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Abstract : The collective clectronic excitation (plasmon) modes of aligned catbon nanotube superlattices have been calculated The nanotubes
are deseribed by two-dimensional electron gases (2DEG) confined on hollow cylindrical surfaces which are regularly aligned in a plane forming the 2D
wperlattice, or which form a hexagonal closed-pack structure producing the 3D superlattice The scries of modes obtained in the random phase
approximation can be presented as combination of three contnbutions : (1) a one-tubule contribution, (i1) a uniform 2D or 3D bulk contribution, and
un) a contribution related to the lattice structure. For plasmon wavelengths small compared to the distance a between axcs, these modes tend to be those
of individual tubules, re. the one-tubule contribution 1s domnant for ag >>! (¢ = momentum). For large wavelengths, however, they tend to those of
the 2D or 3D umform electron gas, i.e the bulk contnbutions dominate for ag << 1. The lattice contribution to plasmon frequency is most significant

at mtermediate wavelengths
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1. Introduction

Ever since the discovery of carbon (graphitic) nanotubes [1,2],
it was realized that they might have uscful applications in
nanoscale engineering and electronics. As their properties were
being studied by various investigators, it was apparent that
their characterization and commercial applications would be
tacrlitated if aligned samples of carbon nanotubes could be
produced in bulk quantities.

Ajayan et al [3] were the first to produce aligned arrays of
carbon nanotubes by cutting polymer-resin nanotube
tomposites. However, because of the presence of the resin-
matrix and because the degree of alignment werc dependent on
the thickness of the sample, these aligned nanotubes were not
ideal for study of their properties. To produce aligned nanotubes,
de Heer er al (4] first created a suspension of nanotubes in
tthanol and then passed the suspension through a 0.2 pm-pore
ceramic filter which produced a black deposit on the filter. They
then transferred the deposited material onto a plastic surface
(teflon or derlin) and then rubbed the surface with teflon or
tluminum foil which produced an aligned and densely packed
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nanotubc film. However, this method apparently produces
nanotubes of different sizes some of which also stick together
thus affecting their propertics. Single-walled aligned bundle of
nanotubes were then produced by Thess er al [5] by metal
catalyzed laser ablation of graphite. More recently, Li er al [6]
have reported large-scale synthesis of aligned carbon nanotubes
by a chemical vapor deposition technique catalyzed by iron
nanoparticles embedded in mesoporous silica. It was then
pointed out by Terrones et al [7] that the commonly used
methods to generate nanotubes have the drawback that they
also form polyhedral particles and that the nanotubes are variable
in size. By using a laser etching method they achieved controlled
production of aligned nanotube bundles of length up to 50 pm
and of fairly uniform diameters (30-50 nm) and uncontaminated
by polyhedral particles.

These discoveries have led to the study of various properties
of the aligned carbon nanotubes. De Heer et al [4] were the first
to measure the optical properties (frequency dependent dielectric
function) and electronic properties (temperature dependent
resistivity) on the aligned nanotubes they produced. Using an
effective medium theory Garcia-Vidal er al [8] calculated the real
and imaginary parts of the dielectric function and found good
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agreement with dc Heer er al.'s experimental data. Lec et al [9)
on the other hand produced K and Br doped single-walled carbon
nanotube bundles by vapor phase reactions and mecasured their
conductivity enhancement due to doping. In another paper de
Heer er al [10] reported that aligned carbon nanotubes have
excellent field emission properties and they made a high-intensity
electron gun based on their ficld emission properties.
Baumgartner eral [11] studied the magnetic properties of aligned
nanotubes and showed that the Hall cocfficient (Ry) is positive
in a wide temperature range indicating prominence of hole
conduction. They also reported that the magneto-resistance
(4p,, ! p,,) is negative at low ficlds which suggest there may
be noncoherent transport between nanotubes. Chauvet et al
[12] carried out measurements of static susceptibility and
electron-spin resonance which show substantial anisatropic
behavior in the magnetic propertics of the aligned nanotubes.

