KdKy ’ ... (13)

(b) Extraordinary wave

D-3 = M

^ K O K y   ̂M y y  j

whore

M  =

_  a>*(£l®-a>®H-a>p*+-^V) *tu£i(toj,H-KV),
" ' C'*(02-a)«) -  ’ 02(Qa-'a.*)

iciiwp^
G'^(Q.^-w^y

cu*)(£22- o j 2)+w/o>* 

0

... (U )

In both oases above, the dependence of D-i oh SKy — Ky'—Ky  comes in as a 
simple pole. For a point outside tho interaction region the integral in eq. (12) 
can simply bo deonoted as

oO
■Bo= J «̂ J/o?(*yo«)-

Interaction of an Extraordinary Wave with an Ordinary Wave

If  one of tho incident wave is ordinary and other extraordinary the second 
order wave t\irns out to be an ordinaiy wave. In this case the second order 
electiio field outside the souice region is given by eqs. (1 1 ), (12 ) and (13) as

(15)

We would like to express our results in terms of the incoming and outgoing 
Poynting vectors. We obtain the dimensionless power factor

r» / \ /w. \3 w, 1 /cu, \*
J Wi, tuj. Wg - ( g )  ^  ’ ••• (
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whero

n^ = 1 - 0}p̂  CDp̂

o,p*(l~/P) -  (1 -

=  ( 1 Wp* \» 
<*>2̂  / ’

«3 =  ^1 -
wa® /

... -(17)

where bar denotes time averaging and Si — K S u  1 is î he incoming extraordinary- 
wave, 2 is the incoming ordinary wave, and 3 is the outgoing ordinary wave 
and all frequencies have boon normalised in terms of cyclotron frequency.

Interaction of two ordinary waves

Interact!0X1 of two ordinary waves produces an extraordinary wave. Using 
eqs. (11), (12), (14), we obtain

je||2( " j - O )  ± Q

X f̂m ( K ^ x — w^ t) + K ^  cos ( K ^ x — oj^ t) M

... (18)

The power factor in this case is 

C /m C^\^F2(o>i a>2 cjp) = nl2

%

m u‘‘ Y
U R , I

[Xlw3(a)^2+ X ^ 2)]2
V i  [coia>2(Q®+ojp^+K%'^--u)^+^(C^K^-- coj,®)]®

... (19)
where 1 and 2 are the incoming ordinary waves and 3 is tho outgoing extra­
ordinary wave and ng, n, arc obtained from dispersion relation (17).

3. N um erical  Co m pu ta tio n  a n d  R e su l t s

Having exhibited, in the previous section, the basic formulas to be used 
we now wish to compute F{wu wg, c*>j?) for different values of o>i, o>2, wp. The 
computational problem is one of search and optimization. We wish to find 
largest F  for a given ojp with some combination of wi and tug which will give 
meaningful and ^23, — ! <  oos<9j2 <  1 and —1 ^  cos 3̂3 where /?i2, ^23.
a e the angles between the wave vectors K v  K 2 I t  has been observed



that the power factor cu2? and cos 2̂3 depend appreciably on
the plasma temperature in the case of — Q for different values of In 
figures 1 and 2 , plots of a>2» <ĵ p) and cos 0̂ ,̂ cos 0̂  ̂ respectively are shown
against for ajj — £2 and 0)3 =  0.5Q. I t  is evident from the figures that
this time quantities are very much sensitive to (ojpjO,)  ̂when the plasma tempera­
ture is sufficiently high. I t  is interesting to note that Fi(oji, wg, u)p), ooa&,,and 
cos &23 become practically independent of temperature when is less than £2, 
and the graphs are very much similar to those obtained earlier by Etiovant et al 
(1968).
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Fig. 1. Power factor Fi versus {topjCl)'  ̂ with <*>2 — 0 .60  and cui -  Q, for different values 
of fi as indicated in the plot.

