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[t is a very great pleasure for me to have the opportunity to give a talk at this
symposium in honour of the centenary celebration of Indian Association for the
Cultivation of Science. I hope the institute will continue to serve not only as an
Lndian centre but also as a world centre of atomic and molecular physies.

The present talk is concerned with one of the recent topics of the theory of
molecular collisions : the calculation of the erogs section for rotational transitions
in collisions between molecules. In the last tekr years. a great number of papers
have been published of collisions between atoms and molecules, while very few
works have been reported on molecule-moleculo systems (Secrest 1973). In principle,
there is no difference between the theories on the two systems.  In practice,
however, tho complexities of a problem in molecule-molecule collisions and tho
numerical work required to solve it increase by several orders of magnitudes as
compared with thore in atom-molecule collisions. Somotimes it is undertaken to
represent one of the colliding molecules by a structureless particle and reduce
the problem to a simpler atom-molecule collision. In this treatment, one
of the molecules is assumed to stay in its ground rotational state. In a real
molecular gas, however, a simultancous transitions in rotational states of both
molecules are quite important. In other words, the rotational-rotational cnergy
transfer play an important role in macroscopic phenomena. This and other
effocts may give rise to somowhat qualitative distinction between atom-molecule

and molecule-molecule collisions.

Rotational lovel spacings of a molecule are of the order of meV or less. When
& molecule encounters another molocule, s rotational transition is induced with
a high probability, unless the col.ision energy is extremc Iy low. Thus, the rota-
tional energy transfer is a very common Pprocess in many fields. To sce the
importance of the study of the rotational excitation in molecular encounters,
here are shown a few examplos to which the knowledge about the rotational
excitation is immediately applicablo.

The first example of the phenomona in which the rotational t-ra,nsition' plays
a part is the transport phenomena in a molecular gas (Gordon 1973). It is w"cll
known that the existence of internal degreos of freedom such as rotational motion
can affoot transport coefficients like thermal conductivity an'd viscosity. U‘ndcr
normal conditions, the rotational transition has but a small effect. Tho rotational
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B.  Semiclassical (classical S-matrir)

To overcome the above disadvanages in the classical calculation. the classical
S-matrix theory has been developed (Miller 1974).  In this method, a problem is
formulated in action angle variables, which corrospond to the quantum numbers

in quantum mechanics. Once the relevant classical trajectories are computed,
a classical analogue of S-matrix is caleulated with the use of the correspondence
Then the cross section is obtained from the S-matrix in the same

principle.
In this way, an interference effect can be

manner as in quantum mechanies.
included. To take into account a tunnelling process, a complex-valued trajectory

is introduced to link the classically forbidden states. This method of classical
S-matrix, which is, in essence, a new kind of semiclassical approach. is now sue-
cessfully used to improve the classical calculations.

C. Semiclassical (traditional)

There is a more traditional semiclassical method. Here, as in the methods
A and B, the translational motion is treated in classical mechanies. but a quantum-
mechanical deseription is used for the internal states. In this method, we often
assume the same classical path for all the internal states. That assumptior requires
both for the translational energy and for the relative orbital angular momentum
to be slightly changed during a collision.

D. Quantum-mechanical

Finally comes the quantum-mechanical caleulations. There are a large
number of approximate methods aprlicable to the rotational cross section cal-
culation. Let me consider here only the most accurate one. the close-coupling
mothod. Suppose a collision between two heteronuclear diatomic molecules.
The wave function of the whole system can be expanded in terms of the rotational

wave functions ¢, :

r— /,
W= ‘-‘fa'/fa'
3

Hore a species the rotational states of the molecules and stands for the four quan-
tum numbers (JyM,J,M,); J; and M; are the rotational angular momentum and
its projection of ¢-th molecule. The coefficient f, desciibes the relative motion of
the colliding molecules and satisfies the equation

Lfi=%<a|V| &>,
af

where L, is an operator involving the kinetic energy and centrifugal force and
< a | V|a'> implies the element of the interaction matrix. In the close-coupling
method, the summation over &’ is truncated to a finite number of terms and the
resulting coupled equations are solved numerically. The accuracy of this
method depends on the number of internal statos included. Now we estimate
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the dimensionarity of the coupled equations. For the sake of illustration, we

consider a transition from the ground rotational state and restriet the excitation

up to the state, at most., .J =Jdmae for both molecules. Since cach J-state has

(2J+1) substates, tho total number of the states to be coupled is caleulated as
'Illl{l‘l' "ﬂlll?‘

N= X Y @ 4D, 1) — v
Jy=0 Jp- 0( 1+1( J~+]) (Jmant 1)4.

At room temperature, most moleenles have the order of ten or more rotational
states significantly populated. Even when J,. is as small as ten, the dimension
of the coupled equations becomes enormously large so that it is practieally impos-
sible to solve them. Thus, the applieation of the close-coupling method as it
stands is restricted to a fow exceptional cases, unless an extremely cfficient method
is developed to solve the coupled differential quations. In fact, the quantum-
mechanical close-coupling method has been applied so far only to the simplest
ease, the collision of hydrogen molecules (Green 1975).

Recently several attempts have been made 1o reduce the dimensionarity
of the coupled cquations. They are called the eoffeetive Hamiltonian methods
and involve various types of angnlar momentum deconplings.  In the following

two of them are introduced.

In many practical cases, we do not need any information about the direction
of the rotational angular momentum of a molecule. That is, we do not need to
know the dependence of the cross seetion on the maguetic quantum numbers
M. 1n 1972, Rabitz (1972) proposed a method, called effective potential method,
in which he climinated the M-dependence of the coupled equations by taking
a kind of orientation-averaging procedure. In his formulation, the rotational
states of the molecules are specified only by J, and J,. He derived an effective
potential which couples those J-states. The number of coupled states is just
the product of the numbers of J,-states and Jy-states. In the last -mentioned

example, it becomes
N = (Jma.v”"l)z-

Thus a great reduction is realized in the labour needed to solve the ecoupled
quations.

