Study of dielectric relaxation mechanism and mutual viscosity in some substituted anilines

S. K. S. SOMEVANSHI, S. C. MITRA, S. B. L. MISRA AND N. K. MEHROTRA

Physics Department, Lucknow University, Lucknow

(Received 5 April 1977, revised 18 June 1977)

The present communication reports the relaxation times and mutual viscosity of dimethyl aniline; N-ethyl aniline; N-N-dimethyl aniline; θ -ethyl aniline; benzyl aniline and N-ethyl- θ -toluidine in dilute solutions of benzene at 3.13 cm wavelength (9585 MHZ) in microwave region, and at three temperatures 20°, 30° and 40°C. Correlation of mutual viscosity with relaxation time leads to the conclusion that the mutual viscosity is a better representation of the resistance to the rotation of the individual solute molecule. The molar free energies, the entropies and the enthalpies of activation have also been evaluated and compared.

1. INTRODUCTION

The discripancy between the observed values and the calculated values (using Debye equation) of relaxation time can be explained by using instead of solvent viscosity η_1 a mutual viscosity parameter η_{12} as derived by Hill (1954) and discussed in an earlier paper (Mehrotra 1971) by one of the authors. The average intermolecular distances i.e., σ 's have been determined using the expressions as given in the paper (Mehrotra *et al* 1969).

It is interesting to note that an expression involving mutual viscosity parameter η_{12} was also proposed by Vaughan *et al* (1961). The results obtained using this expression arc in good agreement with those obtained using Hill's equation (1954), also discussed in the earlier paper (Mchrotra 1971).

Kalman & Smyth (1961) found that the equation

$$\tau = \frac{C}{T} \eta_1^{a}$$

where $\alpha = \Delta H \tau / \Delta H \eta$ which could be derived by using rate equations, gives satisfactory results over a small temperature range. However, they did not examine it for large number of compounds.

In the present investigation we have employed the above relations and undertaken a comparative study using the macroscopic viscosity term η_1 , the average mutual viscosity term η_{12} and Kalman's viscosity parameter η_1° . The

Study of dielectric relaxation mechanism 143

results obtained indicate that Kalman's equation gives a closer relation between viscosity and relaxation time. However, the average mutual viscosity η_{12} gives a still better correlation between the phenomena of relaxation and viscosity.

The free energies of activation for the process of dipole orientation and viscous flow have also been calculated using Eyring's equations (1941).

2. EXPERIMENTALS

The dielectric relaxation times have been determined using the fixed frequency method of Gopala Krishna (1957) for dilute solutions. The standing) wave technique of Roberts & Von Hipple (1946) has been used for the measurement of dielectric constant ϵ' and the loss factor ϵ'' required for the calculation of τ .

The viscosities were determined with the help of Hoppler's precision viscometer to an accuracy of $\pm 2\%$.

All the compounds used are of pure quality, obtained from Messrs. British Drug House, Purest quality analar benzene obtained from Messrs. B. D. H. was distilled before use.

3. RESULTS AND DISCUSSIONS

(i) Relaxation Time

The dielectric constant ϵ' and loss ϵ'' for the compounds at various concentrations and temperatures are given in table 1. The values of the relaxation time τ , the mutual viscosity η_{12} and the ratios $T\tau/\eta_1$, $T\tau/\eta_{12}$ and $T\tau/\eta_1^{\alpha}$ are reported in table 2. The values of relaxation times and molar activation energy parameters at different temperatures are given in table 3.

The relaxation time of θ -othyl aniline is found to be greater than that of N-othyl aniline, although the size of both the molecules are approximately the same. This may be explained due to greater storic hinderance experienced by the rotating $-NH_2$ group by the neighbouring othyl group at the ortho-position in the former molecule.

The relaxation times of dimethyl aniline and N-N-dimethyl aniline are of similar magnitude and are consistent with the sizes of the molecules.

Further the relaxation time of N-ethyl- θ -toluidine is much larger than that of N-ethyl aniline which is not only due to the bigger size of the former molecule but **also** due to the greater hinderance produced by the methyl group attached at the ortho position to the rotation of $-NH_2$ group in the former molecule.

Benzyl aniline has largest value of the relaxation time as compared to all other compounds investigated which may be partly due to the biggest size of the molecule and partly due to maximum hinderance offered by phenyl group to intramolecular rotations of the amino group.

