Angular distribution of the fragments produced from collisionally dissociated HeH^{+}ion using Slater type orbitals

K. Rai Dastidar and A. K. Barua
Department of General Physios \& X-rays, Indian Assooiation for the Cultivation of Science, Calcutta-700 032.

(Received 2 September 1974)

The angular distribution of the fragments produced from the electron impact dissociation of HoH^{-r} molecular ion has boon studiod in the energy range from 30 ev to 1000 ev by applying the Born approximation. For this purpose the eloctronic excitation $X^{1 \Sigma} \rightarrow A^{1} \Sigma$ oouplod with rotational-vibrational transition has been considered. Tho electronic wave functions have been constructed from Slater type orbituls using two configurations for the $A^{1 \Sigma}$ state and a single configuration for the $X^{1} \Sigma$ state of HeH^{+}ion. It is found that there is no significant effect on the angular distribution of fragments due to the heteronuclearity of the molecular ion.

1. Introdutotion

The oollision inducad dissociation of HeH^{+}ion has been the subject of several recont experiments (Stoarns et al 1971, Schopman et al 1971). The most interesting feature of those studies is the obsorved asymmetry in the intensities of the dissociation fragments in the forward and backward directions for zero-angle scattering (Sohopman et al 1971). Such asymmetry has also been observed in the case of the heteronuolear HD^{+}ion (Dong \& Durup 1970). Attempts have been mado to interpret the asymmetry by including the electron-dipole intaraction torm in the Hamiltonian for $\mathrm{HD}^{+}+e$ system (Barua et al 1971, Saha et al 1972). It has further boen suggested that the asymmotry may be due to the offect of olectric field of the ion sourco on the dipole moment of the heteronuclear moleoular ion.

Important details of the processes involved in the collision induced dissooia. tion of moleoular ions oan be obtained by a datailed study of the angular distribution of the dissociation fragments. Such studies have been extensively done for $\mathrm{H}_{2}{ }^{+}$ion both experimentally and theoretcally. For $\mathrm{He} \mathrm{H}^{+}$ion experimental studios of tho angular distribution of the dissociation fragments by collision with inert gas atoms have bean parformed (Schopman et al 1971). Theoretically, however, an attempt has been made to study in detail the angular distribution
of the dissociation fragments. Here, another approach has been made to study the angular distribution of the fragments produced from the electron impact dissociation of HeH^{+}ion by the $X^{1} \Sigma \rightarrow A^{1} \Sigma$ transition. The calculations have been performed by using the Born approximation and Slater type orbitals to construct the molecular orbitals.

2. Formulation and Results

In the collision of an electron with HeH^{+}molecular ion, the electronic and nuclear coordinates are specified as follows. The nuclei He and H of HeH^{+} are denoted by a and b respectively, the internuclear distance by R, the coordinates of bound electrons 1 and 2 by r_{1} and r_{2} and the coordinate of the impinging electron 3 by \boldsymbol{r}_{3} (figure 1). \boldsymbol{k}_{i} and \boldsymbol{k}_{f} are the wave vectors of the incoming and outgoing electron respectively. Then $k_{i}{ }^{2}=k_{f}{ }^{2}+2 \mu \Delta E$, where ΔE is the energy required to raise the molecular ion at the equilibrium internuclear separation of the ground $X^{1} \Sigma$ state to the first excited $A^{1} \Sigma$ state and μ is the reduced mass of the system.

Fig. 1. Coordinate system describing the collision of en electron with HeH^{+}ion. O is the centre of mass of the ion and \boldsymbol{R} is the internuclear distance.

