Random phase approximation with high orbits configuration for the low lying negative parity, $T=0$ states in ${ }^{16} O$

R A Radhı*, Ali H Tapi** and AtK Ahmad**
*Department of Physics. College bf Scrence.
University of Baghdad, Baghdind, Iram
**Department of Physucs, Collegefot Science. Saddam University. Baghdad, Iraq
E-manl sadsu(a) uruklinkinet
Recened 10 Mas 2000. aciepted 16 Oatoher 2000

Abstract

 imbin phase approximation (RPA) These states include states with J^{π} (E, MeV) 1 (7 12). 3 (613) and 4 (1779) All possible single $T=0$ particlehob states of allowed angular momenta, for both ground states and excited states are consodered in bases including single paticle states up to the il phell The Hamiltoman is diagonalised in this extended space in the presence of the modified surlace delta interaction (MSI) Admixture of higher whtyurathon, is considered for the ground state to allow for a large scale of a collective motion in the nuclews fiffective operators are used to account : 1 the core polarszation effect The form factors calculated in this paper are in good agreement with the experinental data

heinords Nuclear reactions. form factots. random phase approximation
pac's Nos. . 2530 Dh. 2160 Ev. $2720 .+12$

1. Introduction

The simplest configuration for closed shell nuclet such as ${ }^{10} \mathrm{O}$ in "C'a as doubly closed shell. If such a system is excited through the sungle application of a one body number-conserving uperator, then the resulting states must have a particle-hole pant The excited collective oscillation can be described as a linear combination of particle-hole states. Such an approximation is called Tamm-Dancoff approximation (TDA) |1|. In this approximation, there is an asymmetry in the way the ground late is treated on one hand and the excited states on the other. The ground state is described in terms of one configuration only and this is in fact corresponds to independent-particle model. A system of states more general than that considered in the TDA appears when treating the ground state and the excited sates more symmetrically. In that case, one allows both to have particle-hole pairs. Such approximation is referred to as randomphase approximation (RPA) [1]. The theory of the RPA is fundamental to the collective motion in nuclei.

The RPA model can be tested in two domains, first by calculating the energy cigenvalues and eigen vectors

[^0](amplates) through the dagonalization of the Hamiltontan, and second by comparing the calculated and measured electron scattering form factors. In this paper, we study the isoscalar transition in ${ }^{16} \mathrm{O}$ which connects the $\left.\left(J^{\pi}=0\right)^{\dagger}, T=0\right)$ ground state with the low-lying $J^{\pi}: 1^{-}, 3^{-}$and 4 isoscalar states. The Hamiltonian is diagonalızed in the orbits $1 s, 1 p, 2 s, 1 d, 2 p$ and $1 f$, in the presence of the modified surface delta interaction (MSDI) [2].

In the calculation of the form factor, the ground state is modified to include admixture from higher configurations upto the orbits $3 p-2 f$. A comparison of the electron scattering form factors calculated by using RPA model with the available experimental data for the low lying isoscalar, negative parity states are discussed.

2. Theory

2.I Random phase approximation (RPA) :

In the RPA, the ground state and the excited state are treated symmetrically, allowing both to have particle-hole pairs. This means that the excited state can be reached either by creating or destroying particle-hole pairs in the ground state. The particles
and holes are labeled by a and b, respectively, each with quantum numbers ($n l j m_{j} 1 / 2 t_{z}$) with $t_{i}=1 / 2(-1 / 2)$ for a proton (a neutron).

The equations of motion are linearized and take the form [1]:

$$
\begin{align*}
& \sum_{a^{\prime} b^{\prime}}\left[A_{a b, u^{\prime} h^{\prime} X^{\prime \prime}}^{J T}+B_{\left.a b, a^{\prime} h^{\prime} h^{\prime} Y_{a^{\prime} b^{\prime}}^{J T}\right]=\varepsilon X_{a b}^{J T}, ~}^{\text {, }}\right. \tag{la}
\end{align*}
$$

where

$$
\begin{align*}
& A_{a b, . a^{\prime} b^{\prime}}^{\prime \prime}=\left(\varepsilon_{a}-\varepsilon_{b}\right) \delta_{a b \cdot . a^{\prime} b^{\prime}}+v_{u b, a a^{\prime} b^{\prime}}^{J \prime}, \tag{2}
\end{align*}
$$