144 Somevanshi, Mitra, Misra and Mehrotra

(ii) Correlation of Dielectric Relaxation Times and Viscosity Parameters

The interdependence of the dielectric relaxation time and the viscosity factors has been studied by applying various equations. The values of different viscosity parameters are listed in table 2 together with the values of relaxation time.

	20)°C	30	°C	40)°C
Concentration W	د'	د"	ε'	e"	 е′	ε″
		Din	nothyl Anilir	10		
0.0187	2.2346	0.02186	$2 \cdot 2372$	0.01987	$2 \cdot 2552$	0.01833
0.0204	$2 \cdot 1309$	0.02960	$2 \cdot 2082$	0.02193	$2 \cdot 1075$	0.02376
0.0267	$2 \cdot 2095$	0.04686	$2 \cdot 2018$	0.05050	$2 \cdot 1967$	0.04987
0.0271	$2 \cdot 2096$	0.04708	$2 \cdot 1849$	0.03718	2.1847	0.03393
0-0325	2.2018	0.08552	2.1658	0.07819	$2 \cdot 1719$	0.07261
		N-N-D	imethyl An	iline		
0.0170	2.1604	0.07153	2.2133	0.06600	$2 \cdot 1732$	0.06204
0.0213	$2 \cdot 1719$	0.07877	$2 \cdot 1373$	0.07583	$2 \cdot 2017$	0.06455
0.0246	1.9525	0.05076	$2 \cdot 2133$	0.05876	2.1874	0.10209
0.0289	$2 \cdot 2056$	0.07717	$2 \cdot 2082$	0.06428	$2 \cdot 1952$	0.04586
0.0315	2.1797	0.08838	2.1952	0.06759	2.1901	0.06549
		N-6	thyl anilind)		
0.0295	2.1513	0.03771	2.1526	0-03496	$2 \cdot 1732$	0.03008
0.0340	$2 \cdot 1602$	0.04561	$2 \cdot 1977$	0.03973	$2 \cdot 2991$	0.04172
0.0378	$2 \cdot 2003$	0.04198	$2 \cdot 2030$	0.03472	2.2043	0.01346
0.0412	$2 \cdot 2094$	0.10796	$2 \cdot 2107$	0.07125	$2 \cdot 2120$	0.12830
0.0451	2.1913	0.11850	$2 \cdot 2251$	0.05617	$2 \cdot 2450$	0.06213
		0-е	thyl aniline			
0.0164	2.1476	0.01847	2.1905	0.01575	2.1956	0.01603
0.0212	$2 \cdot 1892$	0.01872	2.2022	0.01859	2.2048	0.07144
0.0276	$2 \cdot 1943$	0.03675	2.2008	0.02478	2.2073	0.02446
0.0302	$2 \cdot 2112$	0.03934	2.1737	0.01252	$2 \cdot 2048$	0.02853
0.0349	$2 \cdot 2283$	0.04294	2.1878	0.03450	2.1979	0.03387
		N-eth	ıyl-∂-toluidiı	ne		
0.0262	2.1539	0·0184	$2 \cdot 1552$	0·0 346	2.1578	0.0301
0.0314	$2 \cdot 1642$	0.0430	$2 \cdot 1655$	0.0352	2.1680	0.0320
0-0363	$2 \cdot 1732$	0·0 499	$2 \cdot 1655$	0.0477	$2 \cdot 1437$	0.0464
0.0395	$2 \cdot 1809$	0.0200	$2 \cdot 1822$	0.0492	2.1861	0.0474
0.0434	2.1745	0-0523	2.1771	0·0 561	2.1809	0.0501
		Be	nzyl aniline			
0.0122	2.1118	0.0178	2.1284	0.0122	2.1383	0·0 325
0.0231	$2 \cdot 1500$	0.0179	$2 \cdot 1539$	0.0328	2.1475	0.0307
0.0286	$2 \cdot 1502$	0.0378	$2 \cdot 1245$	0.0343	2.1561	0.0339
0.0326	2.1591	0.0383	$2 \cdot 1655$	0.0349	$2 \cdot 1433$	0.0369
0.0383	2.1784	0.0392	2.1719	0.0369	$2 \cdot 1603$	0.0773