The wave function for the $X^{1} \Sigma$ state has been chosen as

$$
\begin{equation*}
\Psi_{0}\left(r_{1}, r_{2} ; R\right)=\phi_{a^{18}(1)} \phi_{b}{ }^{18}(2)+\phi_{a}^{18}(2) \phi_{b}{ }^{18}(1) \tag{1}
\end{equation*}
$$

and that for the $A^{1 \Sigma}$ state as

$$
\begin{align*}
\Psi_{8}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2} ; R\right) & =c_{1} \psi_{1}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2} ; R\right)+o_{2} \psi_{2}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2} ; R\right) \\
& =\left(\frac{\iota_{1}}{\sqrt{ } 2}\right)\left[\phi_{\left.a^{18}(\mathrm{~J}) \phi_{b}{ }^{18}(2)+\phi_{a}{ }^{18}(2) \phi_{b}{ }^{18}(1)\right]}\right. \\
& +\left(\frac{c_{2}}{\sqrt{2}}\right)\left[\phi_{\left.a^{18}(1) \phi_{b}{ }^{2 g}(2)+\phi_{a}{ }^{18}(2) \phi_{b}{ }^{2 g}(1)\right]}\right. \tag{2}
\end{align*}
$$

In eqs. (1) and (2) ϕ 's are Slater type atomic orbitals and o's are the coefficients for the different configurations. The Slater type orbitals used may be written as

$$
\begin{align*}
& \phi_{i}^{1^{18}(r)}=\left(\frac{z_{i}}{\pi}\right)^{\frac{1}{t}} \exp \left(-z_{i} r\right) \tag{3a}\\
& \phi_{i}^{2 g}(r)=\binom{z_{i}^{b}}{96 \pi}^{\frac{1}{2}} r \exp \left(-z_{i} r / 2\right) \tag{3b}
\end{align*}
$$

z_{i} is the nuolcar charge for i th nucleus. c_{1} and c_{2} can be obtained by normalizing $\psi_{s}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2} ; R\right)$ to unity and making Ψ_{s} and Ψ_{0} orthogonal to each other.

Since we are interested in calculating only the direct scattering amplitude by using Born approximation, the eloctron-dipole interaction term and electronnuolei interaction terms in the interaction potential

$$
\begin{gather*}
V^{\prime}\left(r_{1}, r_{2}, r_{3}, R\right)= \\
-\frac{2}{\left|r_{3}+1 / 5 R\right|}-\frac{1}{\left|r_{3}-4 / 5 \bar{R}\right|}+\frac{1}{\left|r_{3}-r_{2}\right|}+\frac{1}{\left|r_{3}-r_{1}\right|}-\frac{D P_{1}\left(\hat{r}_{3}, \hat{R}\right)}{r_{3}^{2}} \tag{4}
\end{gather*}
$$

will not contribute. The scattering amplitude for $X^{\mathbf{1} \Sigma} \rightarrow A^{\mathbf{1} \Sigma}$ transition under these conditions may be written as

$$
\begin{align*}
f_{s}(K, \Theta, \Phi)= & -\frac{2}{K^{2}} \iiint\left\{\exp \left(i \boldsymbol{K} \cdot \boldsymbol{r}_{1}\right)+\exp \left(i \boldsymbol{K} \cdot \boldsymbol{r}_{2}\right)\right\} \\
& \times \Psi_{s}^{*}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2} ; R\right) \Psi_{0}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2} ; \boldsymbol{R}\right) \chi_{s}^{*}(\boldsymbol{R}) \chi_{0}(\boldsymbol{R}) \mathrm{d} \boldsymbol{r}_{1} \mathrm{~d} \boldsymbol{r}_{2} \mathrm{~d} \boldsymbol{R} \\
= & -\frac{2}{K^{2}}\left(f_{\varepsilon_{1}}+f_{s_{2}}\right) \tag{5}
\end{align*}
$$

where

$$
\begin{array}{r}
f_{s_{1}}=\iiint \exp \left(i \boldsymbol{K} \cdot \boldsymbol{r}_{1}\right) \Psi_{8}^{*}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2} ; \boldsymbol{R}\right) \psi_{0}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2} ; \boldsymbol{R}\right) \\
\chi_{8}^{*}(\boldsymbol{R}) \chi_{0}(\boldsymbol{R}) \mathrm{d} \boldsymbol{r}_{1} \mathrm{~d} \boldsymbol{r}_{2} \mathrm{~d} \boldsymbol{R} \\
=\int\left[c_{1}\left(R_{1}+R_{2}+R_{3}\right)+c_{2}\left(R_{4}+\boldsymbol{R}_{5}+R_{6}+R_{7}\right)\right] \\
\times \chi_{8}^{*}(\boldsymbol{R}) \chi_{0}(\boldsymbol{R}) \mathrm{d} \boldsymbol{R}, \tag{6}
\end{array}
$$

where the R 's are given below. A similar expression for f_{52} can be obtained by replacing \boldsymbol{r}_{1} by $\boldsymbol{r}_{\mathbf{2}}$.