The matrix elements for particle hole states $v_{u h, a^{\prime} h^{\prime}, ~ c o u p l e d ~}^{\text {, }}$ to J and T are given by a sum of particle-particle matrix elements $\left\langle a^{\prime} b\right| V\left|a b^{\prime}\right\rangle_{J^{\prime} T^{\prime}}$, coupled to different values of J^{\prime} and $T^{\prime}[2]$

$$
\begin{align*}
& v_{a b, a^{\prime} b^{\prime}}^{s r}=-\sum_{J^{\prime} T^{\prime}}\left(2 J^{\prime}+1\right)\left(2 T^{\prime}+1\right)\left\{\begin{array}{cc}
j_{a} & j_{b^{\prime}} J^{\prime} \\
J_{a^{\prime}} & j_{b} J
\end{array}\right. \\
& \times\left\{\begin{array}{l}
1 / 21 / 2 T^{\prime} \\
1 / 21 / 2 T
\end{array}\right\}\left\langle a b^{\prime}\right| V\left|a^{\prime} b\right\rangle_{J T^{\prime}} \tag{4}
\end{align*}
$$

The particle-particle residual interaction used in this work, is the modified surface delta interaction (MSDI) [2].

The coefficients X and Y are the amplitudes that describe the creation or destruction of particle-hole pairs in the ground states, respectively. The quantities $\varepsilon_{a}-\varepsilon_{b}$, are the unperturbed energy of the particle-hole pair and ε are the energy eigen values for the different excited states of the given JT values. Eq. (1a) and (1 b) can be written in matrix form as

$$
\binom{A B}{B A}\left(\begin{array}{lrr}
X & 1 & 0 \tag{5}\\
Y & I=\varepsilon & 0
\end{array}\right)\left(\begin{array}{l}
X \\
Y
\end{array}\right.
$$

and the diagonalization of it will give the cigen values ε and the eigen vectors X and Y. The states of different spin-isospin (JT) values are decoupled by these calculations.

Once the secular matrix (eq. (5)) has been diagonalized and the amplitudes have been obtained, the matrix elements of the required multipole operators $T_{J T}$ are given in terms of the singleparticle matrix elements by [1]

$$
\begin{align*}
\left\langle\Psi_{J r} \|\right. & \left.\hat{T}_{J T} \| \Psi_{00}\right\rangle=\sum_{m b}\left[\left\langle a\left\|\hat{T}_{J T}\right\| b\right\rangle X_{a b}^{J T}\right. \\
& \left.+(-1)^{1 / 2-1 / 2-r}(-1)^{J_{b} \cdot /_{a}-1}\left\langle b\left\|\hat{T}_{J T}\right\| a\right\rangle Y_{a b}^{J T}\right] \tag{6}
\end{align*}
$$

where the triple bar denotes a reduced matrix element with respect to both angular momentum and isospin.

The single-particle matrix element reduced in bolh ypin and isospin, is written in terms of the single-particle matrix elemen reduced in spin only [3]

$$
\left.a\left\|\hat{T}_{J T}\right\| b\right\rangle=\sqrt{\frac{2 T+1}{2}} \sum_{,} I_{T}\left(t_{z}\right)\left\langle a\left\|\hat{T}_{J_{t}}\right\| b\right.
$$

with $\quad I_{r}\left(t_{t}\right)=(-1)^{1 / 2-t .} \quad \begin{aligned} & \text { for } T=0 \\ & \text { for } T=1\end{aligned}$.

2.2 Electron scattering form factors :

Electron scattering form factor involving angular momentum and momentum transfer q, between the initial and final nucle: shell model states of spin $J_{t, f}$ and isospin $T_{t, f}$ are [3]

$$
\begin{array}{ccc}
F_{J}^{\eta}(q) \| & 4 \pi & T_{t} T T_{t} \\
& Z^{2}\left(2 J_{1}+1\right) & \begin{array}{r}
\tau=0.1 \\
-T, 0 \\
\\
\\
\\
\left.\Psi_{J, r_{l}}\| \| \hat{T}_{J I}^{n} \| \Psi_{J, \tau_{l}}\right\rangle F_{l m}(q) F_{t}(q)
\end{array}
\end{array}
$$

with η selecting the longitudinal (L), transverse electre (E) , a transverse magnetic (M) form factors, respectively. I i I projection of the initial and final states and is gucn $T_{:}=(Z-N) / 2$. The finite siac ($f . s$) nucleon form facton $F_{f s}(q)=\exp \left(-0.43 q^{2} / 4\right)$ and $F_{r m}(q)=\exp \left(q^{2} h^{2} / 411\right.$ the correction for the lack of translational invartance in the the model. A is the mass number, and b is the harmone oscillat size parameter.