Table 1. Dielectric constants c' and losses e'' of compounds

and ratio	
and	
η_{12}	
mutual viscosity	
mutual	igated.
(τ) , average	ds invest
on time (τ) ,	ompound
elaxation) for the
s of the 1	, $(T\tau / \eta_{13})$
Values	$(T\tau /\eta_1)$
Table 2.	

investigated.
$(T\tau/\eta_{1s})$ for the compounds
for the
$(T\tau \eta_{12})$

					-	;		Пт	T_{T}	T_{T} , 20	
293 9-33 0.662 0.728 0.730 21.610 303 8.64 0.564 0.706 0.716 19.350 313 7.83 0.503 0.675 0.694 17.734 313 7.81 0.563 0.676 0.712 16.876 313 7.81 0.503 0.673 0.6622 17.34 303 8.97 0.6622 0.7704 0.712 16.876 313 7.81 0.503 0.675 0.684 21.190 313 6.71 0.564 0.675 0.684 21.190 303 6.71 0.564 0.673 0.633 13.963 313 6.50 0.563 0.739 13.963 17.973 303 6.74 0.564 0.739 11.734 303 16.74 0.739 11.73 313 15.94 0.563 0.650 0.739 <th>Compounds</th> <th>Temp. °K</th> <th>$\tau \times 10^{12}$ Sec</th> <th>11 CP</th> <th>712CP</th> <th>*1ªCp**</th> <th>$\eta_1^{\bullet} \times 10^{\circ}$</th> <th>1¹ × 10¹</th> <th>$\frac{1}{\eta_{12}} \times 10^{6}$</th> <th>$\frac{\eta_{1^{\alpha}}}{\eta_{1^{\alpha}}} \times 10^{\alpha}$</th> <th></th>	Compounds	Temp. °K	$\tau \times 10^{12}$ Sec	11 CP	712CP	*1ªCp**	$\eta_1^{\bullet} \times 10^{\circ}$	1 ¹ × 10 ¹	$\frac{1}{\eta_{12}} \times 10^{6}$	$\frac{\eta_{1^{\alpha}}}{\eta_{1^{\alpha}}} \times 10^{\alpha}$	
303 8·64 0·564 0·716 19·350 313 7·83 0·503 0·675 0·694 17·734 293 8·79 0·562 0·712 16·676 19·350 303 8·19 0·564 0·673 0·712 16·676 303 8·08 0·564 0·673 0·662 14·821 303 6·71 0·503 0·675 0·683 13·503 313 7·81 0·503 0·679 0·684 21·190 303 6·71 0·503 0·679 0·684 21·190 313 6·50 0·564 0·679 0·639 13·503 313 6·51 0·503 0·656 17·34 313 6·50 0·503 0·656 17·34 313 6·51 0·503 0·739 11·542 313 10·79 0·739 11·542 10·491 313 13·64 0·503 0·739 11·542	Dimethyl aniline	293	9-33	0-652	0.728	0.730	21-610	41-927	37-550	12.650	1
313 $7\cdot83$ $0\cdot503$ $0\cdot675$ $0\cdot694$ $17\cdot734$ 293 $8\cdot79$ $0\cdot652$ $0\cdot704$ $0\cdot712$ $16\cdot676$ 303 $8\cdot08$ $0\cdot564$ $0\cdot673$ $0\cdot662$ $14\cdot821$ 313 $7\cdot81$ $0\cdot503$ $0\cdot673$ $0\cdot662$ $14\cdot821$ 313 $7\cdot81$ $0\cdot503$ $0\cdot676$ $0\cdot684$ $21\cdot190$ 313 $6\cdot71$ $0\cdot564$ $0\cdot676$ $0\cdot684$ $21\cdot190$ 303 $6\cdot71$ $0\cdot564$ $0\cdot676$ $0\cdot684$ $21\cdot190$ 313 $6\cdot50$ $0\cdot503$ $0\cdot676$ $0\cdot739$ $13\cdot117$ 303 $9\cdot86$ $0\cdot503$ $0\cdot739$ $0\cdot739$ $11\cdot542$ 313 $6\cdot50$ $0\cdot503$ $0\cdot739$ $0\cdot739$ $11\cdot542$ 313 $8\cdot93$ $0\cdot504$ $0\cdot739$ $0\cdot739$ $11\cdot542$ 303 $9\cdot86$ $0\cdot503$ $0\cdot739$ $0\cdot739$ $11\cdot542$ 313 $8\cdot93$ $0\cdot503$ $0\cdot739$ 0.739 $11\cdot542$ 313 $8\cdot93$ $0\cdot504$ 0.739 0.739 $11\cdot542$ 313 $8\cdot93$ $0\cdot504$ 0.739 0.739 $11\cdot542$ 313 $14\cdot54$ $0\cdot503$ 0.739 0.739 $11\cdot542$ 313 $14\cdot54$ $0\cdot503$ $0\cdot739$ 0.739 $11\cdot642$ 313 $14\cdot54$ $0\cdot503$ $0\cdot739$ 0.739 $11\cdot708$ 313 $14\cdot54$ $0\cdot503$ $0\cdot530$ 0.590 $13\cdot927$ 313 $14\cdot69$ $0\cdot503$ $0\cdot524$ $0\cdot520$ $11\cdot173$ 313<		303	8-64	0.564	0.706	0.716	19-350	46-417	37-081	13-529	