In eqs. (5) and (6) $K=k_{i}-k_{f}$, the momentum transfer vector is taken along the z-axis of the system, $\chi_{0}(R)$ and $\chi_{8}(R)$ are the nuclear wavefunctions for the initial rotation-vibration state ($v=0, J=0$) and continuum respectively.

The nuoloar wavefunctions used are similar to those for $\mathrm{H}_{2}{ }^{+}$ion used by Zare (1967) which are given as
and

$$
\begin{equation*}
\chi_{0}(R)=F_{v J}(R) Y_{J M}(\theta, \phi) \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
\chi_{\varepsilon}(R)=\sum_{J^{\prime}}\left(2 J^{\prime}+1\right)(-i)^{J^{\prime}} \exp \left(i \delta_{J^{\prime}}\right) F^{s^{8}} J^{\prime} P_{J^{\prime}}(\hat{\boldsymbol{k}} . \hat{R}), \tag{8}
\end{equation*}
$$

where $F_{v j}{ }^{0}(R)$ and $F^{s^{\prime}}{ }^{\prime}(R)$ are the radial wave-functions; the latter has the form of a sine-wave with phase-shift $\delta_{J^{\prime}}$ at large separations. The propagation vector \boldsymbol{k} is along the asymptote of the recoiling atoms and \boldsymbol{R} is the position vector which also coincides with the molecular axis. The polar angles for $\hat{\kappa}$ and \hat{R} are (θ, ϕ) and (Θ, Φ) respeotively and $\boldsymbol{P}_{J^{\prime}}(\hat{\kappa}, \hat{R})$ can be written as

$$
P_{J^{\prime}}(\hat{\kappa} \cdot \hat{R})=\frac{4 \pi}{2 J^{\prime}+1} \sum_{M^{\prime}=-J^{\prime}}^{J^{\prime}} Y^{*} J_{J^{\prime} M^{\prime}}(\theta, \phi) Y_{J^{\prime} M^{\prime}}(\Theta, \Phi)
$$

and henco

$$
\begin{equation*}
\chi_{8}^{*}(R)=4 \pi \sum_{J^{\prime}}{\underset{M^{\prime}}{ } \sum_{-J^{\prime}}}_{\bar{v}} \exp \left(i \delta_{J^{\prime}}\right) F^{8} J^{\prime}(R) Y_{J^{\prime} M^{\prime}}(\theta, \phi) Y_{J^{\prime} M^{\prime}}(\Theta, \Phi) \tag{9}
\end{equation*}
$$

Putting

$$
\begin{align*}
\boldsymbol{r}_{1} & =\boldsymbol{r}_{1 a}-\frac{1}{b} \boldsymbol{R} \\
& =\boldsymbol{r}_{1} b+\frac{4}{5} \boldsymbol{R}, \tag{10}
\end{align*}
$$

the R_{i} 's in eq. (6) are given as

$$
\begin{gather*}
R_{1}=\frac{16 z_{a}{ }^{4}}{\left(4 z_{a}^{2}+K^{2}\right)^{2}} \exp \left(-i K \cdot \frac{1}{5} R\right) \\
=L_{1} \Sigma(2 n+1)(-i)^{n} j_{n}\left(\frac{1}{8} K R\right) P_{n}(\cos \tag{11}\\
R_{2}=\frac{16}{\left(4+K^{2}\right)^{2}} \exp \left(i K \cdot \frac{4}{5} R\right) \\
=L_{2} \sum_{n}(2 n+1) i n j_{n}\left(\frac{4}{5} K R\right) P_{n}(\cos \Theta), \tag{12}\\
R_{3}=\frac{2 z a^{3}}{\pi^{2}} \exp \left(-i K \cdot \frac{1}{8} R\right) I_{3} I_{4} \\
=\sum_{n} \sum_{l} L_{8}(l)(2 n+1)(-i)^{n} j_{n}\left({ }_{5}^{1} K R\right) P_{n}(\cos \Theta) P_{l}(\cos \Theta), \tag{13}
\end{gather*}
$$