The total longitudinal (L) and transverse (T) form factorn. 1 given by

$$
\begin{align*}
& \left.F^{L}(q)\right|^{2}=\sum_{I \geq 0}\left|F_{J}^{L}(q)\right|^{2} \\
& \left.F^{T}(q)\right|^{2}=\sum_{J>0}\left\{\left|F_{J}^{M}(q)\right|^{2}+\left|F_{J}^{E}(q)\right|^{2}\right\}
\end{align*}
$$

The single-particle matrix elements $\left\langle a\left\|\hat{T}_{t r}^{n}\right\| b\right\rangle$ for $\|$ required electron scattering operators used in this work are tho of Brown et al. [4].

3. Results and discussion

Electro-excitation of the low-lying isoscalar, negative part states in ${ }^{16} \mathrm{O}$ are tested and compared with the avalab experimental data $[5,6]$, in the framework of RPA with mod space including all orbits up to the $2 p-1 f$ shell. The form fact! are calculated with ground state wave function which is modffit to include higher configurations upto the orbits of $3 p-2 f$ she using mixing parameter γ that mixes the state $|n l j\rangle$ with t| state $|n+1 l j\rangle$. The isoscalar states that are calculated in th work include states with $J^{\hbar}(\mathrm{E} \mathrm{MeV}): 1^{-(7.12)}, 3^{-}(6.13)$ and (17.79).

In the simple shell model calculations, the ground state of (4) is issumed to form closed $1 \mathrm{~s}_{1 / 2}, 1 \mathrm{p}_{3 / 2}$ and $1 \mathrm{p}_{1 / 2}$ shells. ficurding to RPA, the ground states as well as the excited bute are treated on the same footing, and all possible Ifinfigurations for the ground state and the excited states are , rnstructed by removing a particle from the closed shells and "romoting it to higher shells leaving a hole state within the .hed shells. Experimentally, the states $1^{-}, 3^{-}$and 4^{-}are found ai 712.6 .13 and 17.79 , respectively [5]. Our RPA calculations judnet the values $8.34 \mathrm{MeV}, 10.83 \mathrm{MeV}$ and 17.19 MeV , apectavely.

The longitudinal form factor for the $1(7.12 \mathrm{MeV})$ state is hown in Figure 1 as a solid curve for comparison with the expermental data. The data do not show any diffraction minimum and cannot be reproduced through all the momentum transfer watues. Same observations were made by Vincent and Vinh Mau

Figure 1. Longitudinal form factor for the 1 spurious state
[7]. RPA calculation based on quantum hydrodynamics which ncommonly referred to as mean field theory (MFT) $[8]$ predicted that the first state is a spurious state and gives a spurious excitation energy of $0.5 i \mathrm{MeV}$ which is indeed zero within the numerical accuracy of their calculation. The RPA based on relativistic Hartree approximation (RHA), also predicted a spurious state but with higher energy than that of MFT [8]. MFT calculation predicts the second state which is the nonspurious state at 8.47 MeV , while the RHA calculation predicts this state at around 13 MeV . Their result for this state, agrees in shape with longitudinal form factor data, but underestimates them. In our work, the non-spurious state is at 15.58 McV , which is close to the RHA results [8]. The calculated longitudinal form factor for this state is shown in Figure 2 and compared with the experimental data [5], where the data are fitted for medium range of q only. In our calculation, we use effective charge equal to 1.35 e and 0.45 e for the proton and neutron, respectively, to account for the core polarization effect for the longitudinal form
factor [9]. Also admixture of higher orbits are taken into consideration with γ equal to 0.9. The value of the size parameter b of the HO potential for the single particle wave function used in this state is 1.83 fm whech is consistent with that of Ref. [5] The deviation of the calculated energy levels and the longitudinal form factor for this state reflects ille fact that enormous degrees of collectivity are required for proper treatment. The present as well as all previous results reveal that this state needs more investigation from the theoretical point of view.

Figure 2. Longitudinal form tactor for the 1 non-spurious state
The $3(6.13 \mathrm{MeV})$ state is calculated to be equal to 10.83 MeV. Our RPA result is consistent with the RHA-RPA results of Ref. $[8](\sim 10 \mathrm{MeV})$, where their MFT result is 5.99 MeV , which is close to the experimental value. Our RPA calculations for the longtudinal form factor is shown in Figure 3, which is based on

Figure 3. Longitudinal form factor for the 3 (6.13 MeV) state.
the single-particle wave functions of the HO polential with size parameter $b=1.8 \mathrm{fm}$ and with effective charges $\mathrm{e}_{\mathrm{p}}=1.1 \mathrm{e}$ and e_{n} $=0.15 \mathrm{e}$, for the proton and neutron, respectively. Admixture of higher orbits in the ground state for the $3^{-}(6.13 \mathrm{MeV})$ state is less important from that in the $1^{-}(7.12 \mathrm{MeV})$ state and needs small effective charge to describe the data. Our result for this state agres in shape and magnitude quite well with the experimental data for all momentum transfer values.

