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A b s tra c t  A tom ic K  and /.-shell C om p to n -p ro tiles  for M oK (i rad ia tion  are s tud ied
w ith in  the fram ew ork  of a foim  factor approxim ation  by using screened hydrogenie w ave 
functions N um erical results presented foi the lack o f sym m etry in the profile values about 
</ = 0 (</ is the usual Com pton param eter! for atoms from ,Hcto 1KAi are used to judge the 
quality  of approxim ation methods for correcting the impulse double differential cross section 
fo r  C o m p to n  sc a tte rin g
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When a radiation is Compton scattered, the emerging beam is Doppler broadened because of 
the motion of the target electron. The analysis of the broadened lineshape or the so-called 
Compton-profile provides detailed information about the electron momentum distribution in 
the target. The line profile J (P j  is determined by the probability that the scattering electron 
has a component momentum p  , that is

=  1,, x*lp)xlp'>‘lpjp>* ( 1)

where X(p)  is the electron wave f unction in the momentum representation obtained by Fourier 
transformation of the real space wave function t//(r). Eq. (1) gives the expression in the 
impulse approximation which implies that the interaction between the photon and electron 
takes place in such a short time that the scattering interaction is over belore the electron had 
had a chance to move in the potential well and change its potential energy. Naturally, the 
outgoing electron is represented here by a plane wave. The initial state of the electron is
supposed to have a momentum p , and energy not the electron binding energy - E B. The 
energy momentum conservation relation is expressed accordingly. However lor a typical element, 
the above picture tends to break down at intermediate and small momentum transfers. One then 
takes course to an exact hydrogenic {EH) calculation 11 ], which consists in using more realistic 
final state wave functions than plane waves and introducing the electron binding energy to 
express the energy momentum conservation. CO I999IACS
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The appropriate theory in respect of this was developed as early as 1934 by Felix Bloch 
|2]. But the topic did not receive much attention for quite a long time although there is no single 
identifiable reason to account for the sudden inactivity. In recent years there has been resurgence 
of interest in the exact Compton -profile calculation, which on the one hand, can give improved 
results over the corresponding impulse-model values and, on the other hand, can be used to 
examine the domain of validity of the impulse-model [3]. In an exact calculation [4] the Compton 
peak may move to slightly higher or lower energies when compared with the impulse profile 
and the lineshape may change. The inconsistency of the experimentally observed profile 
maximum with the prediction of the IA gave further stimulus for theoretical works. In the 
present paper, we shall try to clarify some of the conceptual aspects of the profile asymmetries.

In extending the theory of Wentzel [5], Bloch [2] first studied the scattering of photons 
from any initial hydrogcnic bound state with the wave functions expressed in parabolic 
coordinate system. The exact hydrogenic results were, however, left in terms of residue integrals 
and their derivatives. These were not evaluated because of their complexities. After forty 
years, Bloch and Mendelsohn [6] re-examined and re-dcrived the theory of exact hydrogcnic 
Compton profile in response to the needs of the contemporary experimental observations. 
They pointed out certain mathematical errors in the seminal work of Bloch [2] and also worked 
out the results for the residue integrals leading to closed form expression for the EH Compton 
profile.

t HThe exact Compton-profile J,t) (q) for scattering of photon by an orbital electron (nl) 
of a hydrogenic system is given by

Jnf  (<7)=| —  127.212* Z/„f (<?)/«
v2 .

(2 )

The quantity k is related to the photon scattering vector and can be written as

k2 = io ~ V
Oil 1ZZ(27.2I2)

(nf + M'2 -  2W| w'2 cos &j. (3)

In eq. (3), if energies w, and w2 of the incident and scattered photon are expressed in eV, 
k comes out in atomic units. Obviously, 0 represents the photon scattering angle. In this unit, 
the projection q of initial electron momentum on the scattering vector is given by

nw kZ 
27.212 kZ 2/i (4)

with the energy transfer w = Wj -  vcr  The expression for the 1 s profile is given by

/ eh _ 256 k 
,v 3 Z

1 + 3 k 2+p2

£(1 +k2 - p2)1 +4p2J
-exp -2 -i—  tan 2 P

1 + k 2- p 2
(5)

where

y2
-  2 [ — 3 —

27.212 Z2 2 (6)
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The expressions for the 2s and 2p profile are also equally simple but somewhat lengthy. 
For a given incident photon energy w{ and scattering angle 0 the energy \\\ of the outgoing 
photon can be determined for various values q by using the result

2a +(}2q2+Pq(4a + P2q2y  <7)

with

and

or =  1 +
2u’j sin2  ̂

511000 (8)

„ 2sinvP  — -— -■ , (9)
137.036 w

The above analysis completes the formalism necessary for computing values of (q) 
as a function of q. For clarity of presentation, we have written eqs. (2), (4) and (6) in terms of 
atomic number Z. Since we are working within the framework of a screened hydrogenic model, 
the quantity Z should, in fact, be replaced by the effective nuclear charge (Z ) appropriate to 
the particular subshell under consideration. Also the (Z^ ) of the continuum electron (c) will 
enter into the expression for the exact Compton-profile. For the bound state electron (b), we 
shall use the values of Z ^  chosen in such a way that the impulse hydrogenic profiles for these 
states match the respective Hartcc Fock profiles at the center, q = 0. The problem of obtaining 
z;„ is a far more difficult problem. In their discussion of the photoeffcct, Bethc and Salpetcr 
[71 (while recognising that Z ^  —» 0 as r —»<») point out that since the greatest contribution 
to the matrix element occurs for distances of the order of the bound electron’s Bohr radius, the 
most preferable choice is to set Z ^  = Z ^