In this paper, we undertake a theoretical study of the
electronic properties of the aligned nanotube samples and in
particular calculate their collective excitation (plasmon) modes
by using and extending a model previously developed by the
present authors for the study of a layered two-dimensional
electron gas (2DEG) [13] and coaxial nanotubes [14). The
clectrons are assumed to be distributed on the surfaces of the
hollow nanotubes forming cylindrical 2DEGs. These nanotubes
are either regularly aligned in a plane forming a two-dimensional
superlattice (2DSL), or they arc arranged in a hexagonal closed
pack structure forming a three-dimensional superlattice (3DSL).
Taking into account both the intra- and inter-tubule clectronic
Coulomb interaction we carried out a many-body calculation of
the diclectric function for both supcrlattices. The collective
excitation (plasmon) modes are then obtained by imposing the
condition of cancellation of the diclectric function. In two recent
papers Lin et al [ 15,16] have calculated the clectron energy loss
spectra and plasmon excitations in carbon nanotube bundles
arranged in a three dimensional lattice. As will be seen later, our
calculation differs from theirs in several significant respects and
the results obtained are different in details.

The plasmon frequencies obtained for the 2DSL and 3DSL
are presented in Sections 3 and 4, respectively, along with the
plasmon frequencies of a single nanotube and of a uniform 2DEG
or 3DEG for the purpose of comparison.

2. The multilayered system

Before embarking on the calculation of the 2D and 3D nanotube
superlattice (SL) excitation modes we briefly review the results
of multilayered planar 2DEGs [ 13] and of the single tubule [14].
This theory will then be extended to the aligned nanotubes in
the following sections. The calculation is done in the random
phase approximation, the validity of which has been discussed
by the present authors in Ref. [14]. The plasmon dispersion
relations are obtained by the usual method based on the
cancellation of the real part of the (complex) dielectric function.

For a uniform electron gas of dimensionality d, one has
Re &(q. w,) =1+vo() [14(q. w,)=0, m

where momentum g is a d-vector, vo(¢) is the Coulomb poten,
and I1,(g. @) is the electron-hole propagator. If g does y,
exceed the Fermi momentum k., one can write

M, (q.0)=-p, q* I mw?, o

where p, is the electron density and m is the usual (bar
electron mass.

The following table gives the expressions of v,(g) and p,
ford=3,2,and 1. The last column gives the plasmon (square(
frequency deduced from (1).

v (@) Pu w’
3 ame’l1q®  k}/3m? ame’p,im Qu
2 2metlyq kX3 (2melp, Im)q (3h

1 2e2Ky(qry) 2kelm (2e2p, I mq*Ky(gry) (%

Note that, in the last line of this table, the I1DEG is in fuct:
2DEG confined on a cylindrical surface of radius 7, the modific
Bessel function (K (gr,) being divergent for ry — 0. Mo
precisely for such a tubular electron gas, one has

vo(q) = 4me’r1y(qry) Ko(gry). ‘4
where the modified Bessel functions I, and K|, behave as
Iy(gry) =1, (8
Ko(qry) = =y +In(2/ gry) = In(1.123/ gry ),
for small arguments ( ¥ =0.577 is the Euler constant). Th
yields

w3 =(p,q* I mydme*ryI K,

=(2e%p, I m)q* Ko (qr).
with p, =27 r,p,, as given in egs. (2) and (3c).

As a prototype for a superlattice, let us consider
multilayered electron gas. This system is a deck of parallel 2DEG
(layers) separated by a distance a. To treat this system, the 2D

potential vy(q) = 2me? 1 q is extended outside the 2DEG P!

multiplying it with the factor e ' related to the 3rd dimensi!
z perpendicular to the layers. Eq. (1) then takes the form [13]

1+vo(q) f(g.x)[12(q. @) =0, (!

where f(g,x) is a geometrical factor given by

f@x)= Y exp(ikAn-|An|aq)

An=—eo
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=sinh ag/ (cosh ag—-cos x). 7))

This factor is the Fourier transform of the z-part of the
pmcnlial. It is given by

l n
e-q|AZ| = e-aqlAnl = Et" IdKf(K.Q)e_'KA".
-

where the n's are integers labeling the consecutive layers of the
wystem, and where K = ag, can be related to a 3rd component
J, perpendicular to the 2D-vector ¢. From (6), one obtains the
plasmon dispersion relation [13]

w? =Q2ne’p, Im)q f(x,q). (8)

[.et us mention several special features of this theory. The
2DEG plasmon dispersion relation @, o< ‘/; . given in (3b), is
wepresented by a curve in (w, g)-space. For the multilayered
system, this curve is replaced by a band which extends between
two limits : an acoustic limit @ , =< q, corresponding to x = +r,
and an optical limit @, o< constant, corresponding to x = 0.
Indeed, one has f(m,q) = tanh (ag/2) = aq/ 2, and from (6)
this gives @, =< ¢ . On the other hand, one has fig, 0) = coth
taql2) =2/ aq, giving w, = constant. Moreover if the whole
iD-vector @ =(q, ¢,) is assumed to be small compared to 1/a,
one has f(q, aq,) = 2q/ a@?. For this small momentum limit,
the plasmon frequency becomes

wf, = (47e? fm)(p, Ia)(q/Q)2 = (41rezp3 /m)cosze.