Our last example is the $4^{-}(17.79 \mathrm{McV})$ state, where only the transverse M4 multipole contributes to the scattering. Our RPA result predicts the lowest 4 state at 17.19 MeV , which is consistent with the measured value at 17.79 McV . Our calculation for the form factor is shown in Figure 4 as a dashed curve. The calculation incorporates the single particle wave function of the HO potential with $b=1.76 \mathrm{fm}$. The calculation agrees in shape,

1E-3	${ }^{18} \mathrm{O}, \mathrm{J}=44^{-}, \mathrm{T}=0, \mathrm{~b}=1.76 \mathrm{fm}$ and $\mathrm{E}_{x}=17.79 \mathrm{MeV}$
	--. Our RPA ($\mathrm{g}=0.55 \mathrm{v}=0.9)$
	Our RPA ($g=055 \mathrm{v}=10)$
	\cdots--- Our RPA ($g=10 \mathrm{v}=10$)
1E-4	- C E Hydelal(1987)

Figure 4. Transverse magnetic form factor for the 4 (17.79 MeV) state
but overestimates the data by a factor of ~ 10. Same sort of results is obtained by RHA [10]. Core polarization calculations [11,12] yield values for the g-factors reduced from the free values, which are called effective g -factors. Effective M 1 g -factors equal to 0.8 of the free nucleon values are found adequate to describe the magnetic moment and the electron scattering data, while 0.6 of the free nucleon g-factors are needed to describe the M3 electron scattering data [12]. The effective g -factors used in this work to describe the M4 form factor are equal to 0.55 of the
free-nucleon g-factors. Core polarization effect is taken mmu account to suppress the form factor as shown by the dolle, curve in Figure 4. Admixture of higher configuration are als included in the ground state wave function with $\gamma=09$, whs is very important to add more degree of collectivity. An $\mathrm{NvCO}_{4} \mathrm{~d}$ agreement is oblained with the experimental data with g-lactur: 0.55 and $\gamma=0.9$, as shown by the solid curve in Figure 4

4. Conclusions

When the space of wave functions is extended to include ort, upto 2 p-If shells, RPA results give reasonable descrptom , the data for the electron scattering results. An improveniem obtained when we allow higher shells upto the 3 p-2f shell Also including core polarization effects through the etfectir charge model for the longitudinal scattering and effective: factors for the transverse scattering, improve the agleemet with the experimental data and gave good descripuon tow, available momentum transfer data. Such ingredients di necessary in the model to account for a large scale of coullectly motion in nuclei.

References

[1] T de Forest and J D Walecka Adv Phys 15 I (1966)
12] P J Brussaard and P W M Glaudemans Shell Model Apple uthi in Nuclear Spectroscopy (Amsterdam . North Holand) (197:
[3] W T Donnelly and I Stck Rev Mod Plyss 56461 (19xd:
[4] B A Brown, B H Wildenthal. C F Williamson, F N Rad. S Kumih H Cronnel and J T O'Brien Phes Rev C32 1127 (1985)
[5] T N Butı, JJ Kelly, W Bertozai, J M Finn, F W Hersman. (, Hu M V Hynes, M A Kovash, S Kowalski. R W Lourle B I. Nime B Pugh, C P Sargent and W Turchunests Phys Re' (33 ' (1986)
[6] CE Hyde-Wright. W Bertozzı. T N Butı. J M Finn, F W Hersm M V Hynes, M A Kovash, J J Kelly, S Kowalskı, R W Lowic ' Norum, B Pugh, C P Sargent. B L Berman. FP Petrovict and I Carr Phy: Rev. C35 880 (1987)
171 G Vincent and N Vinh Mau Nul. Phys 54312 (19(14)
[8] C E Price. E Rose. J R Shepard and I A McNeal Phas Rel (1089 (1992)
[9] B A Brown, K Radhi and B H Wildenthal Phys Rep $101^{\text { }}$ (1983)
[10] J Pickarewicz Nucl Phys. A511 487 (1990)
[11] T Suzukı, H Hyuga, A Arima and K Yazakı Nucl. Pliys A358: (1981)
[12] B A Brown, R Radhi and B H Wildenthal Phys. Let1 133I (1983)

[^0]: Corresponding Author.