Criteria for instability
We look for plane wave solutions with varying amplitudes ixiTtho direction 

of propagation i..e,

Ew{r) =  du>A,o ( ) e■*■  ̂ ... (20)

where dw is a unit vector and in accordance with our assumption

KA
dA
dr «  1.
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Fig. 2. r io t of 003 0̂ 2. fl-nd cob 0̂  ̂ versus with wj =  fl and a>2 — 0.5f2 for different
values of p  as indicated on the curves.

Using oq. (17) in oq. (10) and sinco D^{h, w).E„ — 0 when K  and oj satisfy the 
linear dispersion relation we obtain dropping the second derivative of A  in com­
parison with K^A

. . .  (21)2 i ( l _ |  ( ^ “ 1 ) JT . dr (?2

where can be written as,

iO*F(eoi| 0)21 coj)

F(«,,Io)2lo)s) =  -

J
for each of the three interacting waves.
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We can give th,o expression for F obtained from the interaction of two 
ordinary waves with an extraordinary wave. Let

-- 2;

ao)2 ~ 1 (ia.^e+IQ

ordinary waves 

extraordinary waves

and now define

a  =  ^£l-" a - V{w,\1 ^s)

a _  Kn it ( 0)2 ]
P ~  A-3* U J

* \ 0>1,
\ ® 1
1 1 “»al “ a

|F(ti)i I toj I <1)3) (22)

=  + ( V + e = - » . H W ] - * ,

and writo equations for throe waves following Sagdeev <fe Galoev (1969) 

OAcL cui j j~  <i)2>

a^u.2*
dS ... (23)

- w t

whore r rt’S.

Wo now investigate the process of decay instability in the nonlinear inter­
actions of three waves. The perturbations A 0^2 ^̂ nd Ata^ are assumed to be 
small compared to tjic amplitude of incident wave A ojĵ. Assuming A 0)2 and
AoJ^ to bo slowly varying functions of S  such that A ^ 2 ^
d 4 ~  .4 £i)2..4 £»>3~  0 i.o., Acii being constant, the instability may be possible 

with the maximum growth rate given by 

A =  [ySylM wi

e<t}p̂ ilAci>i r / i  1\ K ^ l  14. \ i 1  i . ) 1 * f241
”  2m O * T V + ^ -w 8* + W  V  '-I ’ '
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provided the inequality

\ >  I m K ^ >  ^ 1_
K,llOi )■

(25)

is satisfied which gives the threshold value of Awi, I t  may bo mentioned that 
Prokalab & Chang (1970) had calculated the threshold value of electron 
Bernstein wave decay instability using Vlasov equation. Though it is generally 
believed that such instability cannot be obtained from fluid equations because 
it involves electrostatic Bernstein waves it is interesting to note that our cal­
culation are in good agreement with experimental results. Substituting the 
following experimental values of Chang & Prokalab (1970).

Temperature of electron plasma — 3.7 eV 
Number density of electrons — 2.5 x 10̂ ® cm~®
Electron-neutral collision frequency v =  5 x 10® sec"^.

The frequencies and wave number of three waves

K i “  19.4 cm“ ,̂ 
K q =  39.6 cm“ ,̂ 
jK̂3 =  20.7 om” .̂

oji =  758 MHz 
a>2 =  335 MHz 
C03 =  420 MHz

Wo find the threshold value of the amplitude of the incident wave to be
Ao)i = 2.7 volt/cm

which is in good agreement with experimental value A cd̂ ^ 2 - 3  V/om of Chang 
& Prokolab (1970)

4. Conclusion

Our numerical computation shows tha t the power of the generated wave 
is a rapidly varying function of o)p .̂ I t  may be mentioned that, contrary to 
the case of cold plasma the power is not independent of wp^ when the frequency 
of the extraordinary wave is equal to the cyclotron frequency. I t  is not much 
sensitive to plasma temperature when coi <  The excited wave is found 
to be unstable above certain threshold value of the pump wave. Our analysis 
may help to interpret the results of instabilities of waves in a nonlinear decay 
process.
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