This 1s the well known expression of the bulk plasmon
trequency (for an clectron density p; = p, / a) where @ is the
angle between vector Q and the layer planes. Finally let us note
that f(¢,x) ~ 1 for g — oo, and expression (6) then goes back
o the plasmon frequency of a single 2DEG. This is the one-
layer limit, corresponding to a negligiblc layer-layer interaction.

The above discussion shows that the plasmon (squared)
frequency of a multilayered system can be considered as the
sum of three terms : (i) a one-layer contribution, equivalent to
the plasmon frequency of a single 2DEG,

[©p110 @] = 27?0, 1 m)q.

(ii) a uniform bulk contribution (equivalent to a 3D plasmon)
[©p.is(@.0)]" = @me? 1m)p, 1 a)(q! Q%

and (iii) a 3rd contribution

[wp.lau(qv q, )]2 = (2’Q2P2 /' m)q [f(q,K) ~1-2q/ aQ2]

which ig essentially due to the lattice structure. The one-layer
contribution is dominant for aQ >> 1. On the contrary, the bulk
contribution will dominate foraQ << 1.
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These results are presented here becausc they form the
framework in which we will investigate the collective modes of
the nanotube superlattices.

3. The two-dimensional nanotube superlattice

A 2DSL can be trcated as a system of parallel 1DEGs aligned in
aplane and scparated by a distance a. This system is not formally
different from the above multilayered clectron gas, the periodicity
of both systems being one-dimensional. An equation similar to
(6) can be set up in the form

1+2¢*F(q.x)T1,(¢. 0)=0 9

with

Flg.x)= zei""'K(,(qurx). (10)

Here, the ID potcntial (4) has been extended to interactions
between electrons located on different tubules. It has been
replaced by

volg.r) = 4me’r 1y (qr) Ko (gr) with rzr. (A

This is the interaction between an electron located on a
tubule, and another clectron located at a distance r from the axis
of the tubule. It is the Coulomb interaction expressed in cylindrical
coordinates, where only the longitudinal part is considered. The
azimuthal part may be important as in the study of systems like
the coaxial tubules investigated in Ref. [14]. But here, for the
collective modes of a 2DSL, this part can be disregarded. As in
(5), itis also assumcd that /;(gr,) = 1. Moreover, since only the
lincar electron density is important, 1D expressions like
P, =271 ryp, and [1, (g, @) = 27 ry [1, (4. @) are introduced, in
agreement with (2) and (3) (a factor 27 7 is removed from the
potential and re-introduced into the propagator I1; = 21, I1,).
As a last step, vy(q) is introduced into (10) in the form

vo(q) = 267 Ko (qroy ) (12)

where r,,. can be identified with the distance between the axes
of tubules n and n'. However, for electrons located on the same
tubule (n=n’), K, is divergent, and the original argument
gr, has to be kept in the term an = 0. Hence (10) is finally
written as

F(g,x)= K()(qr0)+ ZeaxA"KO(qalAnl)— Ky(0) I (13)

Anz—oo

The first term is a one-tubule term, corresponding to the
one-layer term for the multilayered system. Its contribution to
wf, is the same as given in (3) for d = 1. The second term (in
brackets) yields the uniform 2DEG contribution together with
the lattice contribution.
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This can be shown explicitly by using the Fourier transform
of Ko(q|x)), i.e.

L= i
Ky(glx) = i _L. dg, e“*p/ f(qi +g%), 14

where q, is asccond component transforming the 1D momentum

vector ¢ (along the tubules) into the 2D vector Q =(g,q, ) within
the 2DSL plane. This component can be written as

q, =2ns+x)/a (15)

with —xr < x < &, s being an integer (lattice vector). By writing
(14)as

1 r 7 inx’ ,
Ko(qa|n|)=; Z I"” dx'e"™ S,2ns+x’) (16)
with

S,(27rs+x)=n’[(2n’s+x‘)2+azq2]_w,

eq. (13) takes the form

l x /| ’
F(g,x)= Ko(qro)+5; ZJ‘_”dK [Si2m +x)-5,(2ns +x")].