where

$$
\begin{gather*}
I_{3}=\frac{4 \pi^{3 / 2}}{\sqrt{2 K}} \sum_{l=0}^{\infty} i l(2 l+1) P_{l}(\cos \Theta)\left[\left\{\int_{0}^{R} J_{l+3}\left(K r_{1 a}\right) \exp \left(-z_{a} r_{1 a}\right)\right.\right. \\
\times r_{1 a} f_{l_{1}}\left(R, r_{1 a}, z_{b}\right) \mathrm{d} r_{1 a}+\int_{R}^{\infty} J_{l+3}\left(K r_{1 a}\right) \exp \left(-z_{a} r_{1 a}\right) \\
\left.\left.\times r_{1 a} f_{l_{2}}\left(R, r_{1 a}, z_{b}\right) \mathrm{d} r_{1 a}\right\}\right], \tag{14a}
\end{gather*}
$$

and

$$
\begin{align*}
& I_{4}=4 \pi \int_{0}^{\infty} \exp \left(-z_{a} r_{2 a}\right) f_{0}\left(z_{b}, r_{2 a}, R\right) r_{2 a}{ }^{2} d r_{2 a}, \tag{14b}\\
& R_{4}=\frac{512}{27 \sqrt{6}} \frac{z_{a}^{4}}{\left(4 z_{a}^{2}+\overline{K^{2}}\right)^{2}} \exp \left(-i K \cdot \frac{1}{5} R\right) \\
& =L_{\mathbf{q}} \sum_{n}(2 n+1)(-i)^{n} j_{n}\left(\frac{1}{6} K R\right) P_{n}(\cos \Theta), \tag{15}\\
& R_{5}=\frac{2 \sin \left[3 \tan ^{-1}\left(\frac{2 K}{3}\right)\right]}{K \sqrt{6} \overline{\left(\frac{9}{4}+K^{2}\right)^{3 / 2}}} \exp \left(i K \cdot \frac{4}{8} R\right) \\
& =L_{5}{\underset{n}{2}(2 n+1) i^{n} j_{n}\left(\frac{4}{5} K R\right) P_{n}(\cos @), ~}_{\text {© }} \tag{16}\\
& R_{6}=\frac{z_{n}^{3}}{\pi^{2} \sqrt[3]{96}} \exp \left(i K \cdot \frac{4}{5} R\right) I_{6} I_{4} \\
& =\sum_{n} \sum_{l} L_{8}(l)(2 n+1) i n j_{n}\left(\frac{4}{6} K R\right) P_{n}(\cos \Theta) P_{l}(\cos \Theta), \tag{17}
\end{align*}
$$

where

$$
\begin{align*}
I_{6}= & -\frac{4 \pi^{3 / 2}}{\sqrt{ } 2 K} \sum_{l=0}^{\infty} i l(2 l+1) P_{l}(\cos \Theta)\left\{\int_{0}^{R} J_{l+k}\left(K r_{1 b}\right)\right. \\
& \times \operatorname{axp}\left(-z_{b} r_{1 b} / 2\right) r_{1 b}{ }^{2} f_{2}\left(R, r_{1 b}, z_{a}\right) \mathrm{d} r_{1 b} \\
& \left.+\int_{R}^{\infty} J_{l+\frac{1}{}}\left(K r_{1 b}\right) \operatorname{axp}\left(-z_{b} r_{1 b} \mid 2\right) r_{1 b} f_{l 2}\left(R, r_{1 b}, z_{a}\right) \mathrm{d} r_{1 b}\right\} \tag{18}\\
R_{7}= & \frac{z_{a}^{3}}{\pi^{2} \sqrt{96}} \exp \left(-i K \cdot \frac{1}{5} R\right) I_{3} I_{5} \\
= & \sum_{n} \sum_{l} L_{7}(l)(2 n+1)(-i)^{n} j_{n}\left(\frac{1}{5} K R\right) P_{n}(\cos \Theta) P_{l}(\cos \Theta), \tag{19}
\end{align*}
$$

and

$$
\begin{equation*}
I_{8}=4 \pi \int_{0}^{\infty} \exp \left(-z_{a} r_{2 a}\right) f_{0}\left(z_{b} / 2, r_{2 b}, R\right) r_{2 b} d r_{2 b} \tag{20}
\end{equation*}
$$