293 8·79 0·652 0·704 0·712 16·676 303 8·08 0·564 0·673 0·662 14·821 313 7·81 0·503 0·662 14·821 313 7·81 0·503 0·673 16·87 313 7·81 0·503 0·673 14·821 303 6·71 0·503 0·652 0·634 21·190 303 6·71 0·503 0·653 0·634 21·190 313 6·50 0·504 0·658 0·656 17·373 313 6·50 0·503 0·503 0·739 11·542 303 9·86 0·503 0·739 11·542 313 8·93 0·503 0·739 11·542 313 8·93 0·503 0·739 11·542 313 14·54 0·503 0·739 11·542 303 14·54 0·503 0·739 11·542 313 13·05		313	7.83	0.503	0-675	0.694	17-734	48.723	36-308	13.819	
303 8.08 0.564 0.673 0.662 14*821 313 7.81 0.503 0.662 13.503 313 7.81 0.503 0.684 13.503 293 6.97 0.652 0.675 0.684 21.190 303 6.71 0.564 0.687 9.690 18.963 303 6.50 0.503 0.658 0.656 17.372 313 6.50 0.503 0.739 0.739 13.117 293 10.79 0.652 0.739 0.739 13.117 303 9.86 0.503 0.739 0.739 11.642 303 14.54 0.6503 0.739 0.739 11.542 303 14.54 0.503 0.711 0.721 10.491 303 14.54 0.564 0.660 17.008 313 15.34 0.564 0.610 18.575 303 14.54 0.569 0.590 13.9	N-N-dimethyl aniline	293	8-79	0.652	0.704	0-712	16.676	39-501	36-583	15-444	
313 $7\cdot81$ $0\cdot503$ $0\cdot629$ $0\cdot639$ $13\cdot503$ 293 $6\cdot71$ $0\cdot564$ $0\cdot675$ $0\cdot684$ $21\cdot190$ 303 $6\cdot71$ $0\cdot564$ $0\cdot637$ $9\cdot690$ $18\cdot963$ 313 $6\cdot50$ $0\cdot503$ $0\cdot658$ $0\cdot656$ $17\cdot372$ 313 $6\cdot50$ $0\cdot503$ $0\cdot653$ $0\cdot790$ $13\cdot117$ 303 $10\cdot79$ $0\cdot503$ $0\cdot739$ $17\cdot372$ 303 $9\cdot86$ $0\cdot504$ 0.739 $11\cdot542$ 303 $9\cdot86$ 0.564 0.739 $11\cdot542$ 313 $8\cdot93$ 0.504 0.739 $11\cdot542$ 313 $8\cdot93$ 0.504 0.739 $11\cdot542$ 313 $15\cdot34$ 0.739 0.739 $11\cdot542$ 313 $15\cdot34$ 0.739 0.739 $11\cdot542$ 313 $15\cdot34$ 0.739 0.739 $10\cdot491$ 313 $14\cdot54$ <td< td=""><td></td><td>303</td><td>80.8</td><td>0-564</td><td>0-673</td><td>0-662</td><td>14-821</td><td>43-408</td><td>36-378</td><td>16.510</td><td></td></td<>		303	80.8	0-564	0-673	0-662	14-821	43-408	36-378	16.510	
293 6-97 0-652 0-675 0-684 21.190 303 6-71 0-564 0-687 9-690 18-963 313 6-50 0-503 0-658 0-656 17-972 313 6-50 0-503 0-658 0-739 13-117 293 10-79 0-652 0-739 0-730 13-117 303 9-86 0-503 0-739 0-739 13-117 313 8-93 0-503 0-739 0-739 11-642 313 14-54 0-503 0-711 0-721 10-491 303 14-54 0-503 0-711 0-721 10-491 313 15-34 0-564 0-670 18-575 313 14-69 0-563 0-640 17-008 303 14-54 0-563 0-569 13-927 303 14-69 0-564 0-569 13-927 303 14-69 0-564 0-569 13-		313	7.81	0-503	0.629	0.639	13.503	48-599	38-863	18-103	
303 6·71 0·564 0·687 9·690 18·963 313 6·50 0·503 0·658 0·656 1 7·372 293 10·79 0·652 0·799 1 7·372 303 9·86 0·564 0·739 1 7·372 303 9·86 0·564 0·739 1 7·372 303 9·86 0·564 0·739 1 1·542 313 8·93 0·503 0·711 0·721 10·491 313 15·34 0·564 0·679 15·54 10·563 303 14·54 0·564 0·739 11·542 313 13·06 0·563 0·679 17·09 313 13·06 0·564 0·637 0·590 13·927 303 14·69 0·564 0·569 13·927 303 14·69 0·564 0·590 13·927 303 14·69 0·564 0·590 13·927 303 14·69 <td< td=""><td>N-ethyl aniline</td><td>293</td><td>6-97</td><td>0.652</td><td>0-675</td><td>0.684</td><td>21.190</td><td>31.322</td><td>29-726</td><td>9-630</td><td></td></td<>	N-ethyl aniline	293	6-97	0.652	0-675	0.684	21.190	31.322	29-726	9-630	