The impulse profile J ln[(q) as a function of q is symmetric about q = 0 and has a 
maximum there. As opposed to this, the maximum of J ( q )  computed from (2) occurs at q 
values not equal to zero. In other words, the maxima shift slightly (Sq) either towards let! (-Sq)  
or towards right (+ Sq). The quantity Sq is often termed as the Compton detect. We arc 
interested in studying the K and L-shell Compton defects of MoKa radiation (\Cj =• 17.374 eV) 
scattered through an angle 0 =  155°. Using the chosen effective nuclear charges, we have 
computed the number for J„iH(q) as a function of q and noted down the values of Sq where 
the exact profile exhibits a maximum. The result for Sq and J ln)H (q) lor various Z arc shown in 
Table 1.

The specific results presented include Is, 2s and 2p^av) profile values. The 2p impulse 
profile seems to average the 2 and 2p ^  exact results. Since there arc four electrons in the 
2p(±,) state and two electrons in the 2p ^  state, we have computed the 2p(m) result by using the 
formula

/ EH
2/

2 J EHZtJipU) (q) + J™BI(q)\ (10)
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Tabic I. Values o f Sq and J tt) ( S q )  in au.

sub-shell

E le m e n t

Is

Sq JuiStO

2s

Sq ,£ / /  c ,J2s (<>q) Sq

- p

He ~ 0 .02 0 .5 3 3 0

Li 0 06 0 3 2 5 0 0 01 1 3 8 5 2

Be -  0 11 0 2 3 2 0 • 0 02 1 .3 3 5 2

B - 0 17 0 1794 -  0  03 0 9821

C - 0 23 0  1450 -  0 05 0 7 9 3 5 0 21 0  4 8 2 2

N -  0 .29 0 1203 -  0 07 0 .6 6 1 2 0 .2 4 0 .4 2 5 2

O -  0 31 0 1018 -  0 10 0 5 6 3 2 0 27 0 3768

F -  0 .33 0 0 8 6 8 -  0 13 0 4 8 9 9 0 .2 9 0  3367

Ne -  0 16 0 4 3 4 0 0 31 0 3 0 3 0

N a -  0 21 0 3 6 8 9 0 .3 5 0 .2 5 2 7

M g -  0 26 0 3 2 3 2 0 .3 7 0 2 1 8 4

A1 -  0 31 0 .2 8 1 7 0 37 0 1928

Si -  0 37 0 2521 0 38 0 .1 7 1 0

P -  0 42 0 2 2 9 0 0 39 0 1529

S -  0 48 0 .2 0 8 1 0 43 0 1370

Cl -  0 54 0 1872 0 S 1 0 1222

A r - 0 60 0 1732 0 67 0 1076

and have noted the corresponding position of the maxima accordingly. As expected, the values 
of Sq for Is and 2s subshcll are negative while those for 2pUtv) arc positive confirming the 
expectation of Mukhopadhyaya et at [4] and of Bell 18]. Both for s and p electrons I Sq I 
increases as Z increases. We have found that our numbers for Sq arc in exact agreement with 
those obtained by the approximation method of Holm and Ribberfors (9|. This implies that the 
so-called first correction to the impulse approximation is good enough at the MoKo energy. 
The correction introduced by Holm and Ribberfors is essentially a high energy approximation 
of the exact profile. For example, if we assume that the energy and momentum transfer involved 
are large relative to the characteristic energy and momentum of the bound-state, then the wave 
vector p of the final state electron is a large quantity and we have the following results

2 ( \1 2pexp ---- tan
P [l + k-  -/>-)_

In- —ta n '1i 
P ( 1 1 )

with

v = k - p

J(1 + k 2 - p 1 Y +4p2j = 64p6(l + v2)'1 (12)

[ '- ]H (13)
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and

1 + 3k 2 + p^ = 4 p^
V (14)

In view of (11 -14) the high energy result of j ( f ( q )  comes out in the form

8 V 3 r

3flZ(l + v2) ' _p.
1 + — tan 1 v +

> 2 P
(15)

Within a normalisation factor, this high energy result has essentially been used by 
Holm and Ribberfors [9] for estimating the first order corrections to the impulse profile. However, 
at low energies an exact calculation like that of ours may turn out to be unavoidable. The values 
of for the Kv orbital are given tor atoms, He (Z= 2) toF(Z=9), because forZ>9thc
conservation oi energy leads to such a cut off on the negative wings of the Compton profiles, 
that does not permit one to investigate the maxima there. With Bloch and Mendelsohn [6| we 
have explicitly included this point in our calculation. The q cutoff has been determined by 
using the formula

<7 =
X - a
P yfx (16)

where

The expressions for J%H(q) given by Bell [8] are very simple and appear to be quite 
convenient to study profile asymmetries and Compton defects with particular emphasis on 
relative deviation (R) of the exact profile from the corresponding impulse result. We have 
verified that the mathematical expressions of Bell can be obtained from those in [6] quoted in 
this work by means of straightforward algebraic simplification.
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