RN )

a7

Two terms of this expression diverge for small (¢,x) : the
first term K,(qr,) and the term s = 0 in the sum, this latter term

yielding In(ag)+ / J (x% +a%q?).

The above discussion shows that three contributions to

2
14

contribution of single 1DEG's,

w’, come out of (17) : (i) a one-tubule term equivalent to the

Fl,“;,(lldf) = Ko(qfo) ’
substitution of this in (9) gives
2
[@p1 @] =(2¢'p, 1 m)g*Kotqry)

asin (3¢);

(ii) a uniform layer contribution, equivalent to a 2DEG
contribution,

Fuiz(g6) =7k +a’q?] " =n/aQ
giving
2
[©p.mi2(@.O)] =27 | mXp, 1 a)q cos

where 6 = cos™'(q/ Q) is the angle between Q and the tubule
axes — see (3b); (iii) a third contribution, essentially due to the
presence of a lattice structure, which can be written as

Fan(gq.,x) = ZZcosxn Ko(qan)_”/f(x2+a2q2)‘

For small (g,x), this expression has a In(ag) behav,;
however, wf, obtained by using this term will be fin,,
Substitution of (13) in (9) yields the effective plasmon frequenc,
D pp of (g,x).

The curves representing @, ., together with @, .. an
@ , uniz2 are plotted in Figure 1. In all our calculations, we hyy,
chosen the following data : as in Ref. [ 14] we consider tubujc
with an electron density p, = 0.38A-2 and a radius r, = 3 39;
li.e. B(2, 1)5 tubules). This yields p, =21 rp, = 8.13A- {,
the linear density along the tubules. Moreover, we choos
a=3r,=10.17 A for the intertubule separation (distance betwee,
two adjacent tubules), a value close to the one used by Tersof
and Ruoff [ 17] for a nanotube lattice.
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Figure 1. Threc-dimensional contour plots of the plasmon frequenci
©p10up(@), Qpuni2 (b) and @p g (c) of the 2D system as functions of

and x. These plots clearly show that the plasmon frequencies can both b
optical and acoustic at different values of the wave vector componentt

In Figure | (a), (b) and (c), we plot the contours of plasmo!
frequencies @, s, @puniz 8nd @, 4, respectively, ¥
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junctions of the momentum components g and . Figure 1 (a)
shows that the one tubule frequency is independent of x
pecause of the quasi-one-dimensional nature of the tubules. In
the quasi-uniform two-dimensional limit (Figurc 1 (b)), the
plasmon frequency develops both g and x dependence and as
can be seen for each value of g, the frequency is the highest for
v = 0 and the lowest for x = . This is expected as ¥ = 0
provides the easy direction for electrons to participate in the
acillation (symmetric modes) whereas kK = 1 corresponds to
the antisymmetric oscillations of the electrons in the nanotube
superlattice. For small g, the plasmon frequency has a linear
(acoustical) behavior for nonvanishing x . For vanishing «,
nowever, this frequency has a \/; behavior. Similar behavior is
also observed for the effective plasmon frequency ®, ., as
shown in Figure 1 (¢) which includes the contribution of the
Jattice structure of the 2D lattice. A comparison of Figures 1 (b)
and 1 (¢) indicates that the lattice has the effect of diminishing
the plasmon frequency. Again this is expected since when the
clectrons are arranged in a lattice, they lose some freedom to
wscillate because of the constraints imposed by the lattice
structure not present in the 2DEG. It is interesting to note that
values of @, ., arc intermediate between those of 2DEG and

one tubvle. It is evident that @, ; converges o @, ,,,, for

small values of ag whercas it approaches @, y,, for large values
g as is expected from physical considerations.

4. The three-dimensional nanotube superlattice

Inthe 3DSL, the tubules are stacked against each other forming
a hexagonal closed packed structure. As for the 2DSL, this
sysiem is treated as a set of aligned 1DEG's separated by a
distance a. A cross section perpendicular to the tubule axes
appears as a close-packed triangular 2D Bravais lattice with a as
a lattice constant (see lower part of Figure 2). For this system
expressions similar to (9) and (10) can be written. The main change
1s that here x is a 2D-vector. Eq. (13) is then modificd into