In the above expressions (11) to (20)

$$
\begin{align*}
& L_{1}=\frac{16 z_{u}{ }^{4}}{\left(4 z z^{2}+K^{2}\right)^{2}} \tag{21a}\\
& L_{2}=\frac{16}{\left(4+K^{2}\right)^{2}} \tag{21b}
\end{align*}
$$

$$
\begin{align*}
& \text { Dissociation of } \mathrm{HeH}^{+} \text {ion } \\
& L_{\mathrm{a}}(l) P_{l}\left(00 \mathrm{O}(\circlearrowleft)=\frac{2 z_{a}{ }^{8}}{\pi^{\frac{2}{2}}} I_{8} I_{4},\right. \tag{21c}\\
& L_{4}=\frac{512}{27 \sqrt{6}} \frac{z_{a}{ }^{4}}{\left(4 z_{a}^{2}+K^{2}\right)^{2}}, \tag{21d}\\
& L_{5}=\frac{2 \sin \left[3 \tan ^{-1}\left(\frac{2 K}{3}\right)\right]}{K \sqrt{6} \overline{6}\left(9 / 4+K^{2}\right)^{3 / 2}}, \tag{2le}\\
& L_{6}(l) P_{l}(\cos \Theta)=\frac{z_{a}^{3}}{\pi^{2} \sqrt{96}} I_{8} I_{4}, \tag{21f}\\
& L_{7}(l) P_{l}(\cos \Theta)=\frac{z_{a}{ }^{3}}{\pi^{2} \sqrt{96}} I_{3} I_{5}, \tag{21g}\\
& f_{l_{1}}\left(R, r_{1 a}, z_{b}\right)=-\frac{1}{\sqrt{\bar{R} r_{1 a}}}\left[-\frac{R}{2} I_{l+\frac{d}{}}\left(z_{j} r_{1 a}\right)\left\{K_{l-\frac{1}{2}}\left(z_{b} R\right)+K_{l+-3 / 2}\left(z_{b} R\right)\right\}\right.
\end{align*}
$$

$$
\begin{align*}
& \left.-\frac{r_{1 a} a}{2} I_{l+\downarrow}\left(z_{b} R\right)\left\{K_{l-\frac{1}{2}}\left(z_{b} r_{1 a}\right)+K_{l+3 / 2}\left(z_{b} r_{1 a}\right)\right\}\right], \quad \text { for } R<r_{1 a} . \tag{22}
\end{align*}
$$

Similarly, the expressions for $f_{0}\left(R, r_{2 a}, z_{b}\right)$ can be obtained by putting $l=0$ in eq. (22).

To avoid elaborate caloulations, the upper state radial wavefunction has been replaced by a normalized δ-function, $N \delta\left(R-R_{0}\right)$ where R_{0} is the internuolear equilibrium distance for the ground state of the $\mathrm{HeH}+$ ion. The axial-recoil approximation has been assumed which results in considerable simplifications in the calculations.

For the numerioal evaluation of $f_{s_{1}}$ the following n and l values have been used

$$
n=0,1 \quad \text { and } l=0,1
$$

Sample calculations have shown that the contributions of the higher order terms to $f_{s_{1}}$ are small and may therefore be neglected. For a oartain combination of n and l values, only certain particular values of J^{\prime} will contribute in the summation over \boldsymbol{J}^{\prime}, the final rotational quantum number.