313 6.50 0.503 0.658 0.656 17.372 293 10.79 0.652 0.739 13.117 303 9.86 0.654 0.739 13.117 313 9.83 0.564 0.739 11.542 313 8.93 0.564 0.739 11.542 313 8.93 0.563 0.711 0.721 10.491 313 8.93 0.563 0.711 0.721 10.491 303 14.54 0.662 0.679 0.670 13.575 303 14.54 0.564 0.637 0.640 17.008 313 13.05 0.503 0.637 0.640 13.927 303 14.69 0.564 0.549 13.927 303 14.69 0.564 0.590 13.927 303 14.69 0.564 0.590 13.927 303 14.69 0.564 0.590 13.927 313 13.71 <td></td> <td>303</td> <td>6-71</td> <td>0-564</td> <td>0-687</td> <td>069-6</td> <td>18-963</td> <td>36-048</td> <td>30-301</td> <td>10-722</td> <td></td>		303	6-71	0-564	0-687	069-6	18-963	36-048	30-301	10-722	
293 10·79 0·652 0·739 13·117 303 9·86 0·564 0·739 11·542 313 9·86 0·564 0·739 11·542 313 8·93 0·503 0·711 0·721 10·491 293 15·34 0·503 0·711 0·721 10·491 293 15·34 0·503 0·679 20·768 20·768 303 14·54 0·564 0·661 0·670 18·575 313 13·05 0·503 0·637 0·640 17·008 303 16·32 0·564 0·590 13·927 303 14·69 0·564 0·590 13·927 303 14·69 0·564 0·590 13·927 313 13·71 0·503 0·524 0·520 11·173		313	6-50	0.503	0.658	0-656	17-372	40-447	90-919	11.711	
303 9·86 0·564 0·739 0·739 11·542 313 8·93 (·503 0·711 0·721 10·491 293 15·34 0·652 0·679 0·680 20·768 303 14·54 0·564 0·661 0·670 18·575 313 13·05 0·503 0·637 0·640 17·008 293 16·32 0·503 0·589 0·530 13·575 313 13·05 0·503 0·589 0·530 13·575 303 14·69 0·503 0·589 0·530 13·927 303 14·69 0·564 0·544 0·543 13·927 313 13·71 0·503 0·524 0·520 11·173	0-ethyl anil ine	293	10-79	0-652	0.789	0.790	13-117	48.488	40.087	24.102	
313 8-93 0-503 0-711 0-721 10-491 293 15-34 0-652 0-679 0-680 20-768 303 14-54 0-564 0-661 0-670 18-575 313 13-05 0-503 0-637 0-640 17-008 293 16-32 0-564 0-589 0-590 13-97 303 16-32 0-564 0-589 0-590 13-927 303 14-69 0-564 0-544 0-543 13-927 313 13-71 0-503 0-524 0-540 13-927		303	9.86	0.564	0.739	0.739	11.542	52-971	40-430	25,888	
293 15·34 0·652 0·679 0·680 20·768 303 14·54 0·564 0·661 0·670 18·575 313 13·05 0·503 0·637 0·640 17·008 293 16·32 0·589 0·590 13·927 303 14·69 0·564 0·544 17·008 303 14·69 0·564 0·544 13·927 313 13·71 0·503 0·524 0·543 12·314		313	8-93	0.503	0-711	0.721	10-491	55-568	39-364	26.642	
303 14·54 0·564 0·661 0·670 18·575 313 13·05 0·503 0·637 0·640 17·008 293 16·32 0·652 0·589 0·590 13·927 303 14·69 0·564 0·544 0·543 12·314 313 13·71 0·503 0·524 0·524 11·173	N-ethyl-0-toluidine	293	15-34	0.652	0-679	0.680	20-768	68-935	66-194	21.642	
313 13·05 0·503 0·637 0·640 17·008 293 16·32 0·652 0·589 0·590 13·927 303 14·69 0·564 0·544 0·543 12·314 313 13·71 0·503 0·524 0·520 11·173		303	14.54	0-564	0-661	0-670	18-575	78-113	66-651	23-718	
293 16·32 0·652 0·589 0·590 13·927 303 14·69 0·564 0·544 0·543 12·314 313 13·71 0·503 0·524 0·520 11·173		313	13-05	0-503	0-637	0.640	17-008	81-205	65-349	24-016	
303 14.69 0-564 0-544 0-543 12·314 313 13·71 0-503 0-524 0-520 11·173	Benzyl an iline	293	16-32	0.652	0-589	0-590	13-927	73-339	82.230	34-334	
13-71 0-503 0-524 0-520 11-173		303	14.69	0-564	0-544	0-543	12.314	78-919	83-353	36-147	
		313	13-71	0-503	0-524	0.520	11.173	85.312	84-679	38-407	
* Equation of Hill. ** Equation of Vaughan.		* Equa	tion of Hill.			** Equatio	n of Vaughan				