Fg.x) = Ko(qry) + 2 Zei("'"‘”’””Ko(qa|n|)-K((0)

nl=—-"2=—c-
(18)

where (n, n,) and (K|, ») are 2D-vectors defined in the direct
lattice and in the reciprocal lattice, respectively. More precisely,
in the direct lattice, one has

n=(n a,+n, a,)/ a,
where la,l=la,l=a, and la, xa,l= a? sin 60°, n, and n,
being integers (lattice vector). In the reciprocal lattice, the

Momentum component ¢ , , perpendicular to the tubule axes, is
defined as

Lw=ab+ab
vithb, = a, xulla, xa,l and b, = uxa,/\a, xa,|, u being the

unit vector along the tubulc axes ; hence g, b, =8,;. The
components are then written as

q, =21, +x, ,

where (s, 5,) are integers (reciprocal lattice vector), and where
T <(K.Ky) <.

L x=x, M
Tix ==K,
Kzs~~ T ”K‘
\‘ M"
‘\\ }:
¢ —"r\‘~ T K M
v ~
1] f” ‘\\
.o -* 7<.. 000
M [r, n) ~ 00
Mir O
K [2w3, -21/3) 00

Figure 2. The three-dimensional tubule superlattice seen in cross section,
appears as a triangular close-packed Bravais latice (lower night part of
the figure) Tins figure depicts the pnimitive cell in the reciprocal 2D
lattice which may be a losange (reported to the axes x, and x,), or a

hexagonal Brilloun zone The plasmon frequency @), has been calculated
for momentum x ranging along two symmetry directions (1) Dircction

T, defined by x #x, =x,, with the symmetry points I[x =0], and
M’[x = r]; () direction ¥, defined by & ® k) = —x,, with the symmetry
pomnts x =0}, Kix=2n/3} and M[x =n].

The trcatment of (18) for the 3DSL is quite similar to the
treatment of (13) for the 2DSL. Here a 2D Fourier transform of
Ky(glxl)is introduced, i.e.

|
Qn)?

Ky(glxl)= [ld’q, e “2amiql +4Y)  (9)

giving
K(,(qalnl)-_-
! " [ o KK N) ,
(2m)? ZZJ.K(IK'J., dee™ "M S (21, +x7) (20)
with
S(p) = w31 [pl + P} = pipy +3a%" 14].
Hence

F(g,x) = Ko(gry) +

1
()

Y[ axi dxs[s,2m, +x,)-5,0m; +x7),

o5

As in (17), two terms diverge for small (g,x) : the first term
Ky(grp). and the term s, = 5, = 0 in the sum. This latter term

yields In(ag)+ 41/ Y3a%) 1 (4* +4%) with

g% =(4/3a%) (x} +x2 ~K x,).
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As forthe 2DSL, F(q,x) given by (21), yiclds three types of

contributions to @ f, :

(i) a one-tubule contribution related to the term Ko(qro). and

giving [a)l,_lmb(q)]2 as before ;

(ii) auniform bulk contribution coming from (47 / ,/_ 3a*)/
(9% +4%), and giving

[“’p.u..u(q‘ﬂ)]z = (4m’ p; / m)cos’ 6,

where 6 = cos™! (q/ Q) is the angle between the 3D-momentum
0 =(q.q¢,)and the tubule axes [sce (3a)]. Note that a 3D-
density py =p, / (a® sin 60”) has been introduccd in this latter
expression ;

(iii) a 3rd contribution, essentially due to the presence of a
lattice structure, which can be written as

Fun(gx) =3, Y e 1m* am)K (g, nl)

m20n,#0

—(4lr/3a2)/(q2+qi).

Like the 2DSL case, for small (¢.x) this expression also has a

In(ag) behavior, however, wf, obtained by using this term would
also be finite. The effective plasmon frequency for the 3DSL,
®, . (q.X) can be obtained by substituting (21) in (9).

The plasmon frequencies have been calculated for
momentum K ranging along two symmetry directions : (i)
direction 7, defined by x = k', = k', , with the symmetry points
Ik =0}, and M’[x =n]; (ii) direction Y. defined by
K=Kk, =-K,, with the symmetry points [Tk =0],
K[x =2r /3] and M[x = x]. This geometry is depicted in
Figure 2.