24

K. Rai Dastidar and A. K. Barua

Tharefore, $f_{s_{1}}$ can be written as

$$
\begin{equation*}
f_{s_{1}}(K, \Theta, \Phi)=\sum_{n=0}^{1} \sum_{l=0}^{1} f_{n l} \tag{23}
\end{equation*}
$$

where

$$
\begin{align*}
f_{n l}= & \left\{(2 n+1) i^{n} \exp (-i C) F^{\circ}{ }_{v J}\left(R_{0}\right) R_{0}{ }^{2} Y_{J M}(\Theta, \Phi) Y_{n 0}(\Theta, \Phi)\right\} \\
& {\left[\left(L_{2}+L_{5}\right) j_{n}\left(\frac{4}{5} K R_{0}\right)+(-1)^{n}\left(L_{1}+L_{4}\right) j_{n}\left(\frac{1}{5} K R_{0}\right)\right.} \\
& +(2 l+1) i Y^{5}\left(Y _ { l _ { 0 } } (\Theta , \Phi) \left\{L_{6}(l) j_{n}\left(4 / 5 K R_{0}\right)+(-1)^{n}\left[L_{7}(l)+L_{3}(l)\right]\right.\right. \\
& \left.\left.-j_{n}\left(\frac{1}{2} K R_{0}\right)\right\}\right] . \tag{24}
\end{align*}
$$

Assuming the axial recoil approximtion to be valid, the factor $(-i)^{J^{\prime}} \exp \left(i \delta_{J}{ }^{\prime}\right)$ equals $\exp (-i C)$ where C is a constant to ordor $\left[\left(J^{\prime}+\frac{1}{2}\right) / \kappa r\right]^{2}$ and the sum over J^{\prime} and M^{\prime} can be readily performed.

Since $f_{s_{1}}=f_{s_{2}}$ numerioally, we can put $f_{s}=2 f_{s_{1}}$.
The Born differential scattering cross section may bo written as,

$$
\begin{equation*}
I_{s}(K, \Theta, \Phi)=\frac{k_{f}}{k_{i}}{\underset{M}{ }}_{\sum}\left|f_{s}(K, \Theta, \Phi)\right|^{2} \tag{25}
\end{equation*}
$$

where (Θ, Φ) are the polar angles for \boldsymbol{R} which is the direction of fragmentation according to the axial recoil approximation (figure 2). Eq. (25) dopends on the magnitude of the momentum transfer vector, which is given by,

$$
\begin{equation*}
K^{2}=k_{i}^{2}+k_{f}^{2}-2 k_{i} k_{f} \cos \omega \tag{27}
\end{equation*}
$$

ω being the angle botween k_{i} and k_{f}.

Fig. 2. Courdinato systom showing tho relation betweon scattering anglos in the momentum transfer and alectron beam frames. Dissociation fragmonts ejected along \boldsymbol{R} are described by the polar angles (Θ, Φ) and (θ, ϕ) in the two respactive frames.

In order to make the difforential cross-section for ejected fragments independent of the angle of the scattered electrons, the cross-scotion $1_{s}(K, \Theta, \Phi)$ should be integrated over $\sin \omega \mathrm{d} \omega \mathrm{d} \phi_{0}$. Thus one can obtain

$$
\begin{equation*}
I_{s}(\Theta, \Phi)=\frac{2 \pi}{k_{i}{ }^{\frac{2}{2}} \int_{K_{\min }}^{m_{\max }} \Sigma\left|f_{s}(K, \Theta, \Phi)\right|^{2} K \mathrm{~d} K} \tag{27}
\end{equation*}
$$

whero

$$
K_{m i_{n}}=k_{t}-k_{f} ; \quad K_{m a_{x}}=k_{i}+k_{f}
$$

Using oqs. (23) to (27) one can obtain

$$
\begin{equation*}
\sum_{M}\left|f_{i_{1}}(K, \Theta, \Phi)\right|^{2} \approx m+q \cos ^{2} \Theta+p \cos ^{4} \Theta \tag{28}
\end{equation*}
$$

The values of the coefficionts in eq. (28) can be easily obtained from the preceding relatious. So far, the angular distribution of fragments has been culculated in momenlum transfer frame i.e., whore the momentum transfer vector \boldsymbol{K} is along Z-axis. In order to comparo these rosults with exporiments one must transfer the cross section to the electron beam framo, where the olectron boam direction