•

Study of dielectric relaxation mechanism

145

в--3

			ΔF_{t}	ΔF_{n_1}	$\Delta F_{\pi_{13}}$	ΔH_{ϵ}	ΔH_{*}	$\Delta H_{n,n}$	ΔSr	ΔSn.
Compounds	Temp. °K	$\mathbf{r} \times 10^{12}$ Sec.	$\times 10^{-3}$ J/mole	imes 10 ⁻³ J/mole	imes 10 ⁻³ J/mole	× 10 ⁻³ J/mole	$\times 10^{-3}$ J/mole	× 10-3 J/mole		
Dimethyl aniline	293	9-33	2.35	2.90	2.97	1.92	2.52	4.60	1.46	- 1-29
	303	8-64	2.39	2.92	3.07	I-92	2.52	4-60	1.55	- 1.32
	313	7.83	2-45	2.94	3.16	1-92	2.52	4-60	-1.69	-1.34
N-N-dimethyl aniline	293	8-79	2.28	2.90	2.95	2-05	2.52	7.22	-0.78	- 1.29
	303	80.8	2.34	2.92	3.04	2.05	2.52	7.22	-0-96	-1.32
	313	18.1	2.37	2.94	3.11	2.05	2′52	7.22	-1.02	-1.34
N-ethyl aniline	293	6-97	2.18	2.90	2.92	1.93	2.52	1.61	-0.85	- 1.29
	303	6-71	2.20	2.92	3.04	1.93	2.52	1.61	-0.89	-1.32
	313	6.50	2.25	2.94	3.14	1.93	2.52	1.61	-1.03	- 1.34
<i>θ</i> -ethyl aniline	293	10.79	2.43	2.90	3.01	2.17	2.52	7-31	-0-89	-1.29
	303	98.6	2.46	2.92	3 .09	2.17	2.52	7-31	96-0	
	313	8-93	2.52	2.94	3.53	2.17	2.52	7-31	-1.12	1.34
N-ethyl- <i>0</i> -toluidine	293	15-34	2.63	2.90	2.93	2.94	2.52	5.10	2.35	- 1.29
	303	14.54	2.70	2.92	3.03	2.94	2.52	5.10	2.50	-1.32
,	313	13-05	2.75	2.94	3.12	£9-2	2.52	5.10	2.58	-1-34
Benzyl aniline	293	16-32	2.67	2-90	2.84	2.14	2.52	7-36	1.81	-1.29
	303	14-69	2-71	2.92	2.91	2.14	2.52	7-36	1-88	1-32
	313	13-71	2.78	2.94	2.99	2.14	2.52	7.36	9-04	1.9.1