The contours of the plasmon frequencies @ y1p, @ punia
and @, ., (9,K) as functions of g and for two different directions
of the Brillouin zone Y = ' M and T =T KM are plotted in
Figure 3(a), (b) and (c), respectively. As noted before, the single
tubule result (Figure 3(a)) is independent of x since electrons
have been allowed to have only quasi-one-dimensional
oscillations. As in the case of a quasi-2D uniform and 2DSL
(Figures 1(b) and (c)), the quasi-3D uniform and 3DSL (Figures
3(b) and (c)) have maximum plasmon frequency at the = point
(corresponding to k = () for all values of g. This corresponds
to the true optical nature of the plasmon frequency. In particular,
the frequency related to x =0 tends to the classical bulk
plasmon frequency for g ~ 0. As we move away from the
point, the plasmon frequency diminishes for all values of g.
Note that it demonstrates quasi-acoustic behavior near ¢ = 0 for
all values of x except for the I~ point. The plasmon frequencies
presented by Lin er al [15, 16] scem to be optical in nature for all

directions. This may be because they do not carry out a proper
lattice sum for a hexagonal closed packed lattice. The latjc,
structure diminishes the plasmon frequency for exactly the s,
reason as discussed in the case of 2DSL. In Figure 3 (c) (in b,
presence of the lattice), the plasmon frequency goes up between
K and M points, while it continues to go down in Figure 3 (b,

This is due to the equivalence of the lattice points M and M' 4y
M" in the periodic zone scheme (see Figure 2). Jn the limut of
large ag, @, .5 approaches the result corresponding to a single
tubule result, whereas for small aq, @, ., approaches valucs of
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Figure 3. Threc-dimensional contour plots of the plasmon frequencics
@ p1mb(a), @pum3 (b) and @,y (c) of the 3D system as functions of 4
and x . Two different symmetry directions ¥ and 7 as described 1n Figure
2 have been selccted for these plots. The frequencies corresponding 1V
the K point (sec Figure 2) are those along the thick line, and the frequencics
corresponding to - are on the crest of the plot. These plots clearly show
that the plasmon frequency is fully optical at 1~ point and it can have
acoustic behavior at other x values for small ¢.

5. Discussion

In this paper we have carried out a calculation of the collective
electronic excitation modes (plasmon dispersion) of carbon
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nanotubes aligned either in a plane forming a 2DSL or in a
hexagonal closed packed structure in three-dimension giving
ase to a 3DSL. The dielectric function has been formulated in
ihe many-body formulation using the random phase
approximation. The plasmon dispersion is obtained from the
seros of the dielectric function.

The effective plasmon frequencies thus obtaincd along with
the plasmon frequencies of a single nanotube and of a uniform
2DEG or 3DEG have been plotted in Figure 1 for the 2DSL and in
fagure 3 for the 3DSL. Itis seen that the dircction along the axes
of the nanotubes is the "easy direction” for the excitations of
the plasmons and thus for any g, the maximum occurs when
\ =0 for the 2D system and at -point for the 3D system. At
thesc points, the plasmon frequency is truly optical for all values
of ¢. The plasmon frequency falls off when the effective wave
vector deviates from the easy direction. The superlattice plasmon
frequency tends to that of a single tubule when the plasmon
wavelength is small compared to intertubule distance a (ag >>1).
and it converges to the plasmon frequency of the uniform
clectron gas when the wavelength is large compared to a (ag <<
1). The lattice contribution to the plasmon frequency which is
always negative due to the extra constraints imposed by the
fattice structure, is most significant in the intermediate
waveleng ths.

As mentioned in the Introduction, in two recent papers by
Lineral. |15, 16] have calculated the plasmon frequencies for a
three-dimensional carbon nanotube bundle. However, we believe
that our calculation is different from theirs in several important
1espects. First, these authors do not consider a two-dimensional
superlattice at all. So the calculation and results presented in
Section 3 are all new. This case is important to study since such
a system has been realized in practice. Second, from the
calculation they presented we cannot be sure if they have carricd
out a lattice summation to include the hexagonal closed packed
diswribution of the individual nanotubes. Furthermore, they seem
t use the three-dimensional form of the Coulomb potential for
the interaction between electrons on different nanotubes,
whereas we have used the more precise form of this interaction

)
W
o

involving modified Bessel functions [sce eq. (12)]. Perhaps for
these reasons our results are different from theirs. While they
do not consider the different directions of the Brillouin zone,
they seem to incorporate direction dependence by the angle ¢
measured from the axis of aligned nanotubes. Such an angular
dependence seems to miss variation of results in different
directions of the Brillouin zone. This may be the reason as to
why they missed the fact the plasmon frequency starts out being
pseudo acoustic for small values ¢ away from the ° point.
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