Fig. 3. Angular distribution of dissociation fragments of $\mathrm{HeH}+$ ion ($X^{1} \Sigma^{\prime} \rightarrow A^{1} \Sigma$ transiton) for different electron bombardment energies.
\boldsymbol{k}_{i} is taken along \boldsymbol{z}-axis as shown in figure 2 . This transformation can be done by substituting
and

$$
\cos \theta=\cos \theta \cos \theta^{\prime}+\sin \theta \sin \theta^{\prime} \cos \phi
$$

$$
\begin{equation*}
\Phi=\sin ^{-1}(\sin \theta \sin \phi / \sin \Theta) \tag{29}
\end{equation*}
$$

where (Θ, Φ) and (θ, ϕ) are the polar angles of \boldsymbol{R} in the two different frames and $\left(\theta^{\prime}, \phi^{\prime}\right)$ are the polar angles for \boldsymbol{k}_{i} with respoct to \boldsymbol{K}. In this case $\phi^{\prime}=0$, since the Y-axis for the two frames have been made to coincide. Averaging over the angle ϕ, the difforontial scattoring cross section for the fragments in the $\boldsymbol{k}_{\boldsymbol{i}}$-frame is givon by,

$$
I(\theta)=2 \pi \int_{0}^{2 \pi} I(\theta, \phi) \mathrm{d} \phi
$$

Thereforo, the angular distribution of the fragments is symmetrical in the forward and backward directions and the angle-dependent part is superimposed on an angle-independent term.

3. Discussion of Results

The nature of $I(\theta) / I\left(90^{\circ}\right)$ curves for the angular distribution of the fragments produoed from $X^{1 \Sigma} \rightarrow A^{1 \Sigma}$ transition of HeH^{+}ion is similar to the curves for the homonuclear $\mathrm{H}_{2}+$ dissociation. In the lower onergy range the ratio is expected to incroase considerably when exchange is taken into account. This has been shown by Saha et al (1972) for the dissociation of HD^{+}ion. The differontial crosssection for fragmonts of the hoteronuclear ion is obtained as a sum of an angleindependont term with a combination of cosine square term and the square of a cosine square term.

The experiments parformed for the dissociation of HeH^{+}ion by electronic oxcitation indicate that both $X^{1 \Sigma} \rightarrow A^{1} \Sigma$ and $X^{1 \Sigma} \rightarrow a^{3} \Sigma$ transitions are energetioally possibla (Schopman et al 1971). The latter transition allhough optically forbiddon is possible whon excitation takes place by collision with another particla. However, from the available data it is not possible to ascortain experimontally the relativa importanoe of the two transitions mentioned above. It is not possible to obtain soattering amplitude for $X^{1 \Sigma} \rightarrow a^{3} \Sigma$ transition using Born approximation. Therefore, axchange scattering should be considered for the singlet-triplet transition.

For the ground $\boldsymbol{X}^{\mathbf{1}} \boldsymbol{\Sigma}$ state of HeH^{+}ion no ionic term has been inoluded in the wavefunction although this state is known to ba strongly ionic (Miohels 1966). The ionic term will affect the magnitude of the differential cross-section of the fragments and the rosults reported by us as ratios are not likely to be affected significantly by this approximation. It can also be shown that if a purely ionic
wave function is chosen for ground state, the resulting difforential cross section has the similar angla dependenoe as that for the non-ionic wave function.

Referenoes

Barua A. K., Sahe S. \& Mullick K. 1971 J. Phys. B. 4, 1450.
Dong P. \& Durup J. 1970 Chem. Phys. Lett. 5, 340.
Michels H. H. 1966 J. Ohem. Phys. 44, 3834.
Mullick K., Rai Dastidar T. K. \& Barua A. K. 1974 J. Phyy. B. 7, 288.
Saha S., Mullick K. \& Barua A. K. 1972 J. Phys. B. 5. 1369.
Schopman J., Los J. \& Maas J. 1971 Physica 51, 113.
Stoarna J. W., Berkner K. H., Pyle K. V., Brieglels B. P. \& Warren M. L. 1971 Phys. Rev. A4, 1960.
Zare R. N. 1967 ./. Chem. Phys. 47, 204.