146

Somevanshi, Mitra, Misra and Mehrotra

Study of dielectric relaxation mechanism

It is apparent from table 2 that the ratio $T\tau/\eta_1$ increases with the rise in temperatures for nearly all the compounds investigated which is not in conformity with the Debye theory which requires the ratio to be constant for the compounds of same size for small change in temperature. This anomaly can be explained if η_1^{α} , the Kalmann viscosity parameter is used in place of η_1 , where the variation in the values of ratio $T\tau/\eta_1^{\alpha}$ becomes small as compared to the values of the ratio $T\tau/\eta_1$ at different temperatures. Further if η_{12} i.e., the mutual viscosity of the solute and the solvent is used instead of η_1 and η_1^{α} the variation in the values of the ratios $T\tau/\eta_{12}$ at different temperatures is negligibly small and this leads us to conclude that η_{12} gives a more convincing account of the resistance confronted by the individual solute molecules during the process of rotation. The values of the averaged mutual viscosity for different solutions as determined from equation of Vaughan et al (1961) are almost equal to those of the corresponding mutual viscosities determined from the equation of Hill This is probably due to the fact that form of equation of Vaughan et al (1954).is very nearly the same as that of equation of Hill which has also been pointed out by Vaughan et al (1961).

(iii) Thermodynamic Parameters

It is evident from table 3 that the free energy of activation for the viscous flow process is always greater than that for the dielectric relaxation process in all the cases investigated. This is in agreement with the fact that while the process of dipole orientation involves only the rotation of the molecules, the process of viscous flow involves both rotation and translation. Similar results were obtained earlier by one of the authors (Mehrotra 1967) in the case of substituted pyridines.

ACKNOWLEDGEMENT

The authors are deeply indebted to Dr. M. C. Saxena, Reader, Physics Department for his keen interest and encouragement through out the work and the Chemistry Department for kind assistance during the work. We are also grateful to Dr. B. G. Gokhale, Head of the Department of Physics, Lucknow University, for providing necessary facilities.

References

- Debye P. 1929 Polar Molecules, Chemical Catalogue Company, New York, p. 90.
- Fong F. K. & Smyth C. P. 1963 J. Am. Chem. Soc. 85, 548. Glasstone S., Laidler K. J. & Eyring H. 1941 The Theory of Rate Processes, Mc.Graw Hill Book Company, Inc., New York, N.Y. p. 548.

Gopala Krishna K. V. 1957 Trans. Faraday Soc. 53, 767. Higasi K. 1961 Dielectric Relaxation and Molecular Structure, Hokkaido University, Sapporo, Japan.

148 Somevanshi, Mitra, Misra and Mehrotra

Hill N. E. 1954 Proc. Phys. Soc. 67, 149.

Kalmann O. F. & Smyth C. P. 1961 J. Am. Chem. Soc. 83, 571.

Mehrotra N. K. & Saxena M. C. 1967 Bull. Chem. Soc. Japan 40, 19.

Mehrotra N. K., Pant T. C. & Saxena M. C. 1969 Trans. Faraday Soc. No. 560, Pt. 8, 65.

Mehrotra N. K. 1971 Ind. J. Phys. 45, 83.

Roberts S. & Von Hippel A. 1946 J. Appl. Phys. 17, 610.

Shukla J. P., Shukla D. D. & Saxena M. C. 1969 J. Phys. Chem. 73, 2187.

Vaughan W. E., Purcell W. P. & Smyth C. P. 1961 J. Am. Chem. Soc. 83, 571.