Another attempt is MeGuire and Kouri's coupled-state or j.-conserving method
(McGuire and Kouri 1974). They assume some kind of restriction to the change
in the relative orbital angular momentum during a collission. This assumption
results in the conservation of M or the z-component of the rotational angular
momentum of colliding molecules. The coupled equations can be solved scparately
for each M. The numerical effort required to solve the equations lies somewhere
between those for the Rabitz method and for the rigorous treatment of the close-
coupling scheme,
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In the last three yoars, these effective Hamiltonian methods have been applied
to a large number of systems. Most of them are atom-molecule collisions, but
a fow caleulations have been done for collisions botween molecules.  Brief outlines
of two of them are given below for an illustration. They may serve also as typical
oxamples of rotational cross section calculations for molecular collisions.

The first one is the collision of two hydrogen molecules. Zarur and Rabitz
(1974) considered the process

Hy(Jy)+Hy(J3)— Hy(Jy')4-Hy(J')

They included rotational states from J = 0 to 6 for cach molecule and solved
numerically the quantum-mechanical coupled equations adapted to the effective
potential method. The interaction potential was assumed to have the form

V == Vo(R)[14-0.14{Py(cos x;)+ Ps(cos x5)}1,

where T, is the spherically symmetric part of the potential and determined ox-
perimentally. The anisotiopy paramecter has heen chosen so as to give the best
fit to the SCF potential. Tn some calculations, they added to this potential the
interaction between the molecular quadrupoles to chock the effect of the long-
range anifotropy of the interaction. Their caleulation gives many interesting
results. For instance, the rotational excitation cross section is found to be en-
hanced when the projectile molecule is in its rotationally excited state. Hence,
the treatment in which one of the molecules is regarded as a structureless and
spherical particle underestimates the excitation cross section.

The second exampla it the calculation of the probability of the rotational
transition in the colligsion of two nitrogen molecules (Itikawa 1975). The calcula-
tions is performed in the conventional semiclassical framework. TFirst, the tra-
jectory of the relative motion is determined classically. Then, the amplitude of
the transition is calculated by solving a set of coupled differential equations which
are derived from the time-dependont Schrodinger equation. To reduce the
dimensionarity of the coupled equations, use is mado of the offoctive potential
method of Rabitz (1972). The resulting equations are solved in the exponential
approximation (Takayanagi 1954). Thus the transition probability for the
Process

No(J4)+No(Jg) = Ny(Jy')+Ny(7)

is given by
P(JyJy = J)J)) = | <JyJ, | exp K |J,Jg > |2

Here K is a matrix whose element is defined by
<Jodp |K| Jedg> = ()2 T dt < JoJp | VI [RE)] |Je Ja >
-00

Xexp (%( Wot+Wy—We— Wd)/k)s
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where W is the rotational energy and R(t) is the relative distance of the two molo-
cules at time {. The matrix clement of the offective potential < Jg Jp | VeI | J, Jg
>is derived from the exact one <JaMaJyMy| V| MoJaMa> by using Rabitz’s
procedure. In this way, we can consider couplings among all of the statos con-
nectod through the scloction rules and the onergy balanco. In the actual cal-

culation, E(t) is detormined by golving the classical equation of motion in the
modifivd-wave number approximation (Takayangi 1954).

For the interaction beiween the mitrogen molecules, the potontial model

o
P

V == C oxp (—aR)|1+A{Pylcon xy)+Pyfcos )]
+BP,(cos x;)Ls(con x,)]—Co/RS

it adopted. The potential parameters C, €, and. « are estimated from molecular-
boam oxpoeriments and an analysis of transport coefficients. The anisotropy
parametors 4 and B are left adjustable. This form of the potential model enablos
an analytical computation of the clements of the A matrix. Once we givo the
initial values of the relative kinetic energy and the rotational angular momenta
of the molocules, wo can compute the transition probabilities for all the energoti-
cally possible final statos at the same time. By using those transition probabi-
lities, which, ar¢ given as functions of an impact parameter, the rotational cross
gection can be casily obtained. For further details of the calculation and the
results, the original paper ([tikawa 1975) should bo reforred.

Unfortunately, we can not compare these theorctical cross sections directly
with, experimental data. There is no cross section measured for any rotational
trausition in molecule-moleculo colligsions. We can use, however, those theoreti-
cal values to analyse macroscopic phenomena. Rabitz and Lam (1975) calculated
votational rolaxation times by using their cross sections for hydrogen molecules.
The result can be compared with the relaxation time obtained in various oxpori-
montal methods. The primary object of the caleulation for Ny+N, is the appli-
cation of the resulting transition probabilities to the study of the shock structure
of a nitrogen gas. That work is now under way with the use of tho Monte Carlo
technique (Yoshikawa and Itikawa 1976).

As described above, rather comprehensive studies have just begun of the rota-
tional trangitions in moleculo-molecule collisions. There are many things yot to
be done. 'To apply to the studios on macroscopic phonomena, we have to dovelop
mucl more officient but at loast qualitatively relisble mothods of eross section
caloulation. Jn those studies, the cross section caleulation is not the ultimate goal
but just one step to the goal. Another important task in tho future is to find out
some general trends in the dependenco of the cross goction on initial rotational
states, collision energy, types of interaction potential, and so on. Any of such
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systematics, if found, must be very useful in understanding the role of the rotational

transition in various problems